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The volume-preserving Willmore flow
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Abstract: We consider a closed surface in R
3 evolving by the volume-

preserving Willmore flow and prove a lower bound for the existence time of
smooth solutions. For spherical initial surfaces with Willmore energy below
8π we show long time existence and convergence to a round sphere by per-
forming a suitable blow-up and by proving a constrained  Lojasiewicz–Simon
inequality.
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1. Introduction and main results

For an immersion f : Σ → R
3 of a compact, connected and oriented surface Σ without

boundary, its Willmore energy is defined by

W(f) :=
1

4

∫

Σ
H2 dµ. (1.1)

Here µ = µf denotes the area measure, induced by the pull-back of the Euclidean metric

gf := f∗〈·, ·〉, and H = Hf := 〈 ~Hf , νf 〉 denotes the (scalar) mean curvature with respect
to ν = νf : Σ → S

2, the unique unit normal along f induced by the chosen orientation
on Σ, see (2.1) below. By the Gauß–Bonnet theorem, the Willmore energy (1.1) only
differs by a topological constant from the squared L2-norm of A0, the trace-free part of
the second fundamental form. Indeed, we have

W(f) :=

∫

Σ
|A0|2 dµ = 2W(f) − 4πχ(Σ), (1.2)
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where χ(Σ) denotes the Euler characteristic. Note that both energies are not only
geometric, i.e. invariant under diffeomorphisms of Σ, but also conformally invariant,
i.e. invariant under rigid motions and inversions provided the center of inversion does
not lie on f(Σ). As already observed in [41], W(f) ≥ 4π with equality only for round
spheres. Therefore, W and hence also W are a natural way to measure the total bending
of an immersed surface with various applications also beyond differential geometry, for
instance in the study of biological membranes [9, 16], general relativity [15] and image
restoration [13].
The analysis of the Willmore flow, i.e. the L2-gradient flow associated to the energy
W, started with the work of Kuwert and Schätzle. In [21], they proved a lifespan
theorem under the assumption that the concentration of curvature of the initial datum is
controlled. In [20], this was used to set up a blow-up procedure and to prove convergence
to a round sphere if the energy is sufficiently small. Then in [22], long-time existence and
convergence was shown for the flow of spherical immersions with initial datum f0 : S2 →
R
3 satisfying W(f0) ≤ 8π. The threshold 8π already appears in the celebrated Li–Yau

inequality for the Willmore energy [27, Theorem 6], yielding that f is an embedding if
W(f) < 8π. Furthermore, this threshold is in fact sharp for the convergence result in
[22], see [28] for numerical experiments and [4] for an analytic proof. It remains an open
problem to prove or disprove whether this singularity happens in finite time.
Recently, similar convergence results have been established for the Willmore flow of tori
of revolution [12] with the same energy threshold and also for the Willmore flow of
Hopf-tori in the three-sphere S

3 [19].
Moreover, various authors have extended the methods of Kuwert and Schätzle to related
geometric evolution equations also involving constraints, including, for instance, the
surface diffusion flow [32, 39, 40], Helfrich-type flows [31, 5] and other higher order
flows [3, 29]. In [18], the area-preserving Willmore flow was studied. Related constrained
evolution problems for the elastic energy of curves have been considered in [14], [11] and
[35], for instance.
In this article, we introduce a constrained gradient flow, which evolves an initial immer-
sion f : Σ → R

3 such that W decreases as fast as possible, while V, the signed volume of
f(Σ), defined by

V(f) := −1

3

∫

Σ
〈f, ν〉dµ, (1.3)

is kept constant. The analogous problem for the mean curvature flow was introduced by
Huisken [17]. More explicitly, we say that a smooth family of immersions f : [0, T )×Σ →
R
3 is a volume-preserving Willmore flow, if it satisfies the geometric evolution equation

∂tf =
(

−∆H − |A0|2H + λ
)

ν, (1.4)

where ∆ = ∆f is the Laplace–Beltrami operator on (Σ, gf ) and the Lagrange multiplier
λ := λ(t) := λ(ft) depends on the immersion ft := f(t, ·) and is given by

λ :=

∫

Σ |A0|2H dµ

A(f)
, (1.5)
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where A(f) :=
∫

Σ dµf denotes the total area of Σ. In Section 2.3, we will prove that
(1.4) actually decreases W, hence also W by (1.2), while keeping V fixed. Note that
the energies defined in (1.1) and (1.2) do not change, if we reverse the orientation on
Σ. While the normal ν and hence the volume (1.3) change sign, the flow equation (1.4)
with λ as in (1.5) is also invariant under reversing the orientation.
The stationary solutions to the volume-preserving Willmore flow (1.4) are characterized
as solutions of the PDE

∆H + |A0|2H = λ for some λ ∈ R. (1.6)

Formally, (1.6) is the Euler–Lagrange equation of critical points of W (and hence of W)
subject to a volume constraint, so we refer to solutions of (1.6) as (volume)-constrained
Willmore immersions, see Lemma 2.4 and Lemma 2.6 below. By changing from λ to
−λ, (1.6) is preserved under reversing the orientation on Σ. Note that while the energies
W and V may not be well-defined, (1.6) makes sense even if Σ is not compact, and we
still term noncompact solutions of (1.6) constrained Willmore immersions.
Our first main contribution extends the energy concentration-based lower bound on the
lifespan for the Willmore flow [21] to the volume-preserving Willmore flow.

Theorem 1.1. There exists an absolute constant ε̄ > 0 such that if f0 : Σ → R
3 is an

immersion with W(f0) ≤ K and ρ > 0 is chosen such that
∫

Bρ(x)
|A0|2 dµ0 ≤ ε < ε̄ for all x ∈ R

3,

then the maximal existence time T of the volume-preserving Willmore flow with initial
data f0 satisfies

T > ĉρ4,

for some ĉ = ĉ(K,χ(Σ)) > 0 and furthermore for all 0 ≤ t ≤ ĉρ4 it holds
∫

Bρ(x)
|A|2 dµ ≤ ĉ−1ε for all x ∈ R

3. (1.7)

Following the notation of [21], the integrals above have to be understood over the preim-
ages under f0 and ft, respectively.
The proof of Theorem 1.1 follows the concentration-compactness strategy developed by
Kuwert and Schätzle for the Willmore flow in [21]. Since this method is relying on
smallness of the curvature in small balls, it is intrinsically local, making the nonlocal
nature of the Lagrange multiplier a major difficulty. To compensate this, the L4/3-norm
of λ naturally appears in these estimates, a scale-invariant quantity (see Remark 2.2)
which we can control under certain assumptions, see Section 4.1 below. In particular,
we do not assume a-priori L∞-bounds on λ as in [32, 39]. However, to show this correct
integrability, we have to allow the constant ĉ to depend on an upper bound for the initial
energy, as well as on the topology of Σ, in contrast to [21, Theorem 1.2].
Our second main contribution extends the convergence result of Kuwert and Schätzle
[22, Theorem 5.2] in the following
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Theorem 1.2. Let f0 : S2 → R
3 be a smooth immersion such that W(f0) ≤ 8π and

V(f0) 6= 0. Then the volume-preserving Willmore flow with initial datum f0 exists for
all times and converges smoothly, after reparametrization, to a round sphere with radius

R = 3

√

3|V(f0)|
4π as t→ ∞.

As in [20, 22], the strategy to prove Theorem 1.2 is a blow-up construction based on the
lifespan bound in Theorem 1.1. The blow-up limit is a constrained Willmore immersion
and in general noncompact. However, apart from a small energy regime [30], for λ 6= 0
there is no classification of solutions to (1.6). Nonetheless, under an L2-integrability
assumption on the Lagrange multiplier, we are able to conclude that the blow-up is a
Willmore immersion, i.e. λ = 0 in (1.6). In the energy regime of Theorem 1.2, this
integrability can be deduced from a reverse isoperimetric inequality [36, 4]. Together
with the removability result [22] and the classification of Willmore spheres [8], we then
conclude that the blow-up limit is compact. A result of independent interest is that the
volume-constrained Willmore functional satisfies an appropriate constrained version of
the  Lojasiewicz–Simon gradient inequality in the sense of [34]. Finally, this inequality
yields a stability result in the spirit of [10] from which we conclude global existence and
convergence of the flow if a blow-up is compact.
Note that in view of [22, Theorem 5.2], we believe that the reparametrization in Theo-
rem 1.2 is not necessary, but a common consequence when relying on the  Lojasiewicz–
Simon gradient inequality, cf. [10, Lemma 4.1].
This article is structured as follows. First, we recall some definitions and compute the
evolution of relevant quantities in Section 2. Section 3 is devoted to proving a key
ingredient of the paper: localized integral estimates in the spirit of [21], which now
require an L4/3 in time integrability of the Lagrange multiplier. Combined with the
careful a-priori estimates of λ which we establish in Section 4, they are then used to prove
the lifespan bound, Theorem 1.1, in Section 5. In Section 6 we construct a blow-up limit
and study its properties. We then deduce a convergence result for compact blow-ups
in the spirit of [10] by proving a constrained  Lojasiewicz–Simon gradient inequality in
Section 7, before proving Theorem 1.2 in Section 8. For the sake of readability, some
details and well-known arguments have been moved to the appendix and may be skipped
by the eager or experienced reader.

2. Preliminaries

In this section, we will review the geometric and analytic background and prove some
first properties of the flow (1.4). In the following, Σ will always denote a compact and
connected oriented surface without boundary. Note that in contrast to [21, 20], we work
exclusively in codimension one, which simplifies the relevant geometric objects.
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2.1. Immersed and embedded surfaces in R3

An immersion f : Σ → R
3 induces the pullback metric g = f∗〈·, ·〉 on Σ, which in local

coordinates is given by

gij := 〈∂if, ∂jf〉,

where 〈·, ·〉 denotes the Euclidean metric. The chosen orientation on Σ determines a unit
normal field ν : Σ → S

2 along f , which in local coordinates in the orientation is given by

ν =
∂1f × ∂2f

|∂1f × ∂2f |
. (2.1)

We will always work with this unit normal vector field. The second fundamental form
of f is then given by projecting the second derivatives of f in normal direction, i.e. in
local coordinates we define Aij := 〈∂i∂jf, ν〉. The mean curvature and the tracefree part
of the second fundamental form are

H := gijAij and A0
ij := Aij −

1

2
Hgij ,

where gij := (gij)
−1. Note that g, A and A0 are scalar valued

(2
0

)

-tensors. Moreover, for
any vector field X along f , we have the tangential and normal projections

P⊤X := P⊤fX := gij〈X, ∂if〉∂jf
P⊥X := P⊥fX := X − P⊤X.

The Levi-Civita connection ∇ = ∇f induced by g extends uniquely to a connection on
tensors, which we also denote by ∇. For an orthonormal basis {e1, e2} of the tangent
space, the Codazzi–Mainardi equations then yield

∇iH = (∇jA)(ei, ej) = 2(∇jA
0)(ei, ej). (2.2)

The Laplace–Beltrami operator on (Σ, g) is given by

∆gξ = gij∇i∇jξ, for ξ ∈ C∞(Σ).

For a
(

2
0

)

- tensor Tij, its tensor norm is |T |2 := gijgkℓTikTjℓ and hence we get

|A|2 = |A0|2 +
1

2
H2. (2.3)

Consequently, using (1.2), we find

∫

Σ
|A|2 dµ = W(f) + 2W(f) = 4W(f) − 4πχ(Σ). (2.4)

5



2.2. The PDE perspective

Note that in the general context of constrained gradient flows on Hilbert spaces, cf. [34,
Section 5], the flow in a Hilbert space H associated to the energy E = W with constraint
G = −V ≡ constant is formally given by

{

∂tf = −∇HW(f) − λ(f)∇H V(f), t > 0
f(0) = f0,

where the Lagrange multiplier is defined by the formula

λ(f) = −〈∇W(f),∇V(f)〉H
‖∇V(f)‖2H

.

If we choose H := L2(dµf ), by the explicit form of the L2-gradients (see Lemma 2.4
below), the divergence theorem and the fact that ∂Σ = ∅, this definition coincides with
the flow in (1.4) with Lagrange multiplier λ as in (1.5). In particular, λ does not contain
any derivatives of the curvature and is therefore of lower order compared to the leading
term −∆H in (1.4). This will significantly simply the analysis of λ later on.
Despite that, the flow equation (1.4) is still a quasilinear, degenerate parabolic PDE
of 4th order which is nonlocal due to the Lagrange multiplier. Hence, even short time
existence and uniqueness is not immediate. However, as λ is of lower order, for smooth
initial data one can show the following local well-posedness result by using an appropriate
fixed-point argument in parabolic Hölder spaces, see for instance [33, Section 7] and [23,
Section 3.1].

Proposition 2.1. Let f0 : Σ → R
3 be a smooth immersion. Then there exist T ∈ (0,∞]

and a unique, nonextendable smooth solution f : [0, T )×Σ → R
3 of the volume-preserving

Willmore flow with initial datum f(0) = f0.

An important property of the volume-preserving Willmore flow is the following parabolic
scaling, which directly follows from the scaling behavior of the geometric quantities.

Remark 2.2. If f : [0, T ) × Σ → R
3 is a volume-preserving Willmore flow, then for

any ρ > 0 the family of immersions f̃(t, p) := ρ−1f(ρ4t, p) is also a volume-preserving
Willmore flow on [0, T̃ )×Σ with T̃ = ρ−4T . Moreover, by a direct computation we have

∫ T

0
|λ(t)| 43 dt =

∫ T̃

0
|λ̃(t)| 43 dt,

∫ T

0
|λ(t)|2A(ft) dt =

∫ T̃

0
|λ̃(t)|2A(f̃t) dt.

Note that the power p = 4
3 is the only exponent for which the Lp-norm of λ behaves

correctly with respect to the rescaling above and will naturally show up in Section 3
below. In Section 4, we show how to control both of these integrals.

2.3. Evolution of the geometric quantities

In this section, we recall the variation of the relevant geometric quantities and the
(localized) evolution of the energy. The proofs are standard and can be found in [21, 20],
for instance, or follow from direct computations.
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Lemma 2.3. Let f : [0, T ) × Σ → R
3 be a smooth family of immersions with normal

velocity ∂tf = ξν. For an orthonormal basis {e1, e2} of the tangent space, the geometric
quantities induced by f satisfy

(∂tg)(ei, ej) = −2Aijξ, (2.5)

∂t(dµ) = −Hξ dµ, (2.6)

∂tH = ∆ξ + |A0|2ξ +
1

2
H2ξ, (2.7)

(∂tA)(ei, ej) = ∇2
ijξ −AikAkjξ, (2.8)

(∂tA
0)(ei, ej) =

(

∇2
ijξ
)0 − gij |A0|2ξ, (2.9)

∂tν = − gradg ξ =: gij∂iξ∂jf. (2.10)

As a consequence, we find the first variation of the energy and the volume.

Lemma 2.4. Let f : Σ → R
3 be an immersion. Then, the first variations of W and V

are given by

V ′(f)ϕ = −
∫

〈ν, ϕ〉dµ,

W ′
(f)ϕ =

∫

〈(∆H + |A0|2H)ν, ϕ〉dµ, (2.11)

for all ϕ ∈ C∞(Σ;R3) normal along f . Here and in the following, we always integrate
over the whole surface Σ if the domain of integration is not specified.

This means that the L2(dµf )-gradients of W and V are given by the identities

∇W(f) = (∆H + |A0|2H)ν,

∇V(f) = −ν.

These gradients are purely normal, so we will often work with the scalar L2(dµf )-gradient

∇scW(f) := ∆H + |A0|2H. (2.12)

By direct computation, along a solution of (1.4) the volume is indeed preserved since

d

dt
V(f) = 0, (2.13)

whereas by (2.11) and (2.13) the energy decreases by

d

dt
W(f) = −

∫

|∂tf |2 dµ ≤ 0. (2.14)

Remark 2.5. The computation in (2.14) implies that W is a strict Lyapunov function,
i.e. W is strictly decreasing unless f is constant. By (1.2) this also holds for W.
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It is now easy to prove the following rigidity result for constrained Willmore immersions.

Lemma 2.6. Let Σ be a compact, oriented surface without boundary and let f : Σ → R
3

be a solution to (1.6) with V(f) 6= 0. Then f is a Willmore immersion, i.e. a solution
to (1.6) with λ = 0.

We note that the assumptions in Lemma 2.6 are automatically satisfied if f is an em-
bedding of a compact surface, since then V is exactly the volume of the domain enclosed
by f(Σ) by the divergence theorem. On the other hand, the example of an infinitely
long cylinder shows that the statement of the lemma is no longer true without the
compactness assumption.

Proof of Lemma 2.6. We observe that by the scaling invariance of the Willmore energy,
we have W(f + tf) = W(f) for all |t| < 1. Hence, by (2.11) (which also holds for
variations which are not necessarily normal, see for instance [23, p. 11]), we find

0 =
d

dt

∣

∣

∣

∣

t=0

W(f + tf) =

∫

〈∇W(f), f〉dµ =

∫

〈(∆H + |A0|2H)〈ν, f〉dµ = 3λV(f),

using (1.6) and then (1.3) in the last step. As V(f) 6= 0, this yields the claim.

3. Localized energy estimates

In this section, we will use the interpolation inequalities developed in [21, 20]. As we shall
see, control over the concentration of curvature and λ enables us to estimate derivatives
of arbitrary order of the second fundamental form.
In the following, we restrict to a particular class of test functions. Let γ̃ ∈ C∞

c (R3) with
0 ≤ γ̃ ≤ 1 and ‖Dγ̃‖∞ ≤ Λ, ‖D2γ̃‖∞ ≤ Λ2 for some Λ > 0. Then setting

γ := γ̃ ◦ f : [0, T ) × Σ → R we find

|∇γ| ≤ CΛ and |∇2γ| ≤ CΛ2 + C|A|Λ, (3.1)

for a universal constant C ∈ (0,∞). Note that γt has compact support in space for all
0 ≤ t < T . The estimates in (3.1) follow by the identities

∇γ = (Dγ̃ ◦ f)Df

∇2γ = (D2γ̃ ◦ f)(Df ·,Df ·) + (Dγ̃ ◦ f)A(·, ·).

Unless specified otherwise, constants C ∈ (0,∞) are always universal and are allowed to
change from line to line.
Following the strategy in [21, Secion 3], we can prove the following

Lemma 3.1. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow. We have

∂t

∫

1

2
|H|2γ4 dµ+

1

2

∫

|∇W(f)|2γ4 dµ ≤ CΛ2

∫

|A|2H2γ2 dµ+ CΛ4

∫

[γ>0]
H2 dµ

8



+ λ

∫

|A0|2Hγ4 dµ+ CΛ|λ|
∫

H2γ3 dµ,

for some universal constant C with 0 < C <∞ and

∂t

∫

|A0|2γ4 dµ+
1

2

∫

|∇W(f)|2γ4 dµ ≤ CΛ2

∫

|A0|2|A|2γ2 dµ+CΛ4

∫

[γ>0]
|A|2 dµ

+ λ

∫

|A0|2Hγ4 dµ+ CΛ|λ|
∫

|A0|2γ3 dµ.

Proof. See Appendix B.

Under the assumption of non-concentrated curvature, the following estimate by Kuwert
and Schätzle allows us to locally control derivatives up to second order of the second
fundamental form by the localized Willmore gradient and the localized energy. In the
form stated below, it follows directly from [20, Proposition 2.6 and Lemma 4.2].

Proposition 3.2 ([20]). There exist absolute constants ε0, C ∈ (0,∞) such that if
f : Σ → R

3 is an immersion with

∫

[γ>0]
|A|2 dµ < ε0,

for some γ as in (3.1), then we have

∫

(

|∇2A|2 + |A|2|∇A|2 + |A|6
)

γ4 dµ ≤ C

∫

|∇W(f)|2γ4 dµ+ CΛ4

∫

[γ>0]
|A|2 dµ.

This will be the crucial tool in studying the volume-preserving Willmore flow if the
concentration of curvature is controlled, cf. Sections 4 to 6. Note that in Lemma 3.1, a
term involving λ and a cubic power of A occur. However, the energy decay only allows
us to control square powers of A, hence we have to pay the price in terms of a higher
power of the Lagrange multiplier.

Proposition 3.3. Suppose f : [0, T )×Σ → R
3 is a volume-preserving Willmore flow. If

∫

[γ>0]
|A|2 dµ < ε0 at time t ∈ [0, T ),

where ε0 > 0 is as in Proposition 3.2 and γ is as in (3.1), then we have

∂t

∫

|A|2γ4 dµ+ c0

∫

(

|∇2A|2 + |A|2|∇A|2 + |A|6
)

γ4 dµ

≤ CΛ4

∫

[γ>0]
|A|2 dµ+ C|λ| 43

∫

|A|2γ4 dµ

at time t for some universal constants c0, C ∈ (0,∞).
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Proof. Combining Lemma 3.1, Proposition 3.2 and (2.3), we find

∂t

∫

|A|2γ4 dµ+ c0

∫

(

|∇2A|2 + |A|2|∇A|2 + |A|6
)

γ4 dµ

≤ CΛ2

∫

|A|4γ2 dµ+ CΛ4

∫

[γ>0]
|A|2 dµ+ C|λ|

∫

|A|3γ4 dµ+ CΛ|λ|
∫

|A|2γ3 dµ.

For the first term on the right hand side above, for ε > 0 we estimate

Λ2

∫

|A|4γ2 dµ ≤ ε

∫

|A|6γ4 dµ+ C(ε)Λ4

∫

[γ>0]
|A|2 dµ.

For the third term, we use Young’s inequality with p = 4, q = 4
3 to obtain

λ

∫

|A| 32+ 3
2 γ4 dµ ≤ ε

∫

|A|6γ4 dµ+C(ε)|λ| 43
∫

|A|2γ4 dµ.

Similarly for the fourth term, we find

Λ|λ|
∫

|A| 12+ 3
2γ3 dµ ≤ CΛ4

∫

[γ>0]
|A|2 dµ+ C|λ| 43

∫

|A|2γ4 dµ.

Taking ε > 0 small enough and absorbing yields the claim.

The integrated form of Proposition 3.3 will be particularly useful.

Corollary 3.4. Let f : [0, T ) ×Σ → R
3 be a volume-preserving Willmore flow such that

for ε0 > 0 as in Proposition 3.2 and γ as in (3.1) we have
∫

[γ>0]
|A|2 dµ ≤ ε < ε0 for all 0 ≤ t < T.

Then there exist universal constants c0, C ∈ (0,∞) such that for all 0 ≤ t < T we have
∫

[γ=1]
|A|2 dµ+ c0

∫ t

0

∫

[γ=1]

(

|∇2A|2 + |A|2|∇A|2 + |A|6
)

dµ

≤
∫

[γ0>0]
|A0|2 dµ0 + CΛ4εt +Cε

∫ t

0
|λ(τ)| 43 dτ. (3.2)

Here we used the notation
∫

[γ0>0]|A0|2 dµ0 =
∫

[γ>0]|A|2 dµ
∣

∣

∣

t=0
.

Note that in order to bound the left hand side of (3.2) up to time t = T , the control of
the curvature concentration alone does not suffice. Recalling the nonlocal nature of the
evolution (1.4), this is not entirely surprising. However, the above result shows that this
lack of control can be compensated, if in addition we can bound the L4/3(0, T )-norm
of λ, a spatially global quantity, which behaves correctly under parabolic rescaling by
Remark 2.2. We will discuss under which assumptions λ ∈ L4/3(0, T ) can be guaranteed
in Section 4.
As in [20], an appropriate higher order version of Corollary 3.4 can be used to prove
higher order interior estimates.
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Proposition 3.5. Let f : [0, T )×Σ → R
3 be a volume-preserving Willmore flow. Suppose

ρ > 0 is chosen such that T ≤ T ∗ρ4 for some 0 < T ∗ <∞ and

∫

Bρ(x)
|A|2 dµ ≤ ε < ε0 for all 0 ≤ t < T,

where x ∈ R
3, ε0 > 0 is as in Proposition 3.2 and

∫ T
0 |λ| 43 dt ≤ L < ∞. Then, for all

m ∈ N0 and t ∈ (0, T ) we have the estimates

‖∇mA‖L2(Bρ/2(x))
≤ C(m,T ∗, L)

√
εt−

m
4 ,

‖∇mA‖L∞(Bρ/2(x)) ≤ C(m,T ∗, L)
√
εt−

m+1
4 .

The proof of Proposition 3.5 is essentially the same as in [20, Theorem 3.5], so it is
moved to Appendix C.

4. Integral estimates for the Lagrange multiplier

In Proposition 3.5, we were able to control all derivatives of the second fundamental
form, if the concentration of curvature is sufficiently small and the Lagrange multiplier
has some sort of integrability. This section is devoted to showing time integrability of λ
under certain assumptions.

4.1. The L4/3(0, T )-norm of λ in the case of non-concentration

First, we will control the L4/3-norm of λ, which will be the key ingredient in the proof
of the lifespan result in Theorem 1.1. We begin by making the following observation for
immersions with non-concentrated curvature.

Lemma 4.1. There exists an absolute constant 0 < ε1 < 8π such that if f : Σ → R
3 is

an immersion, x0 ∈ f(Σ) and ρ > 0 satisfies

∫

Bρ(x0)
|A|2 dµ ≤ ε < ε1,

then we have ρ ≤ CA(f)
1
2 , where 0 < C <∞ is an absolute constant.

Proof. By Simon’s monotonicity formula [37, (1.4)] and (2.3) for any x0 ∈ f(Σ) and
some universal constant 0 < C <∞ we have

π ≤ C

(

ρ−2µ(f−1(Bρ(x0))) +

∫

Bρ(x0)
|H|2 dµ

)

≤ Cρ−2µ(f−1(Bρ(x0))) + 2Cε1.

For ε1 := π
4C > 0 we thus find π

2 ≤ Cρ−2µ(f−1(Bρ(x0))) ≤ Cρ−2A(f).

11



Proposition 4.2. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow with

W(f0) ≤ K such that ρ > 0 satisfies

sup
0≤t≤T

∫

Bρ(x)
|A|2 dµ ≤ ε < ε2 for all x ∈ R

3,

where ε2 := min{ε0, ε1} ∈ (0, 8π), with ε0 as in Proposition 3.2 and ε1 > 0 as in
Lemma 4.1. Then, we have

∫ t

0
|λ| 43 dτ ≤ C(K,χ(Σ))

(

t
1
2

ρ2
+

t

ρ4

)

for all 0 ≤ t < T.

Proof of Proposition 4.2. First, fix x ∈ R
3. Let γ̃ ∈ C∞

c (R3) be a bump function with
χBρ/2(x) ≤ γ̃ ≤ χBρ(x), ‖Dγ̃‖∞ ≤ C

ρ and ‖D2γ̃‖∞ ≤ C
ρ2

. Therefore, γ := γ̃ ◦ f is as in

(3.1) with Λ = C
ρ , and thus by integrating Proposition 3.3 from 0 to τ we find

∫

Bρ/2(x)
|A|2 dµ

∣

∣

∣

∣

∣

t=τ

+ c0

∫ τ

0

∫

Bρ/2(x)

(

|∇2A|2 + |A|2|∇A|2 + |A|6
)

dµ dt

≤
∫

Bρ(x)
|A0|2 dµ0 +

C

ρ4

∫ τ

0

∫

Bρ(x)
|A|2 dµ dt+ C

∫ τ

0
|λ| 43

∫

Bρ(x)
|A|2 dµ dt. (4.1)

It is possible to find (xℓ)ℓ∈N ⊂ R
3 with R

3 =
⋃

ℓ∈NBρ/2(xℓ) such that each point y ∈ R
3

is contained in at most M of the balls Bρ(xℓ), where M > 0 is a universal constant, in
particular independent of ρ > 0. Therefore, choosing x = xℓ in (4.1) and summing over
ℓ ∈ N we find
∫ τ

0

∫

|A|6 dµ dt ≤
∑

ℓ

∫ τ

0

∫

Bρ/2(xℓ)
|A|6 dµ dt

≤M

∫

|A0|2 dµ0 +
CM

ρ4

∫ τ

0

∫

|A|2 dµ dt+ CM

∫ τ

0
|λ| 43

∫

|A|2 dµ dt

Now, by (2.4) we have
∫

|A|2 dµ ≤ C(K,χ(Σ)) and hence
∫ τ

0

∫

|A|6 dµ dt ≤ C (K,χ(Σ))

(

1 +
τ

ρ4
+

∫ τ

0
|λ| 43 dt

)

. (4.2)

Thus, using (2.3), Hölder’s inequality and Lemma 4.1 we find from (1.5)

∫ τ

0
|λ| 43 dt ≤ C

∫ τ

0
A(ft)

− 4
3

(
∫

|A|3 dµ

)
4
3

dt ≤ C

∫ τ

0
A(ft)

−1

(
∫

|A|4 dµ

)

dt

≤ Cρ−2

(
∫ τ

0

∫

|A|6 dµ dt

)
1
2
(
∫ τ

0

∫

|A|2 dµ dt

)
1
2

.

Therefore, using (2.4), the energy decay (2.14), (4.2) and Young’s inequality, we find

∫ τ

0
|λ| 43 dt ≤ C(K,χ(Σ))

τ
1
2

ρ2

(

1 +
τ

1
2

ρ2
+

(
∫ τ

0
|λ| 43 dt

)
1
2

)
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≤ C(K,χ(Σ))

(

τ
1
2

ρ2
+

τ

ρ4

)

+
1

2

∫ τ

0
|λ| 43 dt.

4.2. An L2-type estimate

In this section, we prove an L2(0, T )-type estimate for λ, which will be crucial in the
analysis of the blow-ups in Section 6. Since we rely on a reverse isoperimetric inequality
[6], this is the first instance where we require the Willmore energy to be below 8π.
As a first step, we want to relate the diameter to the Lagrange multiplier. To that end,
we use the different scaling of W and V to obtain a different representation of λ, cf. [14,
pp. 1236 – 1237] and also [30, Proof of Theorem 1.4].

Lemma 4.3. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow. Then for

all t ∈ [0, T ) and any p ∈ R
3 we have

3λV(f0) = −
∫

〈∂tf, f〉dµ = −
∫

〈∂tf, f − p〉dµ.

Proof. Fix t ∈ [0, T ). For α > 0, consider the immersion hα := p + α(ft − p) : Σ → R
3.

We then have W(hα) = W(ft), whereas V(hα) = α3 V(f0). Thus, we find

d

dα

∣

∣

∣

∣

α=1

(

W(hα) + λ(t)V(hα)
)

= 0 + 3λ(t)V(f0),

whereas by the definition of L2(dµf )-gradients we have

d

dα

∣

∣

∣

∣

α=1

(

W(hα) + λ(t)V(hα)
)

=

∫

〈∇W(f) + λ∇V(f), f − p〉dµ

∣

∣

∣

∣

t

.

Therefore, by (1.4) and Lemma 2.4 we have the identity

3λV(f0) = −
∫

〈∂tf, f − p〉dµ on [0, T ).

Picking p = 0 yields the first equality.

This finally enables us to prove the desired L2-estimate.

Proposition 4.4. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow with

W(f0) ≤ 8π − δ for δ > 0. Then, for all 0 ≤ t < T we have

∫ t

0
λ2(τ)A(fτ ) dτ ≤ C(δ)W(f0)2.

Proof. Observe that by (2.13), we have |V(f)| = |V(f0)|. Picking some p(t) ∈ ft(Σ) for
each t, we find by Lemma 4.3 and Cauchy–Schwarz

|λ(t)| ≤ 1

3|V(f0)|

∫

|∂tft|dµt diam ft(Σ) ≤ A(ft)
1
2

3|V(f0)|

(
∫

|∂tft|2 dµt

)
1
2

diam ft(Σ).
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Squaring this inequality, by Simon’s diameter estimate [37, Lemma 1.1] we conclude

λ2(t)A(ft) ≤
C

|V(f0)|2
A(ft)

3W(ft)

∫

|∂tft|2 dµt.

Now, by the reverse isoperimetric inequality [6, Theorem 1.1] (see also [36, Theorem 1]
for the spherical case), and the assumption on the initial energy, we have

λ2(t)A(ft) ≤ C(δ)W(ft)

∫

|∂tft|2 dµt.

Integrating in time and using (2.14) and (1.2) we conclude

∫ τ

0
λ2(t)A(ft) dt ≤ C(δ)

∫ τ

0
W(ft)

(

−
∫

〈∇W(ft), ∂tft〉dµt

)

dt

= −C(δ)

∫ τ

0
W(ft)∂tW(ft) dt = C(δ)

∫ τ

0
−∂t (W(ft))

2 dt ≤ C(δ)W(f0)2.

Renaming τ into t yields the claim.

5. Proof of the lifespan theorem

In this section, we will prove Theorem 1.1, which yields a lower bound on the maximal
existence time of the volume-preserving Willmore flow. This will be crucial for the
construction of the blow-up in Section 6.
Here we only work with the integrability of the constraint parameter λ which we proved
in Section 4 and do not require strong L∞-type bounds as in [32, (A1)], [39, (7)].

Proof of Theorem 1.1. This can now be achieved in the same fashion as [21, Theorem
1.2], so we focus on the differences arising from the Lagrange multiplier. Without loss
of generality, ρ = 1, cf. Remark 2.2. If Γ > 1 denotes the number of radius 1

2 balls
necessary to cover B1(0) ⊂ R

3, we set ε̄ := ε2
3Γ with ε2 > 0 as in Proposition 4.2. We

observe

ε(t) := sup
x∈R3

∫

B1(x)
|A|2 dµ ≤ Γ · sup

x∈R3

∫

B1/2(x)
|A|2 dµ, (5.1)

and, for a parameter 0 < β < 1, to be specified below, define

t0 := sup {0 ≤ t ≤ min{T, β} | ε(τ) ≤ 3Γε for all 0 ≤ τ < t} > 0. (5.2)

Picking an appropriate test function in Corollary 3.4, we obtain

∫

B1/2(x)
|A|2 dµ ≤

∫

B1(x)
|A0|2 dµ0 + 3cΓΛ4εt+ 3cΓε

∫ t

0
|λ| 43 (τ) dτ
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for all 0 ≤ t < t0 where c,Λ ∈ (0,∞) are universal constants. By the choice of ε̄ and

Proposition 4.2, the integral
∫ t
0 |λ|

4
3 dτ grows less than linearly in t ∈ [0, t0). Hence, by

a suitable application of Young’s inequality, we find
∫

B1/2(x)
|A|2 dµ ≤

∫

B1(x)
|A0|2 dµ0 + 3cΓΛ4εt+

ε

2
+ C(K,χ(Σ), c,Γ)tε

≤
∫

B1(x)
|A0|2 dµ0 +

ε

2
+ C(K,χ(Σ), c,Γ,Λ)tε. (5.3)

If we choose β−1 := 2C(K,χ(Σ), c,Γ,Λ), the assumption t0 < min{T, β} contradicts
maximality of t0 in (5.2). Consequently, t0 = min{T, β} has to hold. If t0 = β, we find
T ≥ β. In this case, (1.7) then follows from (5.1), (5.3) and the definition of β.
Assume t0 = T ≤ β. Then from (5.3) we find

∫

B1/2(x)
|A|2 dµ ≤ 2ε, hence by (5.1), we

have

ε(t) ≤ 2Γε < ε0 for all 0 ≤ t < t0. (5.4)

Now, T ≤ β by assumption and L =
∫ T
0 |λ| 43 dt ≤ C(K,χ(Σ)) by Proposition 4.2. We

may use Proposition 3.5 and argue exactly as in [21, Theorem 1.2] to prove f(t) → f(T )
smoothly as t ր T , which enables us to smoothly extend the flow past T . Taking
ĉ ∈ (0, β) ⊂ (0, 1) small enough, (5.4) guarantees that (1.7) is satisfied.

6. Construction of the blow-up

In this section, we will rescale a volume-preserving Willmore flow as we approach the
maximal existence time to obtain a blow-up limit, combining the approaches in [20,
Section 4] and [22, pp. 348 – 349]. As we shall see, if the Lagrange multiplier has a certain
integrability in time, then the limit is not only stationary, but even an unconstrained
Willmore immersion.

Definition 6.1. For a smooth family of immersions f : [0, T )×Σ → R
3, t ∈ [0, T ), r > 0,

we define the curvature concentration function

κ(t, r) := sup
x∈R3

∫

Br(x)
|At|2 dµt.

Theorem 6.2. Let f : [0, T ) × Σ → R
3 be a maximal volume-preserving Willmore flow

with initial energy W(f0) ≤ K. Let (tj)j∈N ⊂ [0, T ), tj ր T, (rj)j∈N ⊂ (0,∞), (xj)j∈N ⊂
R
3 such that

κ(tj , rj) ≤ ε3 := ε̄ĉ for all j ∈ N, (6.1)

where ε̄ > 0 and ĉ = ĉ(K,χ(Σ)) ∈ (0, 1) are as in Theorem 1.1. Then we find

tj + r4j ĉ < T, (6.2)
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and after passing to a subsequence, the rescaled and translated immersions

f̂j := r−1
j

(

f(tj + r4j ĉ, ·) − xj
)

converge as j → ∞ smoothly on compact subsets of R
3, after reparametrization, to a

proper constrained Willmore immersion f̂ : Σ̂ → R
3 of (1.6) with W(f̂) ≤ K.

Moreover, if
∫ T
0 λ(t)2A(ft) dt <∞, then f̂ is an unconstrained Willmore immersion.

Note that while we cannot apply Lemma 2.6 to the limit immersion, under the L2-
integrability condition above, we still find that the Willmore part of the evolution dom-
inates in the blow-up.

Remark 6.3. By Proposition 4.4, the condition
∫ T
0 λ(t)2A(ft) dt <∞ is automatically

satisfied if W(f0) < 8π, i.e. if K < 8π in Theorem 6.2.

Remark 6.4. For general sequences (tj)j∈N, (rj)j∈N and (xj)j∈N, the limit may be trivial,

for instance, Σ̂ = ∅, if f̂j parametrizes the round spheres ∂B1(xj) with xj → ∞. In order
to make use of the construction, we will select tj and xj such that this cannot happen.

Any constrained Willmore immersion f̂ : Σ̂ → R
3 which arises from the process described

in Theorem 6.2 is called a concentration limit. More precisely, we call f̂ a blow-up if
rj → 0, a blow-down for rj → ∞ and a limit under translation if rj → r ∈ (0,∞). Note
that by (6.2) the last two can only occur if T = ∞.

Proof of Theorem 6.2. For j ∈ N, we consider the rescaled and translated flows

fj : [−r−4
j tj , r

−4
j (T − tj)) × Σ → R

3,

fj(t, p) = r−1
j

(

f(tj + r4j t, p) − xj
)

and observe that fj is a volume-preserving Willmore flow with initial datum given by
fj(0) = r−1

j (f(tj, ·) − xj) and maximal existence time r−4
j (T − tj). In particular by

Remark 2.5 we have W(fj(0)) ≤ K for any j ∈ N. Moreover, by (6.1) we have

sup
x∈R3

∫

B1(x)
|Afj(0,·)|2 dµfj(0,·) = sup

x∈R3

∫

Brj (x)
|Aftj

|2 dµftj ≤ ε3.

Hence, by Theorem 1.1 the maximal existence time of the flow fj is bounded from below
by ĉ = ĉ(K,χ(Σ)) and (6.2) follows. Furthermore, (1.7) yields

sup
x∈R3

∫

B1(x)
|Afj(t,·)|2 dµfj(t,·) ≤ ε̄ < ε2 for all 0 ≤ t ≤ ĉ,

using that ε̄ < ε2 by definition (cf. Proof of Theorem 1.1), where ε2 > 0 is as in
Proposition 4.2. Consequently, by Proposition 4.2 the L4/3(0, ĉ)-norm of the Lagrange
multiplier of fj is bounded by C(K,χ(Σ)) for any j ∈ N. Therefore, using ε̄ < ε2 ≤ ε0
(cf. Proposition 4.2) by Proposition 3.5 we find

‖∇mAfj(t,·)‖∞ ≤ C(m,K,χ(Σ))t−
m+1

4 for 0 < t ≤ ĉ. (6.3)
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Moreover, using the scale-invariance of the Willmore energy, (2.14) and the a-priori
energy bound, we can use Simon’s monotonicity formula [37] to conclude that

R−2µfj(t,·) (BR(0)) ≤ C(K,χ(Σ)) <∞ for all 0 < t ≤ ĉ, R > 0.

Thus, we may apply Theorem A.1 and Corollary A.2 to the sequence of immersions
f̂j := fj(ĉ, ·).
After passing to a subsequence, we thus find a proper limit immersion f̂ : Σ̂ → R

3,
where Σ̂ is a complete surface without boundary, diffeomorphisms φj : Σ̂(j) → Uj, where

Uj ⊂ Σ are open sets and Σ̂(j) = {p ∈ Σ̂ | |f̂(p)| < j}, and functions uj ∈ C∞(Σ̂(j);R3)
such that we have

f̂j ◦ φj = f̂ + uj on Σ̂(j)

as well as ‖∇̂muj‖L∞(Σ̂(j),ĝ) → 0 for j → ∞ for all m ∈ N0.

For j ∈ N, we now define the flows f̃j := fj ◦ φj := fj(·, φj(·)) : (0, ĉ] × Σ̂(j) → R
3 and

observe that they also satisfy the curvature estimates (6.3).
We use (6.3) to estimate

|λ(fj)| ≤ C‖Afj‖3∞ ≤ C(K,χ(Σ), ξ). (6.4)

Now, using (1.5), (6.3) and (6.4), it is not difficult to also bound |∂tλ(fj(t, ·))| and thus
‖∂tf̃j(t, ·)‖L∞(Σ̂(j)) for t ∈ [ξ, ĉ], j ∈ N by C(K,χ(Σ), ξ). From here on, it is a standard

procedure to establish L∞-bounds in a local chart (U,ψ) of Σ̂, i.e. estimates of the form

‖∂m∂tf̃j‖L∞(U) + ‖∂m+1f̃j‖L∞(U) ≤ C(m,K,χ(Σ), ξ) for all t ∈ [ξ, ĉ],m ≥ 0,

for all j ≥ J sufficiently large, where ∂ denotes the coordinate derivative in the chart
(U,ψ), see for instance [21, p. 331–332]. By (2.1), this also transfers to estimates of the
induced normal field νf̃j

:= νfj ◦ φj .
Moreover, using the scale-invariance, cf. Remark 2.2, and the invariance under repara-
metrization, we have the evolution

∂tf̃j = −∇W(f̃j) + λ(fj)νf̃j . (6.5)

Using the established bounds and the evolution (6.5), it is not difficult to see that f̃j
converges in C1([ξ, ĉ];Cm(P ;R3)) for all P ⊂ Σ̂ compact and for all m ∈ N to a limit
flow flim : [ξ, ĉ] × Σ̂ → R

3 and λ(fj) → λlim in C0([ξ, ĉ];R) as j → ∞, after passing to a
subsequence.
Fix P ⊂ Σ̂ compact and let j ∈ N be large enough. Then, using (6.5), (2.13) and (2.14)

∫ ĉ

ξ

∫

P
|∂tf̃j|2 dµf̃j dt ≤

∫ ĉ

ξ

∫

Σ
〈−∇W(fj) + λ(fj)νfj , ∂tfj〉dµfj dt =

∫ ĉ

ξ
(−∂tW(fj)) dt.

In particular, using the convergence f̃j → flim in C1([ξ, ĉ];Cm(P ;R3)), we find

∫ ĉ

ξ

∫

P
|∂tflim|2 dµflim dt ≤ lim

j→∞

(

W(f(tj + r4j ξ, ·)) −W(f(tj + r4j ĉ, ·))
)

= 0, (6.6)

17



by scale-invariance and monotonicity of the energy Consequently, flim is constant in
time, hence flim ≡ flim(ĉ, ·) = limj→∞ fj(ĉ, φj(·)) = limj→∞ f̂j ◦ φj = f̂ . We observe
that ν̂ := νlim(ĉ, ·) is a global and smooth normal vector field on Σ̂ and hence Σ̂ is
orientable. Setting λ̂ := λlim(ĉ) and using (6.5) we find

−∇W(f̂) + λ̂ν̂ = lim
j→∞

∂tf̃j(ĉ, ·) = ∂tflim(ĉ, ·) = 0 on Σ̂,

so f̂ solves (1.6) and hence is a constrained Willmore immersion. In addition, the lower
semicontinuity of the Willmore functional W with respect to smooth convergence on
compact sets (which is discussed in [12, Appendix B] for instance) yield

W(f̂) ≤ lim inf
j→∞

W(f̂j) ≤ W(f0) ≤ K.

For the “moreover” part of the theorem, we note that since fj is a volume-preserving
Willmore flow we find by (1.4) and (1.5)

∫ ĉ

ξ

∫

P
|∇W(f̃j)|2 dµf̃j dt ≤

∫ ĉ

ξ

∫

Σ
|∇W(fj)|2 dµfj dt

=

∫ ĉ

ξ

∫

Σ

〈

−∂tfj + λ(fj)νfj ,∇W(fj)
〉

dµfj dt

= −
∫ ĉ

ξ
∂tW(fj) dt+

∫ ĉ

ξ
|λ(fj)|2A(fj) dt. (6.7)

As in (6.6), the first term goes to zero as j → ∞. For the second term, note that by
(1.5), λ scales by λ(r−1f) = r3λ(f) for r > 0. Therefore, we find

∫ ĉ

ξ
|λ(r−1

j f(tj + r4j t, ·))|2A(r−1
j f(tj + r4j t, ·)) dt

=

∫ tj+r4j ĉ

tj+r4j ξ
|r3jλ(f(τ, ·))|2r−2

j A(f(τ, ·))r−4
j dτ =

∫ tj+r4j ĉ

tj+r4j ξ
|λ(fτ )|2A(fτ ) dτ,

after a change of variables. Recall that by assumption
∫ T
0 λ2A dt < ∞, so the second

term in (6.7) also goes to zero as j → ∞ using dominated convergence. Consequently,
by (6.7), we have

∫ ĉ

ξ

∫

P
|∇W(flim)|2 dµflim dt = lim

j→∞

∫ ĉ

ξ

∫

P
|∇W(f̃j)|2 dµf̃j dt = 0.

Since flim(t, ·) ≡ f̂ and as P was arbitrary, we conclude ∇W(f̂) = 0, so f̂ is a Willmore
immersion.

We can choose (tj)j∈N, (rj)j∈N, (xj)j∈N such that the concentration limit is nontrivial,
even if T = ∞. The argument is exactly as in [22, p. 348–349], so the proof can safely
be omitted.
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Proposition 6.5. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow with

0 < T ≤ ∞. Then, we can choose sequences tj ր T , (rj)j∈N ⊂ (0,∞) and (xj)j∈N ⊂ R
3

satisfying (6.1) such that the concentration limit f̂ : Σ̂ → R
3 from Theorem 6.2 satisfies

∫

B1(0)
|Af̂ |2 dµf̂ > 0,

in particular Σ̂ 6= ∅.

7. Convergence for compact concentration limits

The main result of this section is the following

Theorem 7.1. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow and let

f̂ : Σ̂ → R
3 be a concentration limit with Σ̂ 6= ∅. If Σ̂ has a compact component and

(i) V(f̂) 6= 0 or

(ii) V(f̂) = V(f0) = 0,

then f̂ is a limit under translation. Moreover, the flow exists globally and converges, as
t → ∞, after reparametrization by diffeomorphisms, to a constrained Willmore immer-
sion f∞ with W(f∞) = W(f̂).

Under certain assumptions, the first part of the statement can also be directly obtained
from the scaling behavior of the volume.

Remark 7.2. Under the assumption that Σ̂ is compact, we have V(f̂) = limj→∞ r−3
j V0

which immediately yields that

(i) if V(f̂) 6= 0, then f̂ cannot be a blow-up or a blow-down;

(ii) if V0 6= 0, then f̂ cannot be a blow-up.

Clearly, these arguments fail if V(f̂) = V0 = 0.

The key ingredient to prove the powerful convergence result Theorem 7.1 relies on a
suitable extension of the  Lojasiewicz–Simon gradient inequality.

7.1. The constrained  Lojasiewicz–Simon gradient inequality

In this subsection, we will state and prove a constrained or refined  Lojasiewicz–Simon
gradient inequality, cf. [34], for the volume-preserving Willmore flow. A similar result
for the length-preserving elastic flow of curves was recently proven in [35].
The strategy is the same as in [10, Section 3]. First, in order to get rid of the invariance of
the Willmore and volume energy, we restrict ourselves to normal variations. Throughout
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this section we will fix some smooth immersion f : Σ → R
3. The normal Sobolev spaces

along f are defined by

W k,2(Σ;R3)⊥ := {φ ∈W k,2(Σ;R3) | P⊥φ = φ},

for k ∈ N0, with L2(Σ;R3)⊥ := W 0,2(Σ;R3)⊥. Note that L2(Σ;R3)⊥ is a Hilbert space
with inner product

〈φ1, φ2〉L2(Σ;R3)⊥ =

∫

Σ
〈φ1, φ2〉dµf for φ1, φ2 ∈ L2(Σ;R3)⊥. (7.1)

Remark 7.3. (i) Note that since we are in codimension one, we have

W k,2(Σ;R3)⊥ = {uνf | u ∈W k,2(Σ)},

for k ∈ N0, where νf is the unit normal to f and W k,2(Σ) := W k,2(Σ;R). In fact,
the map W k,2(Σ) → W k,2(Σ;R3)⊥, u 7→ φ = uνf is an isomorphism of Banach
spaces and for k = 0 an isometry between the Hilbert spaces L2(Σ) and L2(Σ;R3)⊥.

(ii) Since Σ is compact, the spaces W k,2(Σ;R3) and L2(Σ;R3) do not depend on the
metric, cf. [2, Theorem 2.20].

First, we prove a constrained  Lojasiewicz–Simon gradient inequality in normal directions
in a neighborhood of a constrained Willmore immersion, i.e. a solution to (1.6).

Proposition 7.4. Let f : Σ → R
3 be a smooth constrained Willmore immersion. Then,

there exists C, σ > 0 and θ ∈ (0, 12 ] such that for all φ ∈W 4,2(Σ;R3)⊥ with ‖φ‖W 4,2 ≤ σ

and V(f + φ) = V(f) we have

|W(f + φ) −W(f)|1−θ ≤ C‖∇W(f + φ) − λ(f + φ)νf+φ‖L2(dµf+φ),

where λ is as in (1.5).

Proposition 7.4 will follow from [10] and [34, Corollary 5.2]. To that end, we need to
show the analyticity of certain maps and study their second variations. Most of the
results will follow from [10] in the case of codimension one, only the volume needs to be
studied in detail.

Lemma 7.5. Let U := Bρ(0) ⊂ W 4,2(Σ). Then for ρ > 0 small enough and writing
fu := f + uνf for u ∈ U we have

(i) fu : Σ → R
3 is an immersion and U →W 4,2(Σ;R3), u 7→ fu is analytic;

(ii) the map U → C0(Σ;R3), u 7→ νfu is analytic.

Proof. (i) Taking ρ > 0 small enough and using the Sobolev embedding W 4,2(Σ) →֒
C1(Σ) we find that fu is an immersion for all u ∈ U . The map u 7→ fu is linear
and bounded, hence analytic.
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(ii) In local coordinates (y1, y2) in the orientation on Σ, by (i) and the Sobolev embed-
ding theorem W 4,2(Σ) →֒ C1(Σ) , the map Bρ(0) → C1(Σ;R3), u 7→ ∂y1fu × ∂y2fu
is bilinear and bounded, hence analytic. Moreover, since fu is a C1-immersion by
(i), the denominator in the definition of νfu in (2.1) is uniformly bounded away
from zero. Since R

3 \ Bδ(0) → R
3, x 7→ x

|x| is analytic for any δ > 0 the claim

follows from the characterization of analytic Nemytskii operators on C(Σ), cf. [1,
Theorem 6.8].

Let Ũ := {φ ∈ W 4,2(Σ;R3)⊥ | φ = uνf with u ∈ U}. By Remark 7.3 (i), Ũ is open in
W 4,2(Σ;R3)⊥. We consider the shifted energies, defined by

W : Ũ → R,W (φ) := W(f + φ),

V : Ũ → R, V (φ) := V(f + φ).

Lemma 7.6. Under the assumptions of Lemma 7.5, the following maps are analytic:

(i) the function Ũ → C0(Σ), φ 7→ ρf+φ, where dµf+φ = ρf+φ dµf ;

(ii) the function Ũ → R, φ 7→W (φ);

(iii) the function Ũ → L2(Σ;R3)⊥, φ 7→ P⊥∇W(f + φ)ρf+φ;

(iv) the function Ũ → R, φ 7→ V (φ);

(v) the function Ũ → L2(Σ;R3)⊥, φ 7→ P⊥ (−νf+φρf+φ).

Proof. Statement (i) is [10, Lemma 3.2 (vii)] and (ii) follows from [10, Lemma 3.2 (iv)
and (vii)].
By [10, Lemma 3.2 (v) and (vi)], Ũ → L2(Σ;R3)⊥, φ 7→ ∇W(f + φ) is analytic, and
hence (iii) follows from (i).
Note that by Remark 7.3, Ũ → U, φ 7→ u = 〈φ, νf 〉 is linear and bounded, thus analytic.
Therefore, Ũ → C0(Σ;R3), φ 7→ νf+φ is analytic, hence so is V and by (i) statement (v)
follows.

As a last missing ingredient towards proving the constrained  Lojasiewicz–Simon gradient
inequality, we compute the first and second variations.

Lemma 7.7. Let H := L2(Σ;R3)⊥ . Under the assumption of Lemma 7.5, for each
φ ∈ Ũ , the H-gradients of W and V are given by

∇HW (φ) = P⊥∇W(f + φ)ρf+φ,

∇HV (φ) = P⊥ (−νf+φρf+φ) . (7.2)

Moreover, the Fréchet-derivatives of the H-gradient maps of W and V at u = 0 satisfy

(∇HW )′ (0) : W 4,2(Σ,R3)⊥ → L2(Σ,R3)⊥ is a Fredholm operator with index zero,

(∇HV )′ (0) : W 4,2(Σ,R3)⊥ → L2(Σ,R3)⊥ is compact.
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Proof. For φ,ψ ∈ Ũ , we have by the first variation of the Willmore energy and (7.1)

d

dt

∣

∣

∣

∣

t=0

W (φ+ tψ) =

∫

Σ
〈∇W(f + φ), ψ〉dµf+φ =

〈

P⊥∇W(f + φ)ρf+φ, ψ
〉

H
,

where we also used ψ = P⊥ψ.
Similarly, d

dt

∣

∣

t=0
V (φ + tψ) = −

∫

Σ〈νf+φ, ψ〉dµf+φ = −
〈

P⊥νf+φρf+φ, ψ
〉

H
. The Fred-

holm property of (∇HW )′(0) follows from (1.2) and [10, Lemma 3.3 and p. 356]. For
the last statement, we use (2.10) and Remark 7.3 (i) to obtain for φ = uνf

d

dt

∣

∣

∣

∣

t=0

νf+tφ = − gradg u = − gradg〈φ, νf 〉.

Now, by (2.6), we find d
dt

∣

∣

t=0
ρf+tφ dµf = d

dt

∣

∣

t=0
(dµf+tφ) = −〈Hfνf , φ〉dµf . Using

(7.2) we obtain, since the gradient term is tangential,

(∇HV )′(0)φ = −P⊥ d

dt

∣

∣

∣

∣

t=0

(νf+tφρf+tφ) = P⊥ gradg〈φ, νf 〉 + P⊥νf 〈Hfνf , φ〉

= νf 〈Hfνf , φ〉.

As this is only of zeroth order in φ ∈W 4,2(Σ;R3)⊥, the claim follows from the Rellich–
Kondrachov Theorem, see for instance [2, Theorem 2.34].

Proof of Proposition 7.4. We verify the assumptions of [34, Corollary 5.2] for the Hilbert
space W 4,2(Σ;R3)⊥ which embeds densely into H = L2(Σ;R3)⊥. The functionals W and
V are analytic with analytic H-gradients in a neighborhood Ũ of zero by Lemma 7.6.
By Lemma 7.7, the second variation of W at zero is Fredholm of index zero, whereas
the second variation of V at zero is compact. Note that ∇HV (0) 6= 0 since we have

〈∇HV (0), νf 〉H = −
∫

Σ
〈νf , νf 〉dµf = −A(f) < 0.

Thus, by [34, Corollary 5.2], W satisfies a constrained  Lojasiewicz–Simon gradient in-
equality near φ = 0, i.e. there exist C, σ > 0 and θ ∈ (0, 12 ] such that for all φ ∈ Ũ with
‖φ‖W 4,2 ≤ σ and V (φ) = V (0), we have

|W (φ) −W (0)|1−θ ≤ C‖Pφ∇HW (φ)‖H ,

where Pφ : H → H is the H-orthogonal projection onto {y ∈ H | 〈y,∇V (φ)〉H = 0}, cf.
[34, Proposition 3.3]. Thus, for λ(f + φ) as in (1.5), we find

‖Pφ∇W (φ)‖2H = ‖Pφ(∇W (φ) + λ(f + φ)∇V (φ))‖2H ≤ ‖∇W (φ) + λ(f + φ)∇V (φ)‖2H
=

∫

Σ
|∇W(f + φ) − λ(f + φ)νf+φ|2ρf+φ dµf+φ. (7.3)

Now, by the Sobolev embedding theorem W 4,2(Σ;R3) →֒ C1(Σ;R3), we may bound
‖ρf+φ‖∞ for all ‖φ‖W 4,2 ≤ σ. Using (7.3) and the definition of W and V yields the
claim.
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This finally yields the inequality for all directions.

Theorem 7.8. Let f : Σ → R
3 be a constrained Willmore immersion. Then, there exist

C, σ > 0 and θ ∈ (0, 12 ] such that for all h ∈ W 4,2(Σ;R3) with ‖h − f‖W 4,2 ≤ σ and
V(h) = V(f) we have

|W(h) −W(f)|1−θ ≤ C‖∇W(h) − λ(h)νh‖L2(dµh).

Proof. Let C, σ, θ as in Proposition 7.4. Like in [10, p. 357], there exists σ′ > 0 such
that every h ∈ W 4,2(Σ;R3) with ‖h − f‖W 4,2 ≤ σ′ can be written as h ◦ Φ = f + φ

where Φ: Σ → Σ is an orientation-preserving diffeomorphism and φ ∈ W 4,2(Σ;R3)⊥

with ‖φ‖W 4,2 ≤ σ. Then, we have W(h) = W(f + φ) and V(h) = V(f + φ) = V (f) by
invariance under diffeomorphism, and moreover by the geometric transformation of the
L2-norms

‖∇W(h) − λ(h)νh‖L2(dµh) = ‖∇W(f + φ) − λ(f + φ)νf+φ‖L2(dµf+φ).

Renaming σ′ into σ, the statement then follows from Proposition 7.4.

7.2. An asymptotic stability result

The following stability result is an analogue of [10, Lemma 4.1].

Lemma 7.9. Let fW : Σ → R
3 be a constrained Willmore immersion and let k ∈ N,

k ≥ 4, δ > 0. Then there exists ε = ε(fW ) > 0 such that if f : [0, T ) × Σ → R
3 is a

volume-preserving Willmore flow with V(f) ≡ V(fW ) satisfying

(i) ‖f0 − fW‖Ck,α < ε for some α > 0;

(ii) W(f(t)) ≥ W(fW ) whenever ‖f(t) ◦ Φ(t) − fW‖Ck ≤ δ, for some diffeomorphisms
Φ(t) : Σ → Σ;

then, the flow exists globally, i.e. we may take T = ∞. Moreover, it converges, after
reparametrization by some diffeomorphisms Φ̃(t) : Σ → Σ, smoothly to a constrained
Willmore immersion f∞, satisfying W(fW ) = W(f∞) and ‖f∞ − fW‖Ck ≤ δ.

The proof of Lemma 7.9 is essentially a nonlocal version of the one of [10, Lemma 4.1],
with the classical  Lojasiewicz–Simon inequality replaced with the constrained one. It is
thus moved to Appendix D. This finally enables us to prove Theorem 7.1.

Proof of Theorem 7.1. By Theorem 6.2, there are tj ր T, rj → r ∈ [0,∞] and xj ∈ R
3

for all j ∈ N such that tj + ĉr4j < T and

f̂j := r−1
j

(

f(tj + ĉr4j , ·) − xj
)

→ f̂ (7.4)

smoothly, after reparametrization, on compact subsets of R
3, where f̂ : Σ̂ → R

3 is a
constrained Willmore immersion. By assumption, Σ̂ contains a compact component and
thus, by the same argument as in [20, Lemma 4.3], we may assume Σ̂ = Σ is compact.
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Consequently f̂j ◦Φj → f̂ smoothly on Σ, where Φj : Σ → Σ are diffeomorphisms. Note

that now f̂ is a constrained Willmore immersion of the compact surface Σ̂ = Σ. Thus,
there exists ε = ε(f̂) as in Lemma 7.9. We would like to apply Lemma 7.9 for the flow
with the initial datum f̂j ◦ Φj, however, this might not have the correct volume. Under
the assumptions of the theorem, we can fix that by another rescaling. Note that by
smooth convergence and since Σ is compact, if V(f̂) 6= 0, then also V(f̂j ◦ Φj) 6= 0 and
Φj is orientation-preserving for all j sufficiently large. For such j ∈ N, we define

vj :=







(

V(f̂)

V(f̂j◦Φj)

)
1
3

if V(f̂) 6= 0,

1 if V(f̂) = V(f0) = 0,

By smooth convergence and convergence of the volume, we have vj → 1 as j → ∞, so
we may assume vj ∈ (0, 2) and

‖vj0 f̂j0 ◦ Φj0 − f̂‖C4,α ≤ |vj0 − 1|‖f̂j0 ◦ Φj0‖C4,α + ‖f̂j0 ◦ Φj0 − f̂‖C4,α < ε, (7.5)

if we choose j = j0 sufficiently large. We define r̄j0 := v−1
j0
rj0 ∈ (0,∞). By Remark 2.2,

the flow

hj0(t, ·) := r̄−1
j0

(

f(tj0 + r̄4j0t, ·) − xj0
)

◦ Φj0 , t ∈ [0, r̄−4
j0

(T − tj0)),

is again a volume-preserving Willmore flow with hj0(v4j0 ĉ) = vj0 f̂j0 ◦ Φj0 and volume

V(hj0) ≡ V(vj0 f̂j0 ◦ Φj0) = V(f̂) by definition of vj0 . Moreover, for t ∈ [0, r̄−4
j0

(T − tj0)),
we have using monotonicity of the energy, the invariances of the Willmore energy and
tk ր T

W(hj0(t)) ≥ lim
s→r̄−4

j0
(T−tj0 )

W(f(tj0 + r̄4j0s)) = lim
s→T

W(f(s)) = lim
k→∞

W(f̂k) = W(f̂).

The last equality holds since the convergence f̂k ◦Φk → f̂ is smooth. This together with
(7.5) yields that the assumptions of Lemma 7.9 are satisfied, and thus the flow hj0 exists
globally with

hj0(t) ◦ Φ̃(t) → f∞ smoothly as t→ ∞,

where Φ̃(t) : Σ → Σ are diffeomorphisms and f∞ is a constrained Willmore immersion.
Hence, f also exists globally, so we may take T = ∞. Moreover, for all t ≥ tj0 we have

f
(

t,Φj0 ◦ Φ̃(r̄−4
j0

(t− tj0))
)

= r̄j0hj0

(

r̄−4
j0

(t− tj0), Φ̃(r̄−4
j0

(t− tj0))
)

+ xj0 → r̄j0f∞ + xj0 (7.6)

as t → ∞ smoothly on Σ. It remains to show that f̂ is a limit under translation. Let
rj → r ∈ [0,∞]. Picking t := tk + ĉr4k, k ∈ N, in (7.6), we obtain for the diameters

dk := diam f(tk + ĉr4k)(Σ) → r̄j0 diam f∞(Σ), as k → ∞,
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whence limk→∞ dk ∈ (0,∞) since Σ is compact. On the other hand, using (7.4) we find

diam f̂(Σ̂) = lim
k→∞

r−1
k dk ∈ (0,∞),

as Σ̂ 6= ∅ is compact by assumption. Consequently, limk→∞ rk ∈ (0,∞).

8. Convergence to the sphere

In this section, we will prove our main convergence result. While Σ was a general
surface before, in this section we will work exclusively with Σ = S

2. The key ingredients
in proving Theorem 1.2 are the blow-up procedure, the classification of Willmore spheres
in R

3 due to Bryant [8], and a removability result for point singularities [22].

Proof of Theorem 1.2. Let f : [0, T ) × S
2 → R

3 be a volume-preserving Willmore flow
with initial datum f0 with T maximal and W(f0) ≤ 8π. If f0 is a constrained Willmore
immersion, then it is a Willmore immersion by Lemma 2.6, since V(f0) 6= 0. Hence
it has to be a round sphere since by [8, Section 5], the critical values of Willmore
immersions of spherical type are 4πd with d ∈ N \ {2, 3} and the global minimizers are
the round spheres [41]. In this case the result follows. If f0 is not a constrained Willmore
immersion, then the energy instantaneously drops below 8π by Remark 2.5, so we can
assume W(f0) < 8π.
By Theorem 6.2, Remark 6.3 and Proposition 6.5, there exist tj ր T, (rj)j∈N ⊂ (0,∞)

and (xj)j∈N ⊂ R
3 such that the corresponding concentration limit f̂ : Σ̂ → R

3 is a
unconstrained Willmore immersion satisfying

∫

Σ̂
|Af̂ |2 dµf̂ > 0. (8.1)

Moreover, by Theorem 6.2 we have W(f̂) < 8π. Suppose Σ̂ is not compact. There is
x0 6∈ f̂(Σ̂) and with the inversion I(x) := |x−x0|−2(x−x0), we set Σ̄ := I(f̂(Σ̂))∪{0}. By
the removability result [22, Lemma 5.1], Σ̄ is a smooth Willmore surface. Moreover, since
Σ̂ is complete by Corollary A.2, so is f̂(Σ̂). Hence, dist(x0, f̂(Σ̂)) > 0 and consequently
Σ̄ is bounded. Using the definition of Σ̄ and the completeness of f̂(Σ̂) again, it is not
difficult to show that Σ̄ is closed in R

3 and thus compact. Furthermore, by [22, Lemma
5.1], we have W(Σ̄) < 8π and g(Σ̄) = 0 and hence Σ̄ is a Willmore sphere. Using [8, 41]
as above, we conclude that Σ̄ has to be a round sphere. Since f̂(Σ̂) is not compact by
assumption, this yields that f̂(Σ̂) = I−1(Σ̄) is a plane, contradicting (8.1).
Thus, Σ̂ is compact, hence by arguing as in [20, Lemma 4.3], we can assume Σ̂ = Σ = S

2.
By [8, 41] and the Li–Yau inequality [27], we then have that f̂ parametrizes an embedded
round sphere, in particular V(f̂) 6= 0. Hence, Theorem 7.1 yields global existence and
convergence to a constrained Willmore immersion f∞ with W(f∞) = W(f̂). By [41],
f∞ parametrizes a round sphere. Since the volume is preserved by (2.13), we conclude

that V(r̄j0f∞ + xj0) = V(f0) and consequently the radius is R := (3|V(f0)|4π )
1
3 > 0.
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Appendix A Smooth convergence on compact sets

The essential tool in the construction of the blow-up in Theorem 6.2 was the following
local version of Langer’s compactness theorem [25] by Kuwert and Schätzle [20], see also
[7] and [12, Appendix B] for some consequences of this notion of convergence.

Theorem A.1 ([20, Theorem 4.2]). Let fj : Σj → R
3 be a sequence of proper immer-

sions, where Σj is a 2-manifold without boundary. Let Σj(R) := {p ∈ Σj | |fj(p)| < R}
and assume the bounds

µj(Σj(R)) ≤ C(R) for any R > 0,

‖∇mAj‖L∞(Σj) ≤ C(m) for all m ∈ N0.

Then, there exist a proper immersion f̂ : Σ̂ → R
3, where Σ̂ is a 2-manifold without

boundary, such that after passing to a subsequence we have a representation

fj ◦ φj = f̂ + uj on Σ̂(j) = {p ∈ Σ̂ | |f̂(p)| < j}

with the following properties:

φj : Σ̂(j) → Uj ⊂ Σj is a diffeomorphism,

Σj(R) ⊂ Uj if j ≥ j(R),

uj ∈ C∞(Σ̂(j);R3) is normal along f̂ ,

‖∇̂muj‖L∞(Σ̂(j)) → 0 as j → ∞, for any m ∈ N0.

Corollary A.2. In Theorem A.1, the manifold (Σ̂, gf̂ ) is complete.

Proof. Suppose (pn)n∈N ⊂ Σ̂ is a Cauchy-Sequence with respect to the Riemannian
distance d̂ on Σ̂. Recall that the metric gf̂ = f̂∗〈·, ·〉 on Σ̂ induced by the immersion f̂

makes f̂ an isometry. Now, for any curve γ : [0, 1] → Σ̂ such that η(0) = pn, γ(1) = pm
we have

|f̂(pn) − f̂(pm)| ≤ L(f̂ ◦ γ) = L(γ),

and hence we find |f̂(pn)− f̂(pm)| ≤ d̂(pn, pm) for all n,m ∈ N. In particular there exists
R > 0 such that (f̂(pn))n∈N ⊂ BR(0). As f̂ is proper we find pn ∈ f̂−1(BR(0)) which is
compact. Since (pn)n∈N is Cauchy, limn→∞ pn ∈ Σ̂ exists.

Appendix B Proof of Lemma 3.1

This section is devoted to proving Lemma 3.1. First, we compute a localized version of
(2.14). Although the calculations are essentially the same as in [21, Section 3], we give
some details here how the dependence on λ comes into play.
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Lemma B.1. Let f : [0, T ) × Σ → R
3 be a smooth volume-preserving Willmore flow,

η̃ ∈ C∞
c (R3) and η := η̃ ◦ f . Then, we have

∂t

∫

1

2
H2η dµ+

∫

|∇W(f)|2η dµ = λ

∫

|A0|2Hη dµ− 2

∫

∇scW(f)〈∇H,∇η〉dµ

−
∫

∇scW(f)H∆η dµ+

∫

1

2
H2∂tη dµ (B.1)

and

∂t

∫

|A0|2η dµ+

∫

|∇W(f)|2η dµ = λ

∫

|A0|2Hη dµ− 2

∫

∇scW(f)〈∇H,∇η〉dµ

− 2

∫

∇scW(f)〈A0,∇2η〉dµ +

∫

|A0|2∂tη dµ.

(B.2)

Proof. We use a (local) orthonormal basis {ei}i=1,2. As in [20, (31) and (32)], using
(2.6) and (2.7) we find

∂t

(

1

2
H2 dµ

)

= −|∇W(f)|2 dµ+ λ∆H dµ+ λ|A0|2H dµ+ ∇i (H∇iξ − ξ∇iH) dµ

Consequently, we compute using integration by parts

∂t

∫

1

2
H2η dµ+

∫

|∇W(f)|2η dµ

= λ

∫

(∆H + |A0|2H)η dµ+

∫

(2ξ∇iH∇iη +Hξ∆η) dµ+

∫

1

2
H2∂tη dµ.

Now, using (2.12) we observe that
∫

(2ξ∇iH∇iη +Hξ∆η) dµ = −2

∫

∇scW(f)∇iH∇iη dµ+ 2λ

∫

∇iH∇iη dµ

−
∫

∇scW(f)H∆η dµ+ λ

∫

H∆η dµ.

Recalling that ∆(Hη) = ∆Hη + 2∇iH∇iη +H∆η, the identity (B.1) follows.
For the second identity, we proceed as in [20, p. 423]. Using (2.5) and the identity
A0

ikA
0
kjA

0
ij = 0 (see [21, (2.5)]), a short computation yields

A0(∂tei, ej)A
0(ei, ej) =

1

2
|A0|2Hξ. (B.3)

Applying (2.6), (2.9) and (B.3) yields

∂t
(

|A0|2 dµ
)

= 2∇i(∇jξA
0(ei, ej)) dµ −∇jξ∇jH dµ+ |A0|2Hξ dµ,

where we used (2.2) and the fact that A0
ij(∇2

ijξ)
0 = A0

ij∇2
ijξ as A0 is trace-free. Conse-

quently we find

∂t
(

|A0|2 dµ
)

= 2∇i(∇jξA
0(ei, ej)) dµ −∇j(ξ∇jH) dµ− |∇W(f)|2 dµ+ λ∇scW(f) dµ.
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Integration by parts and (2.2) then yield

∂t

∫

|A0|2η dµ+

∫

|∇W(f)|2η dµ

= −2

∫

∇scW(f)∇iH∇iη dµ− 2

∫

∇scW(f)A0
ij∇2

jiη dµ+

∫

|A0|2∂tη dµ

+ λ

[

−
∫

∇iH∇iη dµ+ 2

∫

∇iH∇iη dµ+

∫

∆Hη dµ+

∫

|A0|2Hη dµ

]

The claim follows from integrating by parts in the terms involving λ.

Equipped with this evolution identity, we can now prove Lemma 3.1.

Proof of Lemma 3.1. Again, we use a local orthonormal basis {ei}i=1,2. To prove both
inequalities in Lemma 3.1, we estimate the evolution in Lemma B.1 with η = γ4. The
last term in (B.1) and (B.2) generates an additional term with λ, since

|∂tη| ≤ CΛγ3|∂tf | ≤ CΛγ3
(

|∇W(f)| + |λ|
)

. (B.4)

Therefore, both (B.1) and (B.2) contain two terms involving λ. The terms without λ can
be estimated exactly as in [20, Lemma 3.2] (with ρ−1 = Λ). The claim follows after we
estimate the λ-term generated by ∂tη as in (B.4) and keep the term λ

∫

|A0|2Hγ4 dµ.

Appendix C Proof of Proposition 3.5

This section is devoted to proving Proposition 3.5.
Following [21, 20], for tensors φ,ψ on Σ, we denote by φ ∗ ψ any multilinear form,
depending on φ and ψ in a universal bilinear way. In particular, we have |φ∗ψ| ≤ c|φ||ψ|
and ∇(φ ∗ ψ) = ∇φ ∗ ψ + φ ∗ ∇ψ. Note that since we are in codimension one, we can
work with tensors with scalar values and not with normal values.
Moreover, for m ∈ N0 and r ∈ N, r ≥ 2 we denote by Pm

r (A) any term of the type

Pm
r (A) =

∑

i1+···+ir=m

∇i1A ∗ · · · ∗ ∇irA.

In addition, for r = 1 we extend this definition by denoting by Pm
1 (A) any contraction

of ∇mA with respect to the metric g. We can now compute the evolution of higher
order derivatives of the second fundamental form.

Lemma C.1. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow. Then for

all m ∈ N0 we have

∂t(∇mA) + ∆2(∇mA) = Pm+2
3 (A) + Pm

5 (A) + λPm
2 (A).
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Proof. First, we note that H is a contraction of A and hence H = P 0
1 (A), and conse-

quently also A0 = P 0
1 (A). Thus, by (1.4), we have

ξ = −∆H + P 0
3 (A) + λ. (C.1)

For m = 0 we insert this into (2.8) to obtain

∂tA = ∇2ξ +A ∗ A ∗ ξ = −∇2(∆H) + P 2
3 (A) + P 0

5 (A) + λP 0
2 (A),

Using [21, (2.11)] twice, we find ∇2∆H = ∆∇2H + P 2
3 (A), hence by Simons’ identity

[38] we have

∂tA = −∆2A+ P 2
3 (A) + P 0

5 (A) + λP 0
2 (A).

Assume the statement is true for m ≥ 1. Using [21, Lemma 2.3] with φ = ∇mA and the
fact that we are in codimension one yields

∂t∇m+1A+ ∆2∇m+1A = ∇
(

Pm+2
3 (A) + Pm

5 (A) + λPm
2 (A)

)

+
∑

i+j+k=3

∇iA ∗ ∇jA ∗ ∇k+mA

+A ∗ ∇ξ ∗ ∇mA+ ∇A ∗ ξ ∗ ∇mA

= Pm+3
3 (A) + Pm+1

5 (A) + λPm+1
2 (A),

where we used (C.1) in the last step.

In analogy to [20, Proposition 3.3], we have localized energy estimates for higher order
derivatives of A.

Lemma C.2. Let f : [0, T ) × Σ → R
3 be a volume-preserving Willmore flow and γ as

in (3.1). Then for φ = ∇mA,m ∈ N0 and s ≥ 2m+ 4 we have

d

dt

∫

|φ|2γs dµ+
1

2

∫

|∇2φ|γs dµ

≤ C
(

|λ| 43 + ‖A‖4L∞([γ>0])

)

∫

|φ|2γs dµ+ C
(

1 + |λ| 43 + ‖A‖4L∞([γ>0])

)

∫

[γ>0]
|A|2 dµ

where C = C(s,m,Λ) > 0.

Proof. In the following, note that the value of C = C(s,m,Λ) is allowed to change from
line to line. Using [21, Lemma 3.2], we find

d

dt

∫

|φ|2γs dµ+

∫

|∇2φ|γs dµ

≤ 2

∫

〈Y, φ〉γs dµ+

∫

A ∗ φ ∗ φ ∗ ξγs dµ+

∫

|φ|2sγs−1∂tγ dµ

+ C

∫

|φ|2γs−4
(

|∇γ|4 + γ2|∇2γ|2
)

dµ+ C

∫

|φ|2
(

|∇A|2 + |A|4
)

γs dµ, (C.2)
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where ∂tφ+ ∆2φ = Y and ξ = P 2
1 (A) + P 0

3 (A) + λ by (C.1). By Lemma C.1, we have

2

∫

〈Y, φ〉γs dµ+

∫

A ∗ φ ∗ φ ∗ ξγs dµ+ C

∫

|φ|2(|∇A|2 + |A|4)γs dµ

=

∫

(

Pm+2
3 (A) + Pm

5 (A)
)

∗ φγs dµ+ λ

∫

Pm
2 (A) ∗ φγs dµ. (C.3)

Moreover, by (3.1) we find

∫

|φ|2γs−1∂tγ dµ =

∫

|φ|2γs−1〈Dγ̃ ◦ f, ν〉
(

−∆H − |A0|2H + λ
)

dµ. (C.4)

We proceed by estimating all the terms involving λ in (C.3) and (C.4). For the λ-term
on the right hand side of (C.3), using [21, Corollary 5.5] with k = m, r = 3 we find

λ

∫

Pm
2 (A) ∗ φγs dµ ≤ C(s,m,Λ)|λ|‖A‖L∞([γ>0])

(

∫

|φ|2γs dµ+

∫

[γ>0]
|A|2 dµ

)

.

The λ-term on the right hand side of (C.4) is estimated using Young’s inequality with
p = 4

3 and q = 4 to obtain

C|λ|
∫

|φ|2γs−1 dµ ≤ C|λ| 43
∫

|φ|2γs dµ+ C

∫

|φ|2γs−4 dµ.

Consequently, we find from (C.2), (C.3), (C.4) and Young’s inequality

d

dt

∫

|φ|2γs dµ+

∫

|∇2φ|γs dµ

≤
∫

(

Pm+2
3 (A) + Pm

5 (A)
)

∗ φγs dµ+

∫

|φ|2γs−1〈Dγ̃ ◦ f, ν〉
(

−∆H − |A0|2H
)

dµ

+ C
(

|λ| 43 + ‖A‖4L∞([γ>0])

)

∫

|φ|2γs dµ+ C
(

|λ| 43 + ‖A‖4L∞([γ>0])

)

∫

[γ>0]
|A|2 dµ

+ C

∫

|φ|2γs−4 dµ+

∫

|φ|2γs−4
(

|∇γ|4 + γ2|∇2γ|2
)

dµ. (C.5)

Now, all the terms involving λ on the right hand side of (C.5) are as in the statement.
For the second and the last term in (C.5), one may proceed exactly as in the proof of
[21, Proposition 3.3]. This way, one creates additional terms which can be estimated by

∫

|φ|2γs−4 dµ+

∫

|∇φ|2γs−2 dµ ≤ ε

∫

|∇2φ|2γs dµ+ Cε

∫

[γ>0]
|A|2γs−4−2m dµ,

for every ε > 0, using twice the interpolation inequality [21, Corollary 5.3] (which triv-
ially also holds in the case k = m = 0). The first term on the right hand side of (C.5)
can then be estimated by means of [21, (4.15)]. After choosing ε > 0 small enough and
absorbing, the claim follows.
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Proposition 3.5 can now be deduced from a Gronwall-type argument exactly as in [20,
Theorem 3.5]. To keep track of the role of λ, we give the details here.

Proof of Proposition 3.5. Without loss of generality, after rescaling as in Remark 2.2,
we may assume ρ = 1.
We pick a cutoff function γ̃ ∈ C∞

c (R3) with χB3/4(x) ≤ γ̃ ≤ χB1(x) such that γ := γ̃ ◦ f
is as in (3.1) with a universal constant Λ > 0. Now, using Corollary 3.4, we deduce

∫ T

0

∫

B3/4(x)

(

|∇2A|2 + |A|6
)

dµ dt ≤ Cε+ CΛ4εT + CεL = C(T ∗, L)ε, (C.6)

using T ≤ T ∗. Consequently, by using we find

∫ T

0
‖A‖4L∞(B3/4(x))

dt ≤ C(T ∗, L)ε. (C.7)

Now, we change to another test function γ̃ ∈ C∞
c (R3) with χB1/2(x) ≤ γ̃ ≤ χB3/4(x) and

γ := γ̃ ◦ f . Note that (3.1) still remains satisfied with a universal Λ > 0. We now define
Lipschitz cutoff functions in time via

ξj(t) :=







0, for t ≤ (j − 1) T
m ,

m
T

(

t− (j − 1) T
m

)

, for (j − 1) T
m ≤ t ≤ j T

m

1, for t ≥ j T
m ,

where m ∈ N and 0 ≤ j ≤ m. We also define ξ−1(t) := 0 and ξ0(t) := 1 for all t ∈ R if
m = 0. We note that ξm(T ) = 1 and

0 ≤ d

dt
ξj ≤

m

T
ξj−1, for all j ∈ N0. (C.8)

We now define a(t) = ‖A‖4L∞(B3/4(x))
, Ej(t) =

∫

|∇2jA|2γ4j+4 dµ. Then, by Lemma C.2

and using γ ≤ 1 we have

d

dt
Ej(t) +

1

2
Ej+1(t) ≤ C(j,m)

(

|λ(t)| 43 + a(t)
)

Ej(t) + C(j,m)
(

1 + |λ(t)| 43 + a(t)
)

ε.

Therefore, if we define ej := ξjEj this implies using (C.8)

d

dt
ej(t) ≤

m

T
ξj−1(t)Ej(t) + C(j,m)

(

|λ(t)| 43 + a(t)
)

ej(t)

+ C(j,m)
(

1 + |λ(t)| 43 + a(t)
)

ε− 1

2
ξj(t)Ej+1(t). (C.9)

We will now show that this implies for 0 ≤ j ≤ m and t ∈ (0, T )

ej(t) +
1

2

∫ t

0
ξj(s)Ej+1(s) ds ≤ C(j,m, T ∗, L)ε

T j
. (C.10)

31



We proceed by induction on j. For j = 0 we have ξ0 ≡ 1 on (0, T ). Therefore, we
have e0 =

∫

|A|2γ4 dµ ≤ ε by assumption. Moreover, by (C.6) we find
∫ t
0 E1(s) ds =

∫ t
0

∫

|∇2A|2γ8 dµ ds ≤ C(T ∗, L)ε.
For j ≥ 1 we have, integrating (C.9) on [0, t] and using ej(0) = 0

ej(t) +
1

2

∫ t

0
ξj(s)Ej+1(s) ds

≤ C(j,m)

∫ t

0

(

|λ(s)| 43 + a(s)
)

ej(s) ds+ C(j,m)ε

∫ t

0

(

1 + |λ(s)| 43 + a(s)
)

ds

+
m

T

∫ t

0
ξj−1(s)Ej(s) ds

≤ C(j,m)

∫ t

0

(

|λ(s)| 43 + a(s)
)

ej(s) ds+ C(j,m, T ∗, L)ε +
C(j,m, T ∗, L)ε

T j−1

m

T

≤ C(j,m)

∫ t

0

(

|λ(s)| 43 + a(s)
)

ej(s) ds+
C(j,m, T ∗, L)ε

T j
,

using (C.7), the induction hypothesis and T ≤ T ∗. Therefore, Gronwall’s inequality
yields using (C.6) and (C.7)

ej(t) ≤ −1

2

∫ t

0
ξj(s)Ej+1(s) ds+

C(j,m, T ∗, L)ε

T j

+

∫ t

0

C(j,m, T ∗, L)ε

T j

(

|λ(s)| 43 + a(s)
)

exp (C(T ∗, L)) ds

≤ −1

2

∫ t

0
ξj(s)Ej+1(s) ds+

C(m,L, T ∗)ε

T j
,

which proves (C.10). Now evaluating at t = T with j = m, we find

∫

|∇2mA|2γ4m+4 dµ ≤ C(m,L, T ∗)ε

Tm
for all m ∈ N.

The estimate for ∇2m+1A follows from the interpolation inequality in [21, Lemma 5.1]
with r = 1, p = q = 2, α = 1, β = 0, s = 4m + 6 and t = 1

2 ∈ [−1
2 ,

1
2 ]. Renaming T

into t proves the L2-estimate. The L∞-estimate then follows using the L∞-interpolation
estimate in [21, Lemma 2.8], together with [21, Lemma 4.2].

Appendix D Proof of Lemma 7.9

Proof of Lemma 7.9. We follow [10, Lemma 4.1]. There exists a diffeomorphism
Φ: Σ → Σ, such that for ε > 0 small enough, f0 ◦ Φ can be written as a normal
graph over fW , i.e.

f0 ◦ Φ = fW + νfWϕ0 =: f̃0,
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for some ϕ0 : Σ → R, such that

‖ϕ0‖C4,α ≤ Cε, (D.1)

for C independent of ε. We now wish to solve the equation

∂⊥t f̃t = −∇W(f̃t) + λ(f̃t)νf̃t , (D.2)

with initial datum f̃0, where ∂⊥t = P
⊥f̃t∂t and f̃t := fW + ϕtνfW , for smooth functions

ϕt : Σ → R. By (D.2) and (2.12) (as in [10, (4.4)] with codimension one) we compute

∂t(ϕt)P
⊥f̃tνfW = −(∆Hf̃t

+ |A0
f̃t
|2Hf̃t

)νf̃t + λ(f̃t)νf̃t

= −(gij
f̃t
gkℓ
f̃t
∂ijkℓϕt)P

⊥f̃tνfW

+

(

1 +

∫

Σ
B0(·, ϕt,Dϕt,D

2ϕt) dµfW

)

B1(·, ϕt,Dϕt,D
2ϕt,D

3ϕt),

(D.3)

using (1.5), where B0, B1 are smooth functions depending on fW . Note that the nonlocal
terms appear due to λ. Now, if ‖f̃t − fW‖C1 ≤ δ is small enough, gij

f̃t
gkℓ
f̃t

is uniformly

elliptic and we may assume that

|P⊥f̃tX| ≥ |X| − |P⊤fWX − P
⊤f̃tX| ≥ 1

2
|X|, for all X normal along fW . (D.4)

Therefore, (D.3) is equivalent to

∂tϕt + g
ij

f̃t
gkℓ
f̃t
∂ijkℓϕt

=

(

1 +

∫

Σ
B0(·, ϕt,Dϕt,D

2ϕt) dµfW

)

B1(·, ϕt,Dϕt,D
2ϕt,D

3ϕt). (D.5)

Since the right hand side of (D.5) is only of third order in ϕt, it is not too difficult
to see that the parabolic initial value problem (D.5) with initial datum ϕ0 satisfying

(D.1) has a unique local solution in the Hölder space H
k+α
4

,k+α([0, T1] × Σ;R) for some
0 < T1 ≤ T . This follows from maximal regularity results for linear parabolic problems,
in Hölder spaces, cf. [24], and a fixed-point argument using the contraction principle,
see also Proposition 2.1 and the corresponding references. Here the order reduction for λ
discussed in Section 2.2 is crucial. Now, we apply Theorem 7.8 to fW . By the embedding
C4(Σ) →֒ W 4,2(Σ), we may assume that the constrained  Lojasiewicz–Simon inequality
is satisfied for all ‖h− fW‖C4 ≤ σ with exponent θ ∈ (0, 12 ]. Choosing ε > 0 sufficiently
small, we may without loss of generality assume Cε < σ < δ with σ as in Theorem 7.8
and that T1 is the maximal existence interval for (D.5) for which we have (as part of our
definition of T1)

‖f̃t − fW‖Ck ≤ σ < δ for all t ∈ [0, T1). (D.6)
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By parabolic Schauder estimates, from (D.5) and (D.1) we obtain a bound on the
parabolic Hölder space norm, i.e. ‖ϕ‖

H
k+α
4 ,k+α

≤ C, and hence for k as in the state-
ment

‖f̃t − fW‖Ck,α ≤ C for all t ∈ [0, T1). (D.7)

By (D.2), we find

∂tf̃t + ξtdf̃t = −∇W(f̃t) + λ(f̃t)νf̃t ,

where ξt denotes the tangential velocity. Next, by classical flow theory, see for instance
[26, Chapter 17], there exists a unique smooth family of diffeomorphisms satisfying

∂tΦt = ξt ◦ Φt on Σ for 0 ≤ t < T1

Φ0 = IdΣ .

A direct calculation yields ∂t(f̃t ◦ Φt) = −∇W(f̃t ◦ Φt) + λ(f̃t ◦ Φt)νf̃t◦Φt
, so

[0, T1) × Σ → R
3, (t, p) 7→ f̃t ◦ Φt ◦ Φ−1(p)

is a smooth volume-preserving Willmore flow with initial data f̃0 ◦ Φ0 ◦ Φ−1 = f0. As
the solution to the volume-preserving Willmore flow is unique, cf. Proposition 2.1, we
conclude T1 ≤ T and

ft = f̃t ◦ Φt ◦ Φ−1 for all 0 ≤ t < T1.

It suffices to prove that f̃ is global and converges as t → ∞ to a smooth Willmore
immersion f∞ with the desired properties.
First, we show that we may assume W(ft) > W(fW ) for all t ∈ [0, T1). By assumption
and (D.6), we have W(ft) ≥ W(fW ). If W(ft) = W(fW ) for some t ∈ [0, T1), then by
Remark 2.5, f and f̃ are stationary and the claim follows. Hence, we may indeed assume
the strict inequality W(ft) >W(fW ).
Let θ,C as in Theorem 7.8. By (2.13), (D.6) and since V(ft) = V(fW ), we may apply
the constrained  Lojasiewicz–Simon gradient inequality to obtain

− d

dt

(

W(ft) −W(fW )
)θ

= −θ
(

W(ft) −W(fW )
)θ−1 〈∇W(f̃t), ∂

⊥
t f̃t〉L2(dµf̃t

)

= −θ
(

W(ft) −W(fW )
)θ−1 〈∇W(f̃t) − λ(f̃t)νf̃t , ∂

⊥
t f̃t〉L2(dµf̃t

)

= θ
(

W(ft) −W(fW )
)θ−1 ‖∇W(f̃t) − λ(f̃t)νf̃t‖L2(dµf̃t

)‖∂⊥t f̃t‖L2(dµf̃t
)

≥ θ

C
‖∂⊥t f̃t‖L2(dµf̃t

)
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for 0 ≤ t < T1. Now, using (D.4), (D.6) and the resulting equivalence of the metrics gfW
and gf̃t , we find

‖∂tf̃t‖L2(dµfW
) ≤ −C

θ

d

dt

(

W(ft) −W(fW )
)θ

for every t ∈ [0, T1). (D.8)

Integrating in time and using the triangle inequality we find

‖f̃t − fW‖L2(dµfW
) ≤ ‖f̃0 − fW‖L2(dµfW

) + C
(

W(f̃0) −W(fW )
)θ

≤ C‖f̃0 − fW‖θC2(Σ),

using the mean value theorem for the Willmore energy and assuming that ε > 0 is small
enough. As in [10, p. 361], by interpolation for some β ∈ (0, 1) we find for t ∈ [0, T1)
and k as in the statement, using (D.7) and (D.1)

‖f̃t − fW‖Ck(Σ) ≤ C‖f̃t − fW‖1−β
Ck,α(Σ)

‖f̃t − fW‖β
L2(Σ,dµfW

)

≤ C‖f̃0 − fW‖βθ
C2(Σ)

≤ Cεβθ ≤ σ

2
, (D.9)

if ε > 0 is sufficiently small. Since T1 > 0 is chosen maximal with respect to (D.6), this
implies T1 = ∞, which yields that f̃ exist globally and satisfies ‖f̃t−fW‖Ck(Σ) ≤ σ for all

t ≥ 0. Therefore, (D.8) yields ∂tf̃t ∈ L1([0,∞);L2(Σ,dµfW )), and consequently, there
exists f∞ := limt→∞ f̃t in L2(Σ,dµfW ). Similar to (D.9), an interpolation argument and
(D.7) yield limt→∞ f̃t = f∞ in Ck(Σ). By parabolic Schauder estimates, one can then
obtain L∞-bounds on higher order derivatives, such that by interpolation again, one can
show that the convergence limt→∞ f̃t = f∞ is even smooth. Since the volume-preserving
Willmore flow is a gradient flow, f∞ is a constrained Willmore immersion. Using that
‖f∞ − fW‖Ck(Σ) ≤ σ, we find by Theorem 7.8 that

|W(f∞) −W(fW )|1−θ ≤ C‖∇W(f∞) − λ(f∞)νf∞‖L2(dµf∞ ) = 0,

so W(f∞) = W(fW ).
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