Core-Level Photoelectron Spectroscopy Study of UTe₂ Shin-ichi Fujimori^{1*}, Ikuto Kawasaki¹, Yukiharu Takeda¹, Hiroshi Yamagami^{1,2}, Ai Nakamura³, Yoshiya Homma³, and Dai Aoki³ ¹Materials Sciences Research Center, Japan Atomic Energy Agency, Sayo, Hyogo 679-5148, Japan ²Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan ³Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan The valence state of UTe₂ was studied by core-level photoelectron spectroscopy. The main peak position of the U 4f core-level spectrum of UTe₂ coincides with that of UB₂, which is an itinerant compound with a nearly $5f^3$ configuration. However, the main peak of UTe₂ is broader than that of UB₂, and satellite structures are observed in the higher binding energy side of the main peak, which are characteristics of mixed-valence uranium compounds. These results suggest that the U 5f state in UTe₂ is in a mixed valence state with a dominant contribution from the itinerant $5f^3$ configuration. The unconventional superconductivity in UTe2 has attracted much attention in recent years. 1,2) Its electronic structure is essential to understand the origin of its superconductivity, and angle resolved photoelectron spectroscopy (ARPES) has been applied using soft X-ray (SX, $hv = 565 - 800 \text{ eV})^{3)}$ and vacuum ultraviolet (VUV, $hv = 30 - 150 \text{ eV})^{4}$ synchrotron radiation. However, these two ARPES studies presented contradicting views of the electronic structure of UTe₂: The SX ARPES study concluded that the band-structure calculation treating U 5f states as valence electrons can explain the overall electronic structure of UTe₂³⁾ while the VUV ARPES study argued that the near- E_F electronic structure is very similar to that of the band-structure calculation of ThTe₂ although there exist heavy bands around the Z point.⁴⁾ In addition, the partial U 5f density of states (DOS) obtained by resonant photoelectron spectroscopy (RPES) at the 4d - 5fabsorption edge ($h\nu = 736 \text{ eV}$) has a dominant sharp peak at the Fermi energy,3) while the on-resonant RPES spectrum measured at the 5d - 5f absorption edge ($h\nu = 98 \text{ eV}$) has a dominant peak at a higher binding energy of $E_{\rm B} \sim 0.7~{\rm eV}^{.4}$ To solve this discrepancy, additional electronic structure studies on UTe₂ are required. Recently, Thomas et al. reported Xray absorption spectrum (XAS) of UTe2 under ambient and high pressures.⁵⁾ They argued that UTe₂ exhibits intermediate valence at ambient pressure, suggesting that the U 5f state in UTe₂ is hybridized with the ligand states. In the present study, we further studied the U 5 f valence state of UTe₂ using corelevel spectroscopy, which has the ability to probe the valence state of the local uranium site.^{6,7)} The U 4f spectrum of UTe₂ was compared with that of a typical itinerant compound, UB₂, and localized compound, UPd3, as well as ferromagnetic superconductors UGe₂, UCoGe, URhGe, and UPt₃. Photoemission experiments were conducted on the SX beamline BL23SU at SPring-8.8) The overall energy resolution in the angle-integrated photoelectron spectroscopy exper- **Fig. 1.** U 4f core-level spectra of UTe₂ and reference compounds. Data of UB₂, UGe₂, UCoGe, URhGe, UPt₃, and UPd₃ are depicted from Refs 6 and 7. (a) U 4f core-level spectra of UB₂, UTe₂, UGe₂, UCoGe, URhGe, UPt₃, and UPd₃. (b) Blow up of the main peaks of U $4f_{7/2}$ spectra and their negative second derivatives iments at hv = 800 eV was approximately 140 meV. The kinetic energy of photoelectrons is about 400 eV, which is considered to have enough bulk sensitivity since the U 4f spectra of URu₂Si₂ measured at $hv = 800 \text{ eV}^{6,7)}$ and $hv = 5945 \text{ eV}^{9)}$ are essentially identical. The sample temperature was kept at 20 K for all measurements. Other experimental conditions are described in Ref. 3. Figure 1 (a) presents a comparison of the U 4f core-level spectra of UB₂, UTe₂, UGe₂, UCoGe, URhGe, UPt₃, and UPd₃. Their negative second derivatives of U $4f_{7/2}$ spectra are also provided in Fig. 1 (b) to indicate the locations of peaks in the spectra. Data of UB₂, UGe₂, UCoGe, URhGe, UPt₃, and UPd₃ are depicted from Refs 6 and 7. UB₂ and UPd₃ are typical itinerant and localized compounds, respectively. The band structure and Fermi surface of UB₂ are well explained by the band-structure calculation treating all U 5f electrons as itinerant. ¹⁰⁾ The occupation number of the U 5f state within the Muffin-Tin sphere is 2.82 in the calculation; thus, the local U 5f electronic configuration of UB₂ can be considered the dominant 5f³ configuration. In contrast, UPd₃ is a uranium compound with a localized 5f² configuration. These spectra all generally consist of a dominant main peak located at $E_{\rm B}=377-379~{\rm eV}$ and a broad satellite structure distributed at $E_{\rm B}=381-387~{\rm eV}$. These complex spectral shape originate from the transition from the ground state to multiple final states with different local U 5f electronic configurations. There are several theoretical models of the origin of the U 4f spectral profiles; 12,13 however, the quantitative analysis has not yet been established. Nevertheless, dif- J. Phys. Soc. Jpn. SHORT NOTES ferent final states have different binding energies, which can be used to identify the local electronic configuration in the ground state. Here, we discuss the electronic structure of UTe₂ based on a comparison with typical uranium compounds. The main peak positions of UTe2, UGe2, UCoGe, and URhGe are almost identical ($E_B = 377 - 377.3 \text{ eV}$), and have a similar asymmetric peak structure with a long tail toward higher binding energies. Their main peak positions are very similar to that of the itinerant U 5f compound UB₂ (designated as A in Fig. 1 (b)), and are very different from the spectrum of UPd₃ (designated as B in Fig. 1 (b)). This indicates that the dominant final state configurations in UTe2 as well as UGe₂, UCoGe, and URhGe are identical to that of UB₂, and the dominant U 5f configurations in the ground states of UTe2, UGe2, UCoGe, and URhGe are also similar to that of UB₂. In contrast, the main peaks of UTe₂ as well as ferromagnetic superconductors are broader than that of UB₂. As seen in the spectrum of UPd₃, the main peak consists of two peaks ($E_{\rm B}=378.9$ and 377.2 eV), and the broadening in the main peaks of UTe2, UGe2, UCoGe, and URhGe may originate from a small contribution from the UPd₃-type peak on the higher binding energy side of the main peaks, although this has not been resolved experimentally. Moreover, the corelevel spectrum of UTe2 is accompanied by a satellite, which has been observed in the U 4f core-level spectra of stronglycorrelated or localized $5f^2$ uranium compounds. Thus, these results indicate that the ground state of UTe2 is a mixed valence state with a dominant contribution from the $5f^3$ configuration and some contribution from the $5f^2$ configuration. These result are consistent with the result of SX-ARPES study³⁾ and the XAS study.⁵⁾ In addition, the core-level spectral shape of UTe2 is similar to that of UGe2, UCoGe, and URhGe, which have essentially itinerant but correlated U 5f states, ^{7,14,15)} suggesting that UTe₂ should be similar to them. Here, we consider the relationship between the present result and the results of other studies on the electronic structure of UTe₂. In density functional theory (DFT) plus Hubbard U (DFT+U) and generalized gradient approximation plus U(GGA+U) with $U \gtrsim 2$ eV, quasi-two-dimensional Fermi surfaces have been predicted. 16, 17) In these calculations, most of the U 5f weight was away from the Fermi level by the introduction of the U, and the topology of the Fermi surface becomes almost identical to that of the DFT calculation for ThTe₂. Experimentally, the VUV ARPES study reported very similar near- $E_{\rm F}$ electronic structure, although the existence of a heavy band around the Z point was claimed.⁴⁾ Furthermore, the VUV-RPES spectrum was interpreted based on the ground state with the dominant $5f^2$ Hund's rule ground state, which is based on the slightly mixed valent but essentially localized $5f^2$ state.⁴⁾ In such situation, its core-level spectrum should be similar to those of the localized compound UPd₃ or weakly hybridized compound UPt₃. However, the present result indicates that the hybridized (itinerant) $5 f^3$ configuration is dominant in the ground state of UTe₂, and the U 5 f states should thus make dominant contributions to the state at the Fermi level. The very different nature of U 5f states observed in the VUV ARPES study may originate from the enhanced surface sensitivity of VUV PES (≤ 5 Å) compared with SX-PES (≥ 15 Å), as similar discrepancies have been observed in strongly correlated f-electron materials.^{7,18,19)} In summary, we applied core-level spectroscopy to UTe₂. A comparison between the core-level spectral shape of UTe₂ and that of typical compounds demonstrated that the local electronic configuration of the U 5f state in UTe₂ is in the mixed valence state with a dominant contribution from the $5f^3$ configuration. Furthermore, the spectrum of UTe₂ is very similar to that of UGe₂, UCoGe, and URhGe, suggesting that U 5f should essentially have itinerant character, although there exist electron correlation effects. The result indicates that the topology of the Fermi surface of UTe₂ should be considerably different from the localized model, such as the DFT calculation for ThTe₂. **Acknowledgment** The authors thank A. B. Shick and W. E. Pickett for stimulating discussion. The experiment was performed under Proposal Nos. 2019A3811 at SPring-8 BL23SU. The present work was financially supported by JSPS KAKENHI Grant Numbers JP15H05882, JP15H05884, JP15H05745, JP15K21732, JP16H01084, JP16H04006, JP18K03553, and JP19H00646. - S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and N. P. Butch: Science 365 (2019) 684. - D. Aoki, A. Nakamura, F. Honda, D. Li, Y. Homma, Y. Shimizu, Y. J. Sato, G. Knebel, J.-P. Brison, A. Pourret, D. Braithwaite, G. Lapertot, Q. Niu, M. Vališka, H. Harima, and J. Flouquet: J. Phys. Soc. Jpn. 88 (2019) 043702. - S.-i. Fujimori, I. Kawasaki, Y. Takeda, H. Yamagami, A. Nakamura, Y. Homma, and D. Aoki: J. Phys. Soc. Jpn. 88 (2019) 103701. - L. Miao, S. Liu, Y. Xu, E. C. Kotta, C.-J. Kang, S. Ran, J. Paglione, G. Kotliar, N. P. Butch, J. D. Denlinger, and L. A. Wray: Phys. Rev. Lett. 124 (2020) 076401. - S. Thomas, F. Santos, M. Christensen, T. Asaba, F. Ronning, J. Thompson, E. Bauer, R. Fernandes, G. Fabbris, and P. Rosa: arXiv:2005.01659 (2020). - 6) S. Fujimori, T. Ohkochi, I. Kawasaki, A. Yasui, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, Y. Tokiwa, S. Ikeda, T. Sugai, H. Ohkuni, N. Kimura, and Y. Ōnuki: J. Phys. Soc. Jpn. 81 (2012) 014703. - S.-i. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Ōnuki: J. Phys. Soc. Jpn. 85 (2016) 062001. - Y. Saitoh, Y. Fukuda, Y. Takeda, H. Yamagami, S. Takahashi, Y. Asano, T. Hara, K. Shirasawa, M. Takeuchi, T. Tanaka, and H. Kitamura: J. Synchrotron Rad. 19 (2012) 388. - A. Amorese, M. Sundermann, B. Leedahl, A. Marino, D. Takegami, H. Gretarsson, A. Gloskovskii, C. Schlueter, M. W. Haverkort, Y. Huang, M. Szlawska, D. Kaczorowski, S. Ran, M. B. Maple, E. D. Bauer, A. Leithe-Jasper, P. Hansmann, P. Thalmeier, L. H. Tjeng, and A. Severing: P. Natl. Acad. Sci. U.S.A. 117 (2020) 30220. - T. Ohkochi, S.-i. Fujimori, H. Yamagami, T. Okane, Y. Saitoh, A. Fujimori, Y. Haga, E. Yamamoto, and Y. Ōnuki: Phys. Rev. B 78 (2008) 165110. - S. Fujimori, Y. Saito, N. Sato, T. Komatsubara, S. Suzuki, S. Sato, and T. Ishii: Solid State Commun. 105 (1998) 185. - 12) K. Okada: J. Phys. Soc. Jpn. 68 (1999) 752. - 13) G. Zwicknagl: Phys. Status Solidi B 250 (2013) 634. - 14) S.-i. Fujimori, I. Kawasaki, A. Yasui, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Ōnuki: Phys. Rev. B 89 (2014) 104518. - S. Fujimori, T. Ohkochi, I. Kawasaki, A. Yasui, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Ōnuki: Phys. Rev. B 91 (2015) 174503. - 16) Y. Xu, Y. Sheng, and Y.-f. Yang: Phys. Rev. Lett. 123 (2019) 217002. - J. Ishizuka, S. Sumita, A. Daido, and Y. Yanase: Phys. Rev. Lett. 123 (2019) 217001. - 18) Y. Takeda, T. Okane, T. Ohkochi, Y. Saitoh, H. Yamagami, A. Fujimori, and A. Ochiai: Phys. Rev. B 80 (2009) 161101. - 19) S.-i. Fujimori: J. Phys. Condens. Matter 28 (2016) 153002.