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Abstract. While calculations and measurements of single-particle spectral
properties often offer the most direct route to study correlated electron systems,
the underlying physics may remain quite elusive, if information at higher particle
levels is not explicitly included. Here, we present a comprehensive overview of the
different approaches which have been recently developed and applied to identify
the dominant two-particle scattering processes controlling the shape of the one-
particle spectral functions and, in some cases, of the physical response of the
system. In particular, we will discuss the underlying general idea, the common
threads and the specific peculiarities of all the proposed approaches. While all of
them rely on a selective analysis of the Schwinger-Dyson (or the Bethe-Salpeter)
equation, the methodological differences originate from the specific two-particle
vertex functions to be computed and decomposed. Finally, we illustrate the
potential strength of these methodologies by means of their applications the
two-dimensional Hubbard model, and we provide an outlook over the future
perspective and developments of this route for understanding the physics of
correlated electrons.
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1. Introduction: Electronic correlations at the
one- and two-particle level

The major challenge to be faced when studying quan-
tum systems with a high degree of correlations between
their constituents is the difficulty of disentangling the
information of a single particle from the rest of the
system. An intuitive illustration of this hurdle can be
gained by recalling the “Mikado” game, where the chal-
lenge is to pick up single sticks from the stick-jumble
of the table, possibly without moving any of the other
sticks. This heuristic picture corresponds to the more
formal statement that in a correlated systems even the
knowledge of the exact expressions for all one-particle
properties, encoded in the one-particle Green functions
and self-energy, would not provide a complete informa-
tion about the underlying physics.

A good example among many illustrating such an
intrinsic feature of electronic correlations is provided
by the spectroscopic measurements in iron pnictides
[1], which yield relatively moderate renormalizations
of the photoemission spectra (controlled by the
one-particle self-energy) and, at the same time,
major correlation hallmarks in the inelastic neutron
scattering spectra [2, 3, 4] (induced by large two-
particle vertex corrections [5, 6]) for the same material.

Learning how to look behind the outcome of
the most direct one-particle (e.g. photoemission)
spectroscopy experiments represents, thus, a crucial
step for fully understanding the physics at work
in a correlated material and, thus, for formulating
reliable theoretical predictions. In this context, novel
methodological approaches, specifically designed for
these aims, have been introduced [7, 8, 9, 10, 11]
by us and other co-workers in the last five years
and have been exploited by several groups as a
rigorous approach to identify the fundamental physical
mechanisms driving the outcome of the one-particle
spectroscopy.

While the newly introduced theoretical ap-
proaches can be classified in two main categories, which
we will discuss in detail below, they share a com-
mon philosophy and important similarities (see Fig. 1).
They are all based on the idea of identifying the spe-
cific nature of the mechanisms driving the observed
shape of given one-particle spectral function from a
systematic investigation (or “diagnosis”) of the corre-
sponding two-particle scattering processes. This “di-
agnostic” task, which on an experimental level would
require to perform several kinds of spectroscopy and
transport experiments, can be achieved in the theory
by exploiting the fundamental relation which links the
calculation of the one-particle self-energy Σ to that of
the two-particle full scattering amplitude (or full two-
particle vertex) F , i.e. the Schwinger-Dyson equation
of motion which reads (for the case of a single-orbital

model with on-site electrostatic repulsion U):

Σ(k) =
Un

2
(1)

− UT 2
∑
k′,q

F↑↓(k, k
′, q)G(k′)G(k′ + q)G(k + q),

and whose Feynman-diagrammatic representation is
explicitly reported in Fig. 2. In this equation, G
represents the one-particle Green function, n is the
electron density, T the temperature and F↑↓ the full
scattering amplitude between electron with opposite
oriented spins. With the compact variable k, k′

and q, we compactly indicate a combination of a
momentum and (Matsubara) frequencies [e.g. k =
(k, iωn)]. We adopt here the particle-hole frequency-
and momentum convention (see leftmost diagram in
Fig. 3). Eq. (2) illustrates in a rather transparent
way, how a significantly large quantity of physical
information encoded on the two-particle level (F ) gets
partly averaged away when transferred to the one-
particle level (Σ).

In a nutshell, the way to “diagnose” the
physical mechanisms driving the one-particle spectral
properties is to perform simultaneous electronic
calculations at the one- and two-particle level and,
then, with these results at hand, to proceed by a
systematic inspection of the relation between Σ and
F as encoded in Eq. (2).

Formally, the novel “diagnostic”-methodology can
be regarded as an advanced post-processing tool
for all many-electron algorithms which allow for a
simultaneous calculation –at a reasonable numerical
effort– of Σ and F . The specific procedure through
which the vertex F appearing in Eq. (2) is handled and
examined defines two main routes for the “diagnosis”
of the spectral properties, which we will analyze in
detail in the following two sections together with
corresponding, relevant applications realized by us as
well as by several other groups around the world.

2. A straightforward (but potentially
dangerous) route: the parquet decomposition

The conceptually most natural procedure for evaluat-
ing the impact of two-particle fluctuations of different
kind on the one-particle spectral properties is to di-
rectly decompose the full scattering amplitude F ap-
pearing in Eq. (2).

To this aim, one can exploit the corresponding
parquet equation (see Fig. 3):

F = Λ + Φpp + Φph + Φph, (2)

which classifies all two-particle scattering processes
contained in F in terms of the two-particle irreducibil-
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Figure 1. Heuristic illustration of the two main strategies to master the complex theoretical description of electronic correlations.
On the left hand panel, inspired by the motto “divide et impera” (i.e., “divide and rule”), one can decompose the full many-body
problem in smaller blocks to be dealt with separately. As for the specific goal of interpreting the physical mechanisms controlling
the one-particle spectral properties, this corresponds to performing a parquet decomposition [9] of the electronic self-energy, which
allows for a precise classification of the scattering processes of different kind. On the right hand panel, consistent with the motto
“mutatis mutandis” (literally: ”having changed what has to be changed”), one can modify the perspective under which the many-
electron problem is analyzed, e.g. by changing the reference frame for the description of the physical systems of interest (as a
pertinent example [11] we show the representations of the solar systems in different reference frames). In our case, this second route
corresponds to performing a change of representation of the Schwinger-Dyson equation of motion for the self-energy, in order to
exploit the most suited basis to diagnose which fluctuations drives the observed physics - the so called “fluctuation diagnostics”
[8, 11] approach.

Σσ(k)
= +

Gσ(k) Gσ(k)Gσ(k)Gσ(k) Gσ(k)

Fσσ′(k, k′, q)

Gσ(k + q)

Gσ′(k′ + q)

Gσ′(k′)

Gσ(k)Gσ(k) Gσ(k)

Gσ′(0)

Figure 2. Schwinger-Dyson equation of motion for calculating the (one-particle) self-energy Σ from the (two-particle) scattering
amplitude F and the Green function G.

ity‡ of their Feynman diagrammatic representation in
the particle-hole (ph), transverse particle-hole (ph) and
particle-particle (pp) channel. Reexpressing this equa-
tion in the more physical, spin-diagonalized charge (ch)
and spin (sp) channels gives:

F↑↓(k, k
′, q)=Λ↑↓(k, k

′, q)+Φpp,↑↓(k, k
′, k+k′+q) (3)

+
1

2
Φch(k, k′, q)− 1

2
Φsp(k, k

′, q)− Φsp(k, k + q, k′ − k).

The four terms on the r.h.s. of Eq. (3) correspond,
thus, to the scattering processes described either by
fully two-particle irreducible (2PI) Λ2PI or to those
described by Feynman diagrams which are two-particle

‡ We recall that a Feynman diagram is defined to be two-particle
irreducible (2PI), if it cannot be split into two parts by cutting
two one-particle Green function lines [12, 13, 14].

reducible in one of the particle-hole [charge (Φc) and
spin (Φs)] or in the particle-particle [pairing (Φpp)]
scattering channel [12, 13, 14]. By doing so, the self-
energy on the l.h.s. of Eq. (2) gets naturally split into
four terms:

Σ = ΣΛ + Σpp + Σch + Σsp, (4)

allowing for a direct physical interpretation. In fact,
the last three terms of this parquet decomposition
of the self-energy identify the contributions to the
one-particle spectral properties originating scattering
process of a well-defined nature (i.e. arising from
charge, spin or pairing fluctuations).

The spirit of this strategy for reading the
dominant physical processes behind a given spectral
function result is intuitively illustrated on the left hand
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Figure 3. Schematic depiction of the parquet equation which decomposes the full vertex F into a fully irreducible vertex Λ and
reducible vertices Φr and the channels r = (ph, ph, pp). The lower row shows examples of diagrams for each of these categories.

part of Fig. 1. One uses the parquet equation to split
the huge bunch of scattering processes F into smaller
parts, each of which allows for a precise classification.
This direct subdivision procedure (“divide et impera”)
represents, thus, a key for solving the riddle posed by
the physical interpretation of the one-particle spectra.
In this framework, it is easy to figure out that
limitations of this approach may originate from the
first term in the parquet decomposition. In fact,
the 2PI nature of the corresponding processes does
not allow for any obvious classification in terms of
scattering of a definite kind. Hence, if the contribution
stemming from this sub-part of F becomes dominant,
which happens, e.g., in the non-perturbative regime
(see below), this will significantly challenge the
applicability of the decomposition strategy based on
Eq. (3).

2.1. The decomposition of the DMFT and the DCA
self-energies from weak-to-strong coupling

To illustrate how the parquet decomposition procedure
works in practice, it is convenient to start from
the systematic analysis of Ref. [9]. Here the
corresponding post-processing procedure is applied
to the numerical results of dynamical mean-field
theory (DMFT [15, 16, 17]) and one of its cluster
extensions, the dynamical cluster approximation (DCA
[18]). Clearly, both algorithms fulfill the prerequisite
for a parquet-decomposition as they allow for a
simultaneous calculation of self-energy and 2PI vertex
functions. Having all ingredients at hand, the results
obtained from the parquet decomposition of DMFT
and DCA self-energies of the Hubbard model on the
cubic, and respectively, square lattice are reproduced
in Figs. 4-5. In particular, the data shown in Fig. 4
correspond to DCA calculations, where the interaction
U is significantly lower than the bandwidth of the
square lattice considered (W = 2D = 8t). Hence,
they can be regarded as representative for the weak-
coupling regime. In both cases the emerging trend
is similar: one observes a sizable contribution to the
absolute values of Im Σ for a momentum (hence: to
the overall correlation effects) originated by scattering

processes driven by the spin-fluctuations (in red),
which is largely compensated by the screening effects
of the fluctuations in the complementary (charge: blue
and pairing: green) scattering channels. As a net
result the final value of the DMFT and DCA self-
energy in the weak-coupling regime reduces to the one
driven by the 2PI vertex (which at weak coupling is
well approximated by the bare interaction U) slightly
augmented by an extra contribution originated by the
unscreened part of the spin-fluctuations. We note that
such correction to the contribution of Im Σ originating

from Λ2PI reduces to the usual U2

4iωn

n
2

(
1− n

2

)
at high

frequencies, where Λ2PI → U [13, 7, 19, 20] similar
[21, 22] as in perturbation theory. At low-frequency,
instead, its role gradually increases by increasing U
and, especially in DCA, by reducing T .

The physical interpretation emerging from the
parquet decomposition in the weak-coupling regime of
the Hubbard model is, thus, rather clear: By increasing
the interaction strength, the lowest (second) order
contribution to the low-energy spectral properties is
progressively enhanced by the scattering of the one
added/removed electron onto the spin-fluctuations.
The latter contribution emerges from a gradually larger
imbalance between the (predominant) spin-fluctuation
term and the opposite-sign terms describing the
screening effects of other channels.

It is interesting to note that beyond an increas-
ingly larger contribution of the spin-fluctuations to the
self-energy by enhancing U and lowering T , no qual-
itative change of the physical picture is observed un-
til divergences from Λ2PI are encountered. In this re-
spect we briefly recall that the occurrence of multi-
ple divergences of the 2PI-vertex functions has been
proven numerically and/or analytically in all funda-
mental modellization of correlated electrons, from the
DMFT/DCA solution of the Hubbard [23, 9, 24, 25,
26, 27] and the Falicov-Kimball [23, 28, 29] model to
the Anderson impurity model (AIM) [20, 22] and the
Hubbard atom [23, 7, 19].

We do not address, here, the general algorithmic
challenges [30, 31, 25, 26, 14] posed by this rather
evident manifestation of a breakdown of the many-
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Figure 4. Parquet decomposition of the self-energy in the weak coupling regime. Left: DMFT for the half-filled three dimensional
Hubbard model at U = 4.9t and T = 0.19t. Right: DCA for the antinode K = (π, 0) in the two-dimensional Hubbard model
calculated with Nc = 8 momentum patches at U = 4t, T = 0.33t and a filling of n = 0.85. That the sum of the different
contributions (“sum”) equals the direct calculation of the self-energy (“exact”) serves as consistency check (adapted from [9]).
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Figure 5. Left: Parquet decomposition of the self-energy in the intermediate coupling regime in DMFT for the three dimensional
Hubbard model at half-filling at T = 0.19t, but for U = 9.8t. Right: the corresponding Bethe-Salpeter decomposition (adapted from
[9]).

electron perturbation expansion at the formal level,
nor its recently debated physical interpretation [30, 25,
27, 22, 32]. We observe that since Λ2PI represents the
cornerstone of the parquet equation, its divergences
are expected to considerably impact all procedures
based on a parquet decomposition. Indeed, this is
exactly what happens: By increasing U into the
intermediate-coupling regime, as it is the case for the
DMFT calculations for the Hubbard model on a cubic
lattice shown in the left panel of Fig. 5, it becomes
very hard to extract significant information from the
parquet decomposition, as the parquet-decomposed
contributions to Σ start displaying [9] wild oscillations
in all the scattering channels (ch, pp, as well -of
course- Λ) where divergences of 2PI vertices have been
encountered§.
§ We note that, due to the even/odd symmetry characterizing
the frequency/momentum structure of the vertex divergences in
the particle-hole symmetric situation considered in the DMFT
calculations of Ref. [9], the strong oscillations seen in the Fig. 5
appear only after increasing the interaction beyond the value for
which the second vertex divergence, i.e. the first with an even

On the other hand, we note that the nasty
oscillations of the parquet decomposition do affect all
scattering channels but the one which was yielding
the largest contribution at lower coupling, namely the
spin/magnetic channels. This is highlighted in the
right panel of Fig. 5, where the sum of all strong
oscillatory self-energy contributions (ch, pp, and Λ)
is performed, yielding an overall smooth result. The
results of the self-energy can be interpreted in terms of
a spin-fluctuation driven physics, where all the other
degrees of freedom, however, yield sizable screening
contributions. The difficulty we face here, w.r.t.
the weak-coupling case of Fig. 4, is that by means
of the parquet decomposition we are no longer able
to disentangle useful information about the precise
mechanisms at work in all complementary (screening)
channels. While this likely reflects a hallmark of the
non-perturbative regime, characterized by a strong
transfer [22] of information between the dominant
and the complementary channels, it poses of course

frequency/momentum structure, is encountered.



How to read between the lines of electronic spectra: parquet decomposition and fluctuation diagnostics 6

0 1 2 3 4
ω

0.0

0.5

1.0

1.5
σ
(ω

)

T= 0. 5t

σ0

σ

0 1 2 3 4
ω

0.0

0.5

1.0

1.5

T= 0. 2t

0 1 2 3 4
ω

0.0

0.5

1.0

1.5

T= 0. 1t

0 1 2 3 4
ω

0.0

0.5

1.0

1.5

T= 0. 05t

0 5 10 15 20
ωn

0.05

0.00

0.05

0.10

χ
jj
(ω

n
)

χΛ

χph
χph

χpp

0 2 4 6 8 10 12
ωn

0.05

0.00

0.05

0.10

0 1 2 3 4 5 6
ωn

0.05

0.00

0.05

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ωn

0.05

0.00

0.05

0.10

0 5 10 15 20
ωn

0.0

0.2

0.4

0.6

χ
jj

χ0
jj

χjj

0 2 4 6 8 10 12
ωn

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6
ωn

0.0

0.2

0.4

0.6

0 1 2 3
ωn

0.0

0.2

0.4

0.6

Figure 6. Top panels: Bare-bubble and vertex correction contributions to the optical conductivity computed for the two-dimensional
Hubbard model at U = 4t for different temperatures. Insets: corresponding results for the current-current response χjj as a function
of the transfer Matsubara frequency ωn = 2πnT , with n ∈ Z.. Bottom panels: parquet decomposition of χjj in terms of the 2PI (Λ)
and the reducible particle-hole, particle-hole transfer/exchange, and particle-particle contributions. (adapted from [33]).

an intrinsic limitation to the full applicability of
the parquet-decomposition postprocessing technique
in the whole intermediate-to-strong coupling regime
of the many-electron systems. Within the heuristic
framework of Fig. 1, one would say that in the strong-
coupling regime the division procedure of the “divide
et impera” motto remains possible only for a limited
part of the many-electron problem.

Before discussing the impact of such restrictions of
the parquet decomposition at the end of the section, we
will illustrate here literature as well as new applications
of this post-processing technique in the “safe” weak-
to-intermediate regime, aiming at highlighting the
usefulness and versatility of this approach in its region
of full applicability.

2.2. Versatility of the parquet decomposition

Hitherto, we have used DCA for illustrating how the
parquet decomposition actually works. However, this
should not leave the impression to the reader that
the parquet decomposition is specifically designed to
analyze DCA self-energies only.

On the contrary, the basic nature of the parquet
decomposition procedure makes it easy applicable,
with minor adjustments, as post-processing tool for
a wide range of many-electron calculations of the
electronic self-energy. Further, it can be also exploited
in the analysis of other spectral quantities.

The minimal requirement for the applicability of
the parquet decomposition is, as mentioned before,
the possibility to compute, separately but on an equal
footing, all the terms of Eq. (4), namely the self-energy
for the left-hand side and the 2PI or 2P-reducible
vertex functions on the r.h.s..

This requirement is always fulfilled, per construc-
tion, in all parquet-based schemes, such as the parquet
approximation, dynamical vertex approximation DΓA
[34] (or nanoDΓA [35]) in its most general formulation,
and QUADRILEX [36], as well as in the functional
renormalization group (fRG)-based methods [37], in-
cluding the merger between fRG and DMFT coined
DMF2RG [38, 39] and the recently introduced Single
Boson Exchange Decomposition SBE [40].

Similar considerations apply if one aims at
parquet-decomposing a physical susceptibility χr
which can be obtained from the two-particle vertex
F through the corresponding Bethe-Salpeter equation
(BSE). This schematically reads:

χr = χ0 − χ0Γrχ = χ0 − χ0Fχ0. (5)

In practice, after separating the trivial bubble-term
part [χ0 on the r.h.s. of Eq. (5)], one decomposes the
remaining contribution which contains the full vertex F
and corresponds to the so-called the vertex correction
part of the physical response in terms of 2PI and 2P-
reducible vertex functions. This way, one gets the
desired four contributions to the physical response, or
to be more precise to its vertex correction part. The
bubble term, instead does not require any particular
diagnostic/decomposition treatment, as it is simply
given by the product of two 1P-Green functions.

To demonstrate the versatility of the parquet
decomposition, we consider a pertinent example where
this scheme has been exploited [33] to “diagnose” the
optical conductivity of the Hubbard model computed
in DΓA. The corresponding results are summarized
in Fig. 6. As anticipated above, the first step is
to separate the bubble from the vertex-correction
term, whose contributions to the optical conductivity
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σ(ω) (as well as to the current-current response)
function are reported in the main panels (insets)
of the top row of Fig. 6. Secondly, the vertex
correction part of current-current response χjj has
been parquet-decomposed following the procedure
summarized above (see Fig. 6, panels at the bottom
row) for U = 4t (half the bandwidth), at half-
filling [33]. The results of the parquet decomposition
shows a clear predominance of the ph-transverse (i.e.,
essentially spin/magnetic) fluctuation contribution to
the vertex correction part of χjj , which gradually
increases by decreasing temperature. Similarly as for
the self-energy, we see that the contribution of the
other scattering channels, i.e. longitudinal ph (which
includes the charge fluctuations) and pp goes in the
opposite direction, consistent with the interpretation
in terms of screening processes. Differently as in
the DCA self-energy case above, instead, the parquet
decomposition of χjj computed in DΓA entails no
contribution arising from the fully irreducible vertex.
Such an exact cancellation is a direct consequence of
the assumption of pure locality for the fully 2PI vertex
Λ2PI, on which DΓA is based‖. Similar as in DMFT
[17, 41], this leads to the vanishing of all corresponding
vertex corrections to χjj when performing the internal
momentum summation, due to the odd symmetry
of the current operator. Since the assumption of
locality of Λ2PI appears a reasonable approximation
in large parameter regions of the phase-diagram of the
Hubbard model [42, 43], the contribution χ̃Λ

jj to the
current-current response and the optical conductivity
is expected to be marginal in most cases. The major
contribution to the vertex corrections arise, thus, by
the spatially non-local magnetic fluctuations, partly
screened by the charge and the pairing scattering
processes.

Note, however, that this conclusion does not apply
to the vertex corrections of other response functions
such as the charge and the magnetic ones, where the
corresponding (charge/spin) operators do not display
odd symmetries in momentum space. In such sectors,
the contributions arising from the large, or even
diverging fully local 2PI vertices [23, 24, 27, 22], might
trigger relevant physical effects [6, 32, 22].

Finally, it should also be remarked that the
versatility of the parquet decomposition allows for
its usage even in cases where the parquet structure
of the diagrams is not fully resolved, namely as a
post-processing of ladder approximations (see also
next section). The obvious limitation here is that
only information about the scattering channels whose
ladder contribution have been included in the original

‖ Nevertheless, a bare non-local interaction can be included [33],
and this adds quite substantial a contribution to the optical
conductivity.

Figure 7. Parquet decomposition of the ladder nanoDΓA
results for a four-site nano-ring of correlated atoms (adapted
from [44]). Whereas the contributions of the different chaneels
are of similar magnitude away from the Fermi surface (k = 0),
the spin contribution dominates at the Fermi surface (k = π/2).

calculations can be extracted. Notwithstanding, the
applications of the parquet decomposition has been
already proven to be quite useful to interpreting
the results of ladder DΓA calculations [44]. As an
example, let us consider the decomposition of the
ladder nano-DΓA self-energy Σ(k, ν) computed [44]
for an isolated nanoring of four correlated atoms (see
Fig. 7). In particular, here the parquet decomposition
of Σ(k, ν) has highlighted how the prevalence of
magnetic driven contributions was confined to specific
momenta, namely to the ones at the Fermi surface.
In the next section, we show how new applications
of the parquet decomposition to the ladder DΓA
calculations allow for a quantitative clarification of
the spin fluctuation physics of the unfrustrated two-
dimensional Hubbard model.

2.3. Non-Fermi liquid behavior and different regimes
of magnetic correlations at weak coupling

Remarkably, the strategy of “divide et impera”,
founding the base line of the parquet decomposition,
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Figure 8. Parquet decomposition of the self-energies obtained by DΓA for various temperatures and the quasiparticle weight Zsp
k

extracted from its spin part. For the highest T , only the antinodal point is shown as the nodal one is almost identical to it.

can lead to crucial insights even for a case where one
could a priori think that the physics is commonly
known. To illustrate this, we consider here the case
of the two-dimensional Hubbard model on the simple
square lattice in the regime of half-filling n = 1 and
weak interaction U = 2t. This is an arguably ”simple”
case, also in the sense that there is a plethora or
different methods (ranging from ”numerically exact”
to approximative) available, which can be utilized in
this regime of the Hubbard model.

By applying such a multi-method, multi-
messenger approach one has been able to nail down
its physics and, simultaneously, benchmark each of
the methods against numerically exact diagrammatic
Monte Carlo (DiagMC) and determinantal (lattice)
quantum Monte Carlo (DQMC) [45]. One approximate
method which has proven to describe this physics ac-
curately is the dynamical vertex approximation (DΓA,
here applied in its ladder version [34, 46]), a diagram-
matic extension [47] of the DMFT [15, 16, 17].

The black curves with circles markers of Fig. 8
show self-energy data computed by DΓA as a
function of Matsubara frequency Σ(k, iωn) for three
representative temperature regimes of the Hubbard
model at U = 2t. The first row shows the self-energy
for the antinodal point k = (π, 0), the second row the
nodal one k = (π/2, π/2) (at the highest temperature
considered, i.e. 1/T = 1, there is no momentum
differentiation between nodal and antinodal direction.
Hence, the node is not shown for this temperature.).
Interestingly, also in this arguably ”simple” regime,
the model already exhibits an intriguing succession of
crossovers as a function of temperature T [48, 49, 45,
50, 51]: starting at high T , as one cools down, an

increase in the coherence of “quasiparticles” can be
observed. This is signalled by a change of slope in the
low-frequency behavior of Σ(k, iωn) ( 1○ → 3○), i.e.
from a clearly non-Fermi liquid behavior (divergence
at low frequencies) to a metallic solution (a Taylor
expansion is possible). There is also an intermediate
regime present, where only the nodal point shows
the onset of coherence (regime 2○, not shown). At
intermediate temperatures around 1/T = 10 3○ the
self-energy displays a metallic-like behavior for both
node and antinode. Due to the antiferromagnetic
ground state, strong magnetic fluctuations set in,
when cooling the system further. However, true
magnetic ordering at finite T is prohibited by the
Mermin-Wagner theorem [52, 53] which is preserved
by the DΓA. As a consequence of these increased
fluctuations, Slater paramagnons lead to a divergence
of the self-energy at low frequencies ( 3○- 5○) and a
(paramagnetic) insulator is established. Please note
that also here, a momentum-differentiated regime 4○
appears, where the nodal point is still ”coherent”,
whereas the antinodal is not (not shown). As
demonstrated in Fig. 8, the DΓA correctly represents
these different regimes, a behavior which has been
confirmed by recent DiagMC studies [48, 45].

We now turn to the parquet decomposition of the
DΓA results. In the (ladder) version[46, 43] of the
algorithm used, the dominating fluctuation channel
(i.e. the magnetic or spin one) was singled out a
priori, which, of course, should be directly visible in the
parquet decomposition of its self-energy: Focusing on
the antinode (first row of Fig. 8) for the moment, one
can see that at high temperatures 1○, the spin channel
contribution Σsp (red triangles) as well as the ”rest”
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Σrest (irreducible and particle-particle fluctuations,
green crosses) dominate its behavior at low frequencies.
The charge channel Σch (blue squares) acts as a (small)
source of screening. However, as soon as we enter
the metallic regime 3○, as expected, the spin channel
becomes the only dominant contribution. This effect is
getting even more pronounced in the low-T insulating
regime 5○.

0.0 2.5 5.0 7.5 10.012.515.017.520.0
1/T

100

101

102

ξ

second
slope

first
slope

DΓA

Figure 9. Magnetic correlation length calculated by DΓA for
the half-filled two-dimensional Hubbard model at U=2t.

Focusing on the spin contributions Σsp, several
points, that cannot be inferred from simply looking
at the “total” self-energy, are noteworthy:

(i) For the nodal point, the shape of the low frequency
(metallic-like vs. insulting/incoherent-like) part
of Σsp is the same as the shape of the complete
Σ. This stands in great contrast to the situation
at the antinode: the spin contribution at the
antinode never becomes metallic-like. Only via
the screening of Σch and the antagonizing shape of
Σrest, metallicity at the antinode can be achieved
for the total self-energy.

(ii) A straightforward illustration of the former point
is shown in the leftmost panel in the second row
of Fig. 8: here, the quasiparticle weight extracted
from the spin contribution to the self-energy Zsp

k is
plotted for the two momentum points as a function
of (inverse) temperature. In a strict sense, Zsp

k is
only defined when quasiparticles are present (i.e.
in regime 3○). However, numerically, one can
extract it in every regime from the Matsubara data
by

Zk =

[
1− ∂Im Σ(k, iω)

∂ω

∣∣∣∣
ω→0

]−1

. (6)

The change of slope from 1○ → 3○ would be then
signalled by Zk falling < 1 (oppositely for the
change at low T ). As discussed before, and as
it can be inferred from the figure, the change of
slope is never happening for Σsp at the antinode.
For the node, Zsp

k < 1 for 16 > 1/T > 5 and
increases above 1 again for 1/T > 16. So one
could argue that the contributions stemming from
the spin channel only show a partial metallic-
like behavior at the nodal points in a small

temperature interval, whereas the antinode is
always non-metallic.

(iii) Even more interestingly, this regime of partial
metallic-like behavior manifests itself also directly
at the two-particle level: Fig. 9 shows the
magnetic correlation length ξ calculated in DΓA
as a function of inverse temperature. One can
see that, starting from a high-temperature mean-
field regime (until 1/T ≈ 5), one enters a regime,
where the magnetic correlation length is growing
exponentially. This is to be expected due to
the suppression of magnetic ordering at finite T
by fulfilling the Mermin-Wagner theorem in a
system with an (antiferro-)magnetic ground state
(see, e.g., [54, 55]). However, quite surprisingly,
by cooling the system further, one reaches a
second exponential regime, distinguished by a
different prefactor in the exponential. Strikingly,
this happens at 1/T = 16, i.e. exactly at the
temperature, where both antinodal as well as
nodal momentum points (and, in the fully nested
system, hence all momentum points) of Σsp show
non-metallic behavior.

This intriguing differentiation of magnetic correlation
regimes calls for further investigations by numerically
exact techniques (i.e. going beyond DΓA). However,
by date, neither DiagMC nor DQMC are able to enter
this highly insulating regime.

2.4. The challenge of the non-perturbative regime

As mentioned before in Sec. 2.1, the applicability of
the parquet decomposition faces significant restrictions
in the intermediate-to-strong coupling regime, due
to the occurrence of multiple divergences [23, 28,
9, 24, 29, 26, 20, 19, 14, 27] of the 2PI vertex
functions. Of course, the parquet decomposition will
remain always applicable to the post-processing of
perturbative calculations, such as PA and (multiloop)
fRG, where -per construction- singularities of the
2PI vertices cannot appear (except at thermodynamic
phase transitions) [24, 20, 14]. Nonetheless, all the
nonperturbative physics intrinsically linked [9, 25, 27,
32, 22] to these 2PI divergences will remain beyond the
reach of the parquet decomposition investigation: The
local moment and Kondo-screening regime of impurity
models [22], the Mott-Hubbard MIT [24, 27] as well
as the associated phase-separation instabilities [57, 32],
the pseudogap formation as well as the regime of strong
AF and RVB correlations [9, 58], to cite some relevant
cases, will be precluded.

Currently, we can envisage two possible ways
to circumvent the intrinsic difficulties the parquet
decomposition suffers from in the intermediate-to-
strong coupling regime.
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Figure 10. Example of an SBE decomposition: U -reducible contributions ∇r and the irreducible contribution ϕirr (for an Anderson
impurity model corresponding to a self-consistent DMFT solution at U = 4t) in the charge (upper panel) and spin (lower panel)
channel as a function of the Matsubara frequencies. Also shown is the full vertex f for comparison (taken from Ref. [56]).

The first one requires to recast the parquet formal-
ism in the newly introduced Single Boson Exchange
Decomposition (SBE) [40]. This corresponds, essen-
tially, to classifying the two-particle diagrams in terms
of their irreducibility/reducibility w.r.t. a cut of the
two-particle interaction instead of two fermionic lines.
Within this classification many more diagrams (namely
all those corresponding to multi-boson processes) are
included in the irreducible class of the SBE. This in-
clusion allows for significant cancellations of the diver-
gences displayed by the 2PI and 2P reducible vertices
of the usual parquet classification. Indeed, within the
SBE, hitherto no vertex singularities have been found
[40] even up to relatively large values of the electronic
interaction. In practice, one will decompose the full
scattering amplitude F in terms of the SBE (instead
of the conventional parquet classifications of diagrams).
By means of this procedure which could be referred to
as “SBE decompostion”, one will be able to diagnose
the self-energy (or the physical response function) by
identifying the contributions arising from single-boson-
exchange processes in the spin/charge/pairing channel,
as well as of a rest part stemming from multi-boson-
exchange processes. While the information encoded in
the new classes of diagrams will be different w.r.t. the
usual parquet one, where multiple-boson processes are
included in each spin/charge/pairing/Λ contributions,
the applicability of the SBE-decomposition will not
face -a priori- any of the restrictions dictated by the
vertex divergences¶. This new kind of decomposition-

¶ In this respect, one could be tempted to draw the conclusion
that in large region of the weak-coupling regime of safe
applicability of the parquet decomposition, its results would not
differ too largely from those computed by means of the SBE one.

based post-processing looks particularly promising, be-
cause its implementation shares the same versatility
of the parquet decomposition. For this reason, this
approach might be particularly suited to extend the
applicability of the diagnostic post-processing to more
complex cases, including multi-orbital or long-range-
ordered systems. A first pioneering application of the
SBE-decomposition used as post-processing tool has
been recently presented in Ref. [59], see Fig. 10.

However, also a second, quite elegant, route
to perform a “diagnosis” of the self-energy in
the nonperturbative regime, irrespectively of the
occurrence of divergences of the 2PI vertices, exists.
This procedure, originally coined as “fluctuation
diagnostics” [8, 11], requires a complete change of
perspective on the problem, as it will be illustrated
in detail in the following section.

3. Taking a different (and safer) route:
fluctuation diagnostics

The quest of performing a diagnostic of the self-
energy in terms of the underlying fluctuations, without
the restrictions which challenge the parquet-based
schemes, has inspired the development of a fully
complementary, and quite powerful, post-processing
tool. In fact, as most problems originate from the
divergences of the 2PI vertex functions, a natural way
out could be gained by avoiding to work at all on
the level of 2PI quantities when post-processing the
Schwinger-Dyson equation for the self-energy.

The possibility of doing so is offered -in a certain
sense- by what it is often considered a problematic
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issue for the theoretical approaches of the Hubbard
model: the Fierz ambiguity. In fact, the freedom
of recasting the SU(2)-invariant interacting term of
the Hubbard model in formally equivalent expressions
often leads to somewhat annoying differences in the
realm of effective fermion-boson and/or purely bosonic
approximation-schemes, e.g. those based on Hubbard-
Stratonovic transformations.

Here, instead, the main idea is to reverse
the situation and exploit this intrinsic ambiguity
to our advantage by deriving formally equivalent
representations of the SD-equations which will allow
for a selective diagnostic of the underlying fluctuation
effects.

This is, in a nutshell, the essence of the
approach which has been coined [8] “fluctuation
diagnostics” of the self-energy (though more recently
such denomination has been also used, somewhat
loosely, for any kind of post-processing tool designed
for the diagnostics of the self-energy and/or physical
response functions). More specifically, we note that the
SD-equation of the self-energy of the Hubbard model
in its paramagnetic phase (see Eq. 2) can be rewritten
in three, formally equivalent ways:

Σ(k) − Un

2
= (7)

= UT 2
∑
k′,q

F↑↓(k, k′; q)G(k′)G(k′+q)G(k+q), (8)

= −UT 2
∑
k′,q

Fsp(k, k′; q)G(k′)G(k′+q)G(k+q), (9)

= −UT 2
∑
k′,q

Fch(k, k′; q)G(k′)G(k′+q)G(k+q), (10)

= −UT 2
∑
k′,q

Fpp(k, k′; q)G(k′)G(q−k′)G(q−k), (11)

i.e., in terms of the full scattering amplitude F
of the spin, charge or pairing channel+. While
the equivalence of the three expressions above after
performing all summations on the r.h.s. is just a formal
manifestation of the symmetries of the problems (e.g.,
as the SU(2) one), as it is often the case with sum-
rules [60, 61], important information can be extracted
by considering partial summations.

Indeed, by performing all summations but
one over the transfer momentum (q) or frequency
(Ω), one obtains three (momentum- or frequency-
resolved) representations of the electronic self-energy,
corresponding to the spin, the charge and the pairing
sectors. For instance, for the spin sector, the former
would read

Σ̃(k)Q −
Un

2
= (12)

+ We recall that the vertex F↑↓, due to SU(2)-symmetry and
crossing relations, can be re-expressed in terms of the spin Fsp =
F↑↑ − F↑↓, charge Fch = F↑↑ + F↑↓ and, via a frequency shift,
the particle-particle vertex Fpp(k, k′; q) = F↑↓(k, k′, q − k − k′).

= −UT 2
∑
k′,iΩn

Fsp(k, k′; q)G(k′)G(k′+q)G(k+q)

while the latter is

Σ̃(k)iΩn −
Un

2
= (13)

= −UT 2
∑
k′,Q

Fsp(k, k′; q)G(k′)G(k′+q)G(k+q).

While the formal equivalence of these three repre-
sentations is trivially recovered when performing the
missing summations, they outline three complemen-
tary description of the same electronic self-energy.
Heuristically, these representations might recall [11]
the different reference systems, through which is pos-
sible to describe the movement of the Sun and of the
planets in our solar systems (see r.h.s. of Fig. 1). In
principle, all of them can be used for deriving equiva-
lent descriptions of the solar systems, although some of
the reference systems, such as the heliocentric one, are
evidently much more suited for getting a transparent
description of the underlying physics.

The very same will happen in the fluctuation
diagnostics: If the self-energy under examination is
mostly controlled by a well-defined bosonic mode
in the spin, charge or pairing scattering channel,
its partial summation will be dominated by a
specific momentum (or frequency) contribution in the
corresponding representation of the SDE. A strongly-
polarized partial-sum in a given representation can be
thus regarded as the fluctuation-diagnostic analog of
the heliocentric representation of the solar-system.

Conversely, if we look at the same self-energy
data in a different representation, we can no longer
expect to see a predominance of a specific term:
Within this different representation, the fluctuation
diagnostic contributions to Σ will be distributed rather
uniformly as a function of the transfer momentum
(or frequency). Thus, a featureless shape of the
fluctuation diagnostics outcome indicates that the
associated representation is not particularly suited for
a transparent description of the physics underlying
the self-energy under investigation. In our heuristic
“astronomical” analogy, this representation would
correspond, then, to the geocentric reference frame.

3.1. The fluctuation diagnostics of the DCA
self-energies: the origin of the pseudogap

To guide the reader through the actual results of
the fluctuation diagnostics, we start from the first
applications made in Ref. [8]. There, the self-energy
Σ(k) of a slightly hole-doped two-dimensional Hubbard
model has been computed by means of DCA (with a
cluster of 8 discretized momenta K in Fourier space).
The chosen combination of U and T values considered
correspond to the intermediate-to-strong coupling



How to read between the lines of electronic spectra: parquet decomposition and fluctuation diagnostics 12

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

-I
m

 Σ~
Q

[k
]

(π
,π

)
(0

,π
)

(π
,0

)
(π

/2
,π

/2
)

(π
/2

,-π
/2

)
(-π

/2
,-π

/2
)

(0
,0

)

(π
,π

)
(0

,π
)

(π
,0

)
(π

/2
,π

/2
)

(π
/2

,-π
/2

)
(-π

/2
,-π

/2
)

(0
,0

)

K=(0,π) K=(π/2,π/2)

spin    
charge 
particle

-.8

-.6

-.4

-.2

.0

0 2 4

Im
 Σ

[k
]

ν [eV]

K=(0,π)

0 2 4

ν [eV]

K=(π/2,π/2)

spin picture

ω = 0

ω 6= 0

particle picture

ω = 0

ω 6= 0
K = (0, π)

Figure 11. Bosonic fluctuation diagnostics for a DCA
calculation in the pseudogap regime of the repulsive Hubbard
model (U = 7t, t′ = −0.15t, n = 0.94, T = 0.067t). Upper row:
self-energy at the antinode (left) and node (right). Center row:
Momentum-resolved contributions. Lowest row: Frequency-
resolved contributions (taken from [8]).

regime of the model. The DCA self-energy (shown
in the upper panels of Fig 11) displays a significant
momentum differentiation between the antinodal [K=
(π, 0)] and the nodal direction [K = (π2 ,

π
2 )] highly

suggestive of pseudogap spectral features.
The fluctuation diagnostics of this DCA self-

energy, summarized in the momentum resolved his-
togram (corresponding to Eq. 13, main panel of
Fig. 11) and the frequency resolved pie-chart (corre-
sponding to Eq. 14, lower panel of Fig. 11) outline a
clear-cut picture of the underlying physics∗. Indeed,
two of the three representations of the histogram en-
coding the momentum-resolved partial summation in
Eq. (11) display a featureless distribution in momen-
tum space, namely the charge one (blue bars) and the
pairing one (green bars). At the same time, mutatis
mutandis, the fluctuation diagnostic histogram in the
spin representation (red bars) is clearly dominated by
a specific contribution, namely the one at transferred
momentum Q=(π, π).

Remarkably, such a predominating term is about

∗ The angle of each pie slice corresponds to the fraction of the
contribution of the respective Matsubara frequency to the sum
over the lowest n (bosonic) Matsubara frequencies (n = 9 in the
given example of Fig. 11).
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Figure 12. Bosonic fluctuation diagnostics for DCA self-
energies at U = 7t, t′ = −0.15t′, n = 0.95 and T = 0.1t (taken
from [62]).

a factor two larger in the antinodal than in the
nodal direction. This result is also supported
by the frequency-resolved pie-charts: In the one
corresponding to the spin-representation the Ω = 0
contribution largely predominates, while in the other
two cases a much more uniform frequency-distribution
is observed.

The spin representation plays, then, the role of
the heliocentric reference frame in the solar system
example. The underlying physical interpretation is
readily obtained: The relative large and momentum-
differentiated values of the DCA self-energy in the
pseudogap regime is ascribed almost exclusively to
sharply-defined (Ω = 0) AF [Q = (π, π)] spin-
fluctuations.

Interestingly, a refined analysis of the pairing
contributions to Eq. (11) has unveiled that, even in
the presence of strong d−wave pairing fluctuations,
these are essentially averaged out by the internal
momentum summation over K′. Hence, the important
conclusion of the fluctuations diagnostics introduced
in Ref. [8] is not that strong d−wave superconducting
fluctuations are necessarily absent in the hole-doped
Hubbard model, but rather that they do not play any
decisive role in driving the pseudogap spectral features
found in the DCA self-energy.

A more detailed investigation of the pseudogap
regime in DCA has been later performed[63], with
a particular focus on the role played by the charge
fluctuations. These highly precise DCA results will
allow for a closer comparison with spectroscopic
absorption experiments. At the same time, their
fluctuation diagnostic postprocessing, reproduced in
Fig. 12, provides further support to the earlier
conclusions of Refs. [8, 11].

The clear-cut result of the pseudogap regime of the
repulsive Hubbard model should not leave the reader
with the incorrect impression that the predominance
of a specific collective-mode can be observed only in
one of the three representations. In fact, as it is
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Figure 13. Bosonic fluctuation diagnostics for a DCA
calculation for the attractive Hubbard model (U = −4t, n =
0.87, T = 0.1t). Upper row: self-energy at the antinode
(left) and node (right). Center row: Momentum-resolved
contributions. Lowest row: Frequency-resolved contributions
(taken from [8]).

possible that one gets featureless histograms in all
the three representations, it may also happen that
two (or more) collective modes are found to yield,
simultaneously, predominant contributions in their
respective representation. This is well exemplified by
the results obtained [8] for the fluctuation diagnostics
of the attractive (negative U) Hubbard model solved by
means of DCA. The corresponding histograms and pie
charts identify simultaneously two fluctuating modes
which contribute (each in its proper representation) to
the low-frequency behavior of corresponding electronic
self-energy: the s-wave superconducting one (Q =
0,Ω = 0 in the pairing representation, green bars
and slices) and the charge density wave (CDW one
(Q = 0,Ω = 0 in the charge representation, blue bars
and slices). Evidently, this outcome is fully consistent
with the physical expectations [64, 65, 66, 27] for the
attractive Hubbard model, which provides a further,
independent benchmark for the general validity of the
fluctuation diagnostics as post-processing tool.

Let us conclude this section by noting that the
fluctuation diagnostics in terms of the bosonic variables
(i.e., by performing all internal summation except
the one on the transferred momentum/frequency, q)
is probably the most natural, but not the only

possibility. As it has been illustrated in Ref. [58],
one can also decide to perform all summations of the
SD equation but the one of the remaining fermionic
variables k′. This way, one defines a “fermionic”
fluctuation diagnostics which provides complementary,
but relevant information w.r.t. the most conventional
(“bosonic”) one. In particular, this fermionic flavour
of the fluctuation diagnostics has been applied [58]
to DCA calculations, aiming at getting more insight
on the relation between the RVB correlations and the
pseudogap features of spectral function, computed on
DCA-clusters between 8 and 32 sites.

3.2. Versatility of the fluctuation diagnostics

In spite of differences in the implementation, the
fluctuation diagnostics shares the quality of being
an extremely versatile post-processing tool with
the parquet decomposition. In fact, the minimal
conditions for its applicability to a given many-electron
calculation is the possibility of computing one-particle
self-energy and two-particle vertex function on an
equal-footing, whereas for the latter it will be no longer
necessary to extract its irreducible component]. Hence,
the methods for which the fluctuation diagnostics
might be exploited as post-processing are essentially
the same as for the parquet decomposition, albeit
without the restriction of remaining confined to the
non-perturbative regime.

A relevant example of its broad applicability is
represented by the fluctuation diagnostics analysis
performed on the Diagrammatic Monte Carlo results of
Ref. [67]. Here, the authors have unfolded the partial
momentum summation of the SD equation for the self-
energy of the hole-doped Hubbard model, and namely
for its value a the lowest Matsubara frequency (ν=πT )
and momenta corresponding to the antinodal/nodal
direction. The results obtained in [67] within the
three representations of the fluctuation diagnostics are
reproduced in Fig. 14 and correspond to a parameter
regime on the verge of that where the pseudogap
appears.

We note that, due the high-momentum resolution
allowed by this many-electron technique, the partial
momentum summations can be presented [67] in the
form of a fully intensity-coloured map over the all
Brillouin zone, fully unfurling the potential of the
fluctuation diagnostics post-processing approach. In
particular, while the poor significance of the charge and
paring modes in shaping the (almost pseudogap-like)
self-energy behavior is fully confirmed (as illustrated

] As pointed out in Ref. [58], the partial momentum/frequency
summations to be performed over bosonic (or fermionic) internal
variables of the SD equation might allow for further numerical
simplifications, if the values of such partial sums can be directly
extracted by the corresponding many-electron algorithm.
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Figure 14. Bosonic fluctuation diagnostics of diagrammatic
Monte Carlo results at U = 5.6t, t′ = −0.3t, n = 0.94 and
T = 0.2t (taken from [67]).

by the featureless intensity maps of the corresponding
representations), new important information was
emerging [67] from the highly momentum-resolved
analysis of the spin-representation. In fact, by looking
at the intensity map of the antinodal and nodal self-
energy in this representation, one immediately note
the net prevalence of AF fluctuation contribution.
However, the comparison between the two shows
that, while the fluctuations driving the antinodal self-
energy are commensurate (with a maximum at q =
(π, π)), the one controlling the nodal self-energy are
not, displaying a sizable degree of incommensurability.
This refined understanding goes evidently beyond the
momentum-grid resolution of the DCA calculations
[8, 58] mentioned above.

Somewhat analogous to the parquet decomposi-
tion, we note that also the fluctuation diagnostics can
be applied to many-electron calculations which are not
fully unbiased w.r.t. the different scattering channels.
This is mostly the case of ladder-based approxima-
tions††. As these approaches imply an a priori assump-
tion of the predominance of a specific kind of fluctu-
ations, the applicability of the fluctuation diagnostics
gets restricted, here, to the representations of the chan-
nels whose fluctuations are explicitly included through
ladder resummations. The most significant informa-
tion is extracted, then, by the inspection of momen-

††A similiar procedure might be also useful in the context of
phonon calculations [68].

tum/frequency resolved intensity maps of the selected
channels, more than from the comparison of the differ-
ent representations.

As a pertinent example, we report in Fig. 15,
the fluctuation diagnostics recently made in Ref. [69].
Here, the authors performed the fluctuation diagnos-
tics of the self-energy of a ladder dual-fermion (DF) cal-
culation of the frustrated Hubbard model in the spin-
representation. In particular, they have inspected the
difference ∆Σ between the self-energy computed at the
first (ν=πT ) and the second (ν=3πT ) Matsubara fre-
quencies, whose positive/negative sign can be consid-
ered, at low-enough temperature, as a reliable indicator
of the metallic/non-Fermi-liquid nature of the corre-
sponding spectral function Ak(ω) [70, 48]. The data
reported in Fig. 15, which refer to ladder DF calcu-
lations performed at different doping levels, show [69]
that the pseudogap features of the hole-doped solution
(where one finds ∆Σ>0, i.e. a metal, at the node, and
∆Σ< 0, i.e. a non-Fermi liquid, at the antinode), are
built up by qualitatively different partial summations
in the spin picture: While at the node, one finds large
contributions of opposite sign emerging from AF fluc-
tuations which largely elide themselves, at the antin-
ode the underlying AF-fluctuations act rather syner-
getically in suppressing the Fermi-liquid coherence. It
is also interesting to observe that the fluctuation di-
agnostics looks rather different in the electron-doped
case considered (n=1.1, bottom panels of Fig. 15) and
that, there, the spin-representation appears less suited
for a complete understanding of the spectral proper-
ties, being associated to a more uniformly distributed
intensity maps, at a quantitative level.

All of the examples of this section highlight
that significant insight into the physics of strongly
correlated electron systems can be gained when
fluctuation diagnostic approaches are used for post-
processing two-particle quantities which are the result
of channel-unbiased techniques to the problem at
hand. To close this section on the fluctuation
diagnostics, in the last subsection, we will “turn
around” this strategy, i.e. we will demonstrate that the
fluctuation diagnostics can indicate which method (or
its parametrization) is well suited in specific parameter
regimes.

3.3. Estimation of the Fierz parameter in combined
bosonic-fermionic descriptions of the Hubbard
interaction

A common thread of cutting-edge many-body methods
is the great amount of simplification that arises
when dominating physical channels can be determined
a priori. This is true for (purely fermionic)
frameworks, eg. in the simplification obtained by
singling out the dominating fluctuations in the parquet
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Figure 15. ∆Σ(Ω)(q) for nodal and antinodal momenta
calculated in DF for U = 5.6t, t′ = −0.3t, T = 0.2t and n = 0.94
(top row), 1 (middle row) and 1.1 (bottom row, taken from [69]).

framework. The latter can (under these circumstances)
be simplified to a much easier (and numerically much
more light-weighed) ladder/Bethe-Salpeter treatment.

In this section we want to highlight the potential
of the fluctuation diagnostics with the example
of a diagrammatic extension of DMFT, the triply
irreducible local expansion (TRILEX, [71, 72, 36]).
This theory is formulated in a mixed bosonic-fermionic
language, where the fermions constituting the system
are coupled via bosonic fields and the electron-boson
coupling vertex is approximated by a fully local
quantity. The formalism can be applied to the
Hubbard model by decoupling the electron-electron
interaction, e.g. via (up to a density term)

Un↑Un↓ =
1

2
Uchnn+

1

2
Usp~s~s, (14)

where U is the Hubbard interaction, n are the density
operators, ~s are the (Heisenberg) spin operators and
Uch/sp are the channel-dependent (constant) bare
couplings of bosons with fermions. These couplings
have to fulfill the following relation:

U = Uch − 3Usp, (15)

leading to

Uch = (3α− 1)U (16)

Usp = (α− 2/3)U,

which makes the choice of the couplings depending on
an ambiguous number α (Fierz ambiguity [36, 73]). In
the following we will see, how fluctuation diagnostic
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Figure 16. The Fierz parameter α within the Heisenberg
decoupling expressed as the ratio of the spin and charge coupling
x.

techniques can help to achieve a good choice of the
Fierz parameter α.

First, we define the ratio

x ≡ Usp/Uch. (17)

Fig. 16 shows the value of the Fierz parameters α
depending on this ratio x. For estimating the Fierz
parameter in the pseudogap regime of the Hubbard
model, we resort to the fluctuation diagnostics
presented in Fig. 11: If we take the ratio of the self-
energies in the spin representation [at Q = (π, π)]
and the charge representation [at Q = (0, 0)] for the
lowest Matsubara frequency at, e.g., the antinode as a
measure for their relative strengths, we arrive at:

Im Σ̃sp(k = (π, 0), iω0)

Im Σ̃ch(k = (π, 0), iω0)
≈ 4. (18)

Taking this value as a proxy for the actual coupling
ratios x, via Fig. 16 we arrive at an estimated α ≈ 1/3.
Interestingly, this represents a decoupling solely in the
spin channel. If the spin fluctuations would dominate
even more, due to the asymptotics of this curve, the
estimated parameter would still be α ≈ 1/3. We
can put these assumption to solid testing grounds by
applying the procedure to a case where we know the
dominant fluctuation channel, i.e. the Hubbard model
at half-filling and weak coupling U = 2t. There,
due to its antiferromagnetic ground state, large spin
fluctuations are present even at finite temperatures, so
that the ratio of spin and charge fluctuations x should
indeed fall into the asymptotic regime of Fig. 16.

In Fig. 17 we show TRILEX data for the
magnetic correlation length ξ calculated for two
different Fierz decouplings (red triangles: α = 1/2,
red circles: α = 1/3) compared to benchmark
data from DiagMC (taken from [45]). One can see
that the α = 1/3 data much better resemble the
benchmark in growing (exponentially) when lowering
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Figure 17. Magnetic correlation length ξ calculated within
the TRILEX approximation, calculated with two different Fierz
parameters: α = 1/3 (red circles) and α = 1/2 (red triangles).
It is compare to a diagrammatic Monte Carlo benchmark (black
triangles, data taken from [45]).

the temperature, whereas the α = 1/2 data saturate,
in an unphysical fashion, at low T .

This procedure well exemplifies how the fluctua-
tion diagnostics tools can serve as valuable source of
information for refining the application of specific al-
gorithms. This route of applications has been demon-
strated to lead to significant improvements of results in
the context of TRILEX. However, its potential appli-
cability in this context is much more general. For in-
stance, also in the framework of ladder approximations
for parquet schemes (e.g., parquet-DΓA vs. ladder-
DΓA) it can turn out immensely insightful to deter-
mine the leading fluctuation channel, before a specific
(channel-biased) method is applied.

4. Conclusions and outlook

The rapidly increasing ability of computing one- and
two-particle correlations functions of many-electron
systems on an equal footing has allowed for the
development of novel post-processing tools designed
to quantitatively identify the physical mechanisms
shaping the one-particle spectral properties, as well as
the response functions.

Though sharing similar goals and -to some extent-
philosophy, these novel approaches can be grouped
in two main classes, depending on whether they are
based (i) on a direct decomposition of the full vertex
functions within the parquet formalism (“parquet
decomposition” [9], heuristically associated to the
motto “divide et impera”, or rather (ii) on changes
of representation of the Schwinger-Dyson equation for
the self-energy (“fluctuation diagnostics” [8], under the
motto “mutatis mutandis”).

In both cases these post-processing schemes
[11] allow for quantifying the contribution of the
different fluctuations (spin/charge/pairing) active,
and sometimes competing, in determining the main

features of a given spectral (or, in some cases like [33],
response) function of many-electron systems. From a
more technical perspective, we have discussed how the
applicability of the first diagnostic tool gets typically
restricted to the perturbative regime, because of the
almost ubiquitous occurrence of divergences of 2PI
vertices in many-electron problems [23, 28, 24, 9, 26,
19, 20, 27].

While the newly introduced SBE [40] might
allow to circumvent this issue in the near future
preserving, at the same time, the high versatility
of the parquet decomposition, the second diagnostic
approach is already designed to be applicable in
the whole parameter regime, independent on the
divergences of irreducible vertices.

In the past few years, both classes of post-
processing tools have been widely applied to “diag-
nose” self-energy and response functions computed
with the most advanced numerical techniques, rang-
ing from the parquet [74, 75, 76, 77, 78] and bosonic-
exchange parquet [79, 80] solvers, cluster [18] and di-
agrammatic [47] extensions of DMFT and diagram-
matic Monte Carlo [81, 82, 83]. From the physi-
cal point of view, most applications have focused on
the two-dimensional repulsive and attractive Hubbard
model at different doping levels, allowing, among other
results, a quantitative identification of the collective
modes controlling the strong-momentum differentia-
tion and the pseudogap spectral feature emerging in
the hole-doped, low-T regime of the two-dimensional
Hubbard model. The latter could be essentially as-
cribed [8, 84, 67, 63, 69] to AF-spin fluctuation (slightly
incommensurate for the nodal self-energy [67]), with a
marginal role played by all other collective mode.

The quantitatively precise image obtained about
such a hotly debated subject such as the origin of the
pseudogap in the Hubbard model outlines the high
potential of these new diagnostic tools for the post-
processing of many-electron calculations. We expect
that this will provide a strong motivation for further
extending these approaches in several directions, e.g.,
to make them applicable to multi-orbital [85, 86, 87]
or magnetically ordered [41] systems and/or also to
the case of non-local electronic interactions.
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soel, K. Held, and A. Toschi. LadderDΓA code.
github.com/ladderDGA, 2018. URL: https://github.

com/ladderDGA/ladderDGA.
[15] Walter Metzner and Dieter Vollhardt. Correlated Lat-

tice Fermions in d = ∞ Dimensions. Phys.
Rev. Lett., 62:324–327, Jan 1989. URL: http://

link.aps.org/doi/10.1103/PhysRevLett.62.324, doi:

10.1103/PhysRevLett.62.324.
[16] Antoine Georges and Gabriel Kotliar. Hubbard model

in infinite dimensions. Phys. Rev. B, 45:6479–6483,
Mar 1992. URL: http://link.aps.org/doi/10.1103/

PhysRevB.45.6479, doi:10.1103/PhysRevB.45.6479.
[17] Antoine Georges, Gabriel Kotliar, Werner Krauth, and

Marcelo J. Rozenberg. Dynamical mean-field theory
of strongly correlated fermion systems and the limit of
infinite dimensions. Rev. Mod. Phys., 68(1):13, Jan
1996. URL: http://dx.doi.org/10.1103/RevModPhys.

68.13, doi:10.1103/RevModPhys.68.13.
[18] T. Maier, M. Jarrell, T. Pruschke, and M. H.

Hettler. Quantum Cluster Theories. Rev.
Mod. Phys., 77:1027, Oct 2005. URL: http:

//link.aps.org/doi/10.1103/RevModPhys.77.1027,
doi:10.1103/RevModPhys.77.1027.

[19] P. Thunström, O. Gunnarsson, Sergio Ciuchi, and
G. Rohringer. Analytical investigation of singu-
larities in two-particle irreducible vertex functions
of the Hubbard atom. Phys. Rev. B, 98:235107,
Dec 2018. URL: https://link.aps.org/doi/10.

1103/PhysRevB.98.235107, doi:10.1103/PhysRevB.98.

235107.
[20] P. Chalupa, P. Gunacker, T. Schäfer, K. Held, and
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[50] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni,
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[51] T. Schäfer, A. Toschi, and K. Held. Dynamical vertex

approximation for the two-dimensional Hubbard model.
Journal of Magnetism and Magnetic Materials, 400:107–
111, 2016. doi:10.1016/j.jmmm.2015.07.103.

[52] N. D. Mermin and H. Wagner. Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional
Isotropic Heisenberg Models. Phys. Rev. Lett., 17:1307–
1307, Dec 1966. URL: http://link.aps.org/doi/10.

1103/PhysRevLett.17.1307, doi:10.1103/PhysRevLett.
17.1307.

[53] P. C. Hohenberg. Existence of Long-Range Order in
One and Two Dimensions. Phys. Rev., 158:383–386,
Jun 1967. URL: https://link.aps.org/doi/10.1103/

PhysRev.158.383, doi:10.1103/PhysRev.158.383.
[54] K. Borejsza and N. Dupuis. Antiferromagnetism and

single-particle properties in the two-dimensional half-
filled Hubbard model: Slater vs. Mott-Heisenberg.
Europhys. Lett., 63(5):722–728, 2003. URL: https:

//doi.org/10.1209/epl/i2003-00584-7, doi:10.1209/

epl/i2003-00584-7.
[55] Y. M. Vilk and A.-M. S. Tremblay. Non-Perturbative

Many-Body Approach to the Hubbard Model and Single-
Particle Pseudogap. J. Phys. I France, 7(11):1309–1368,
1997. URL: http://dx.doi.org/10.1051/jp1:1997135,
doi:10.1051/jp1:1997135.

[56] Friedrich Krien, Angelo Valli, and Massimo Capone. Single-
boson exchange decomposition of the vertex function.
Phys. Rev. B, 100:155149, Oct 2019. URL: https://

link.aps.org/doi/10.1103/PhysRevB.100.155149, doi:
10.1103/PhysRevB.100.155149.

[57] R. Nourafkan, M. Côté, and A.-M. S. Trem-
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