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We investigate many-body properties of equally populated three-component fermions with attrac-
tive three-body contact interaction in one dimension. A diagrammatic approach suggests the possi-
ble occurrence of Cooper triples at low temperature, which are three-body counterparts of Cooper
pairs with a two-body attraction. We develop a minimal framework that bridges the crossover from
tightly-bound trimers to Cooper triples with increasing chemical potential and show how the for-
mation of Cooper triples occurs in the grand-canonical phase diagram. Moreover, we argue that
this non-trivial crossover is similar to the hadron-quark crossover proposed in dense matter. A co-
existence of medium-induced triples and the underlying Fermi sea at positive chemical potential is
analogous to quarkyonic matter consisting of baryonic excitations and the underlying quark Fermi
sea. The comparison with the existing quantum Monte Carlo results implies that the emergence of
these kinds of three-body states can be a microscopic origin of the peak of the sound velocity along
the crossover.

Introduction— The Cooper problem, where two-
component fermions with a two-body attraction undergo
an instability toward superconductivity, brought about a
significant breakthrough in condensed matter and par-
ticle physics [1]. On the other hand, three-body and
higher-body interactions occurring among particles with
internal degrees of freedom play a significant role in cold
atomic and nuclear physics [2–6].

In ultracold atoms, the importance of the residual
three-body interaction in a one-dimensional (1D) sys-
tem [7, 8] and resulting trimer formation [9] have been
pointed out. Moreover, not only the realization of non-
negligible multi-body interactions [10–13], but also vari-
ous related phenomena have been proposed [14–19]. Re-
cently, the conditions for attractive and repulsive three-
body interactions [20] and the Bose-Fermi duality includ-
ing three-body forces have been discussed [21–23].

Other interesting aspects of the three-body interac-
tion are the emergences of a quantum scale anomaly
and an asymptotic freedom in non-relativistic 1D three-
component fermions [24]. In fact, such a system pos-
sesses scale invariance classically [25, 26], while this scale
invariance is broken by the presence of three-body quan-
tum bound states. This anomaly is associated with
the asymptotic freedom according to which the run-
ning coupling constant becomes progressively weaker in
a high-energy regime as in quantum chromodynamics
(QCD) [27]. The same anomaly also emerges in two-
dimensional (2D) fermions with two-body attraction [28–
35]. At low density, the molecular bosonic condensate has
been observed in the 2D system [36], while a gas of Fermi
degenerate trimers is expected to be realized in the 1D
system [13, 24, 37–39]. Even at high density, the 2D sys-
tem undergoes a Cooper-pair condensation. In the 1D
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FIG. 1: Schematic figures for the Cooper triple phase in mo-
mentum space. The system exhibits a coexistence of the un-
derlying Fermi sea and loosely bound trimers, that is, Cooper
triples, near the Fermi surface with the small width of the
energy shell typically given by the in-medium trimer bind-
ing energy EM

B . Although we work in one dimension, we
show higher dimensional configurations for visibility. Note
that the Cooper triple phase has been predicted in three di-
mensions [41, 42].

system, however, the three-body counterparts of Cooper
pairs remain to be explored. A candidate is a Cooper
triple (see Fig. 1) predicted in 3D three-component Fermi
gases with two-body attraction [41, 42]. It is impor-
tant to see the stability of such an exotic state, given
that the medium effect on Efimov trimer states is non-
negligible [41–47].
In dense QCD, moreover, Cooper triples might be rel-

evant to the hadron-quark continuity [48, 49] because
quarks are three-component fermions in color space. So
far, various scenarios have been discussed in connection
with recent astrophysical observations. One of the in-
triguing state is quarkyonic matter [50], which has been
proposed to describe the intermediate-density regime as a
state in which quark and baryonic degrees of freedom co-
exist in the course of the hadron-quark crossover [48, 49]
where typical energy-scale separations occur among the
Debye screening mass mD, QCD energy scale ΛQCD,
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and quark chemical potential µq as mD ≪ ΛQCD ≪
µq [50, 51]. Another interesting picture called percola-
tion has also been proposed, where quark deconfinement
starts with formation of a percolation network [5, 6].
While such states have been investigated phenomenologi-
cally and the resulting equation of state is consistent with
recent astrophysical observations of neutron stars [6, 52–
54], a microscopic mechanism of these many-body phe-
nomena is not obvious even at a qualitative level. Thus,
it will be interesting if there is a connection between bary-
onic excitations in dense QCD and possible color Cooper
triples.

In this work, as a quantum simulator of the hadron-
quark crossover, we address many-body properties of 1D
three-component fermions with a three-body attraction,
where a quantum Monte Carlo (QMC) simulation has
been performed recently [13]. As we shall see, the Cooper
triple phase occurs at sufficiently large fermion chemical
potential, i.e., µ >∼ EB with the in-vacuum trimer binding
energy EB, to ensure the coexistence of the Fermi sea and
loosely-bound triple states, which is distinct from a sim-
ple large-trimer gas conjectured in Ref. [24]. Although
mesons have lighter masses (≃ 140 MeV) than baryonic
ones (≃ 940 MeV), dense quark (or quarkyonic) matter
is dominated by quark and baryonic degrees of freedom
due to the Pauli blocking being effective at sufficiently
large µq, leading to a similarity to the present model
with the three-body attraction. Moreover, the existence
of three-quark attraction has been revealed by the lattice
QCD [55, 56] and associated Y-shaped color-flux distri-
butions have also been found [57, 58].

Short summary— Analyzing three-body spectra, we con-
struct the grand-canonical phase diagram as shown in
Fig. 2. We demonstrate that while the characteristic tem-
perature T ∗ for the in-medium three-body state is sup-
pressed by thermal agitation [45] around µ = 0, it linearly
increases with the chemical potential in the high-density
regime, indicating the importance of the Fermi surface ef-
fect. Such different tendencies between the two regimes
lead to the nontrivial crossover from the tightly bound
trimer state to Cooper triple phase, which is a three-body
counterpart of the BCS to Bose-Einstein condensation
(BEC) crossover in two-component Fermi gases [59–62].
The Cooper triple phase is characterized by three-body
correlations near the atomic Fermi surface, which is anal-
ogous to baryonic excitations in quarkyonic matter. Al-
though the present system does not involve gauge fields,
the crossover from bound trimers to Cooper triples is
reminiscent of the hadron-quark crossover in QCD.

Formalism— We start from a Hamiltonian H for non-
relativistic three-component fermions with a three-body
force in 1D:

H =
∑

γ=r,g,b

∑

p

ξp,γc
†
p,γcp,γ

FIG. 2: Grand-canonical phase diagram of one-dimensional
three-component fermions with a three-body attraction. T ∗ is
the temperature where the in-medium trimer binding energy
EM

B disappears. µ = −EB/3 at T = 0 is a trivial quantum
critical point (QCP) for the transition from a zero-density
(vacuum) to nonzero-density state. The purple squares show
the points where the isothermal compressibility exhibits a
minimum as a function of µ in the QMC results [13].

+ g3
∑

P,k,q,k′,q′

c†P
3
+k− q

2
,r
c†P

3
+q,g

c†P
3
−k− q

2
,b

× cP
3
−k′− q′

2
,b
cP

3
+q′,gcP

3
+k′− q′

2
,r
, (1)

where γ = r, g, b denote the internal degrees of freedom
of fermions, ξp,γ = p2/(2mγ) − µγ is the kinetic energy
of a fermion with momentum p and mass mγ , measured

with respect to the chemical potential µγ , and c
(†)
p,γ is the

fermionic annihilation (creation) operator. The second
term in Eq. (1) denotes the three-body interaction with
a contact-type coupling constant g3, taken to be negative
here. We note that the manipulation of g3 has theoret-
ically been proposed in cold atomic [10–13, 63] and in
Rydberg atomic systems [64, 65]. In Supplemental Ma-
terial S1 [66], we present one of the possibilities of ex-
perimentally realizing this interaction in an atom-trimer
resonance model by analogy with the optical Feshbach
resonance [67] in connection with a closed-channel trimer
state [68–71] and optical control methods [72–76]. For
example, applying such a method to an existing mixture
(e.g., 173Yb) with negligibly small two-body interactions
away from the Feshbach resonance enables us to obtain
a system with the dominant three-body interaction.
Many-body effects are incorporated via the in-medium

three-body T -matrix TMB
3 (P, iΩn), where P is the center-

of-mass momentum and Ωn = (2n+ 1)πT is the fermion
Matsubara frequency with n ∈ Z. The explicit form of
TMB
3 (P, iΩn) reads

TMB
3 (P, iΩn) =

[

1

g3
− Ξ(P, iΩn)

]−1

, (2)
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where

Ξ(P, iΩn) =
∑

k,q

F (k, q, P )

iΩn − ξP
3
+k− q

2
,r − ξP

3
+q,g − ξP

3
−k− q

2
,b

.

(3)

The statistical factor F (k, q, P ) in Eq. (3) is given by

F (k, q, P ) = f̄P
3
+k− q

2
,rf̄P

3
+q,gf̄P

3
−k− q

2
,b

+ fP
3
+k− q

2
,rfP

3
+q,gfP

3
−k− q

2
,b, (4)

with the Fermi-Dirac distribution function fk,γ =
(eξk/T + 1)−1 and f̄k,γ = 1 − fk,γ . While preceding
works allow for the Pauli-blocking effect for the two-
body sector [41] only via the first term in Eq. (4) that
has the Fermi momentum kF introduced as a momen-
tum cutoff at T = 0, the second term, which represents
three-hole excitations, is also important at finite temper-
ature [45, 77]. By taking F (k, q, P ) = 1, one can re-
produce the in-vacuum three-body T -matrix T3(P,Ω+)
that appears in a three-body problem. We note that
the resummation of specific ladder diagrams for attrac-
tive interactions works well even in 1D at finite temper-
ature [78].
We are interested in the conditions that allow a trimer

to appear in a medium. While the three-body binding

energy EB = Λ2

m e
2
√

3π
mg3 corresponds to the negative en-

ergy pole Ω = −EB of the in-vacuum three-body T -
matrix T3(P = 0,Ω+) [79] (see also Supplemental Ma-
terial S2 [66]), where Ω+ = Ω + iδ involves an infinitesi-
mally small imaginary part iδ with δ > 0, the in-medium
binding energy EM

B can be obtained from

1

g3
− Ξ(P = 0,Ω = −EM

B − 3µ) = 0. (5)

Note that a Cooper triple can be defined as a state in
which the corresponding pole energy Ω + 3µ = −EM

B

is negative at positive µ and its absolute value is also
smaller than 3µ. This is why the regime EM

B ≪ µ is
consistent with the presence of Cooper triples.
Results and discussions— Let us focus hereafter on sym-
metric three-component fermions (m ≡ mr = mg = mb

and µ ≡ µr = µg = µb) in one dimension. We deter-
mine the temperature T ∗ where EM

B disappears; the re-
sult is shown in Fig. 2. Although T ∗ does not imply the
presence of any kind of phase transition, it is still worth
knowing. Indeed, T ∗ is qualitatively equivalent to the
mean-field critical temperature that can be regarded in
the context of the BCS-BEC crossover as the temperature
where preformed Cooper pairs appear incoherently due
to the strong two-body attraction [59–62]. In the numer-
ical calculation we take EM

B = 10−2EB and δ = 10−3EB

since Ω = 0 has a singularity due to the edge of contin-
uum. We confirmed that our estimate of T ∗ is practically
unchanged for smaller δ.
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FIG. 3: Three-body spectral functions A3(P,Ω) calculated at
(a) µ/EB = −1 and (b) µ/EB = 2. The temperature is set at
T/EB = 0.1 in each panel.

Let us turn to in-medium three-body properties at low
temperature. In Fig. 3, we display the three-body spec-
tral function A3(P,Ω) = −ImTMB

3 (P, iΩn → Ω+) calcu-
lated at T/EB = 0.1. Naturally, the medium effect is not
significant at low density [80, 81]. In fact, as depicted in
Fig. 3(a) for a typical dilute condition like µ/EB = −1,
A3(P,Ω) has a strong intensity around the dispersion of
a tightly bound trimer given by Ω = P 2/(6m)−EB−3µ,
as well as a continuum above Ω = P 2/(6m) − 3µ. The
higher the density, the stronger the medium effect. Con-
sequently, as shown in Fig. 3(b), the bound-state peak in
A3(P,Ω) is strongly suppressed at µ/EB = 2. This sup-
pressed peak, however, does not merge into the contin-
uum at sufficiently low temperature. Instead, the P = 0
bound-state pole Ω = −EM

B − 3µ remains just below
Ω = −3µ, which implies the existence of an in-medium
trimer near the Fermi surface (0 < EM

B ≪ µ), that is, a
Cooper triple.

We remark that while a molecular state competes with
a Cooper triple state in the case of three-component
Fermi gases with two-body interactions at finite temper-
ature [45], Cooper triples are not suppressed by such an
effect in our model without two-body interactions. Even
in the present case, however, Cooper pairs may occur,
e.g., due to the effective two-body coupling geff2 = g3ρr
between fermions with γ = g and b (ργ is the num-
ber density of γ component). This coupling, which
may involve a two-body bound state of binding energy
E2b = m(geff2 )2/4 in 1D, is irrelevant for a large Λ since
g3 and hence geff2 behave as ∼ 1/ ln(mEB/Λ

2). We re-
mark in passing that in the case of finite-range three-
body interactions, irrespective of whether attractive or
repulsive [82], geff2 can be finite and plays a significant
role for the interplay between two-body and three-body
correlations.

We also note that while a trimer-trimer pairing state
used to be invoked as one of the possible ground states in
Ref. [24], the trimer-trimer interaction, which was later
found to be repulsive [39], would keep Cooper triples un-
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FIG. 4: Temperature dependence of the three-body spectral
functions A3(P = 0, ω) at (a) µ/EB = 1, (b) µ/EB = 0, and
(c) µ/EB = −1. The panel (d) shows the in-medium trimer
binding energy EM

B as a function of µ at T/EB = 0.01 and
T/EB = 0.1.

paired. The repulsive trimer-trimer interaction may lead
to the trimer Luttinger liquid (TLL) in the low-density
regime at sufficiently low temperature [83]. Our results
imply the crossover from the gapless excitation in TLL to
the collective mode of Cooper triples with increasing µ.
Indeed, a similar crossover of the sound mode has been
reported in the 1D BCS-BEC crossover [84]. Finally, we
emphasize that our prediction of T ∗ properly allows for
thermal agitation, to which the TLL picture is in turn
susceptible. From the recent study on finite-temperature
Luttinger liquids [85], one may expect the crossover from
TLL to the normal trimer or Cooper triple phase with
increasing T below T ∗.

Figures 4(a)–(c) show the three-body spectral func-
tions A3(P = 0,Ω) = −ImTMB

3 (P = 0, iΩn → Ω+) at
different temperatures. Even in the case of positive chem-
ical potential µ/EB = 1 depicted in Fig. 4(a), a bound-
state peak occurs just below Ω + 3µ = 0 at T/EB = 0.1.
With increasing temperature, the bound state pole ap-
proaches zero energy and eventually merges with the
continuum at T = T ∗, which amounts to ∼ 0.5EB at
µ/EB = 1. At µ/EB = 0, as shown in Fig. 4(b), the
bound-state peak at T/EB = 0.1 is located at a lower
energy and also enhanced as compared to the case of
positive µ depicted in Fig. 4(a). At higher temperature,
however, the pole at µ/EB = 0 is vulnerable to thermal
agitation and hence T ∗ has a minimum around µ = 0.
At sufficiently low density, µ/EB becomes negative. For
example, in the case of µ/EB = −1 depicted in Fig. 4(c),
the bound-state pole reduces to −EB at sufficiently low
temperature, a behavior consistent with Fig. 3(a). This is

a clear evidence of the presence of tightly bound trimers.
When the temperature increases, the bound-state pole
approaches zero energy again and finally disappears even
in such a low-density regime. Since the system does not
form the Fermi surface at negative µ, such a reduction
of the trimer binding energy has to be associated with
thermal agitation [45].

In Fig. 4(d), we show how EM
B evolves from the

tightly bound trimer phase to the Cooper triple phase
at T/EB = 0.01 and 0.1. One can see a dramatic drop of
EM

B around µ = 0, indicating the change of the system’s
properties. Both at such low temperatures, EM

B con-
tinuously changes from EB to the Cooper triple energy
ECT/EB ≃ 0.04 with increasing µ. Here we note that at
exactly zero temperature there is a trivial quantum criti-
cal point at µ/EB = −1/3 for the transition from a zero-
density (vacuum) to nonzero-density state. Note that
this critical point is characterized by the effective fugacity
zeff = e(3µ+EB)/T of a bound trimer [86], as zeff becomes
exactly zero at T = 0 when 3µ < −EB. In the absence of
EB, this transition would occur at µ = 0. From compari-
son between the results of T/EB = 0.01 and T/EB = 0.1,
one can see that thermal agitation becomes significant
around µ/EB = −1/3 ∼ 0. All these low-temperature
properties reflect the fact that while the competition be-
tween the three-body binding and the thermal agitation,
which is characterized by the ratio T/EB, manifests it-
self in the low-density regime (µ <∼ 0), the formation of
Cooper triples in the high-density regime (µ ≫ EB) is ro-
bust against the thermal agitation due to the Fermi sur-
face effect. The Cooper triple phase in the high-density
regime can be identified by a typical energy separation
EM

B ≪ EB <∼ µ, which is analogous to that in quarkyonic
matter. In the low-density regime, see Supplemental Ma-
terial S3 [66].

We finally revisit the µ dependence of T ∗ shown in
Fig. 2. In the high-density regime, T ∗ linearly increases
with increasing µ. Indeed, this behavior is well fitted by
the linear function T ∗ = 0.384µ+0.095EB. Such a scale-
invariant behavior of T ∗ ∝ µ implies that three-body
correlations are still alive in the high-density regime. For
comparison, in Fig. 2, we plot the points where the QMC
result [13] for the isothermal compressibility κ normalized
by the ideal-gas value κ0 is minimal with respect to µ.
Interestingly, these points coincide well with the T ∗-µ re-
lation at low temperature. In QCD, the sound velocity,
which is proportional to κ−1/2 at T = 0, is predicted to
be peaked in the hadron-quark crossover regime [48, 49].
Thus, our results suggest that such macroscopic behav-
ior manifests the emergence of Cooper triples in both
systems (for details, see Supplemental Material S4 [66]).

Conclusion— We have clarified the conditions of temper-
ature and chemical potential that allow Cooper triples
and trimers to occur in the 1D equilibrated system of
three-component fermions with three-body attraction.
We have found a non-trivial crossover from the tightly
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bound trimer phase to the Cooper triple phase with in-
creasing chemical potential, which is analogous to the
hadron-quark crossover in QCD. The characteristic tem-
perature T ∗ of Cooper triples agrees well with the com-
pressibility minima of the QMC result in this 1D system,
implying that the hadron-quark crossover is accompa-
nied by the emergence of quark Cooper triples. Indeed,
this scenario is physically analogous to McLerran-Reddy
model for quarkyonic matter [53].

For future perspectives, the comparison of the com-
pressibility between our diagrammatic approach and the
existing QMC result would be helpful to confirm the rele-
vance of Cooper triples. Since the deconfined phase near
the T ∗ minimum is dominated by strong fluctuations [45],
the compressibility anomaly could not be understood by
usual quasiparticle pictures. It is also interesting to
address quartet condensation [87, 88], dual bosonic sys-
tems [21, 22], higher dimensions [63], and lattice sys-
tems [89, 90]. Moreover, the three-body loss can be a
useful probe for the emergence of Cooper triples as in
the case of Efimov effects [42, 91].
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SUPPLEMENTARY MATERIAL

S1. ATOM-TRIMER RESONANCE MODEL FOR

A TUNABLE THREE-BODY INTERACTION

open channel

closed channel

Vat

R

U(R)

O

FIG. S1: Schematic illustration of an atom-trimer resonance
model. U(R) and R are the three-body potential and the
hyperradius, respectively, while Vat denotes the coupling be-
tween the open channel atoms and the closed channel trimer.

In this supplement, we illustrate how the three-body
interaction among three-state fermions can be realized.
Our basic idea, which requires coupling between an open
channel continuum state and an excited bound trimer
state, is summarized in Fig. S1. For such an atom-trimer
resonance model, we develop a coupled-channel formal-
ism. The corresponding Hamiltonian reads

Hat =
∑

p,γ

εp,γc
†
p,γcp,γ +

∑

P

(

εtP + ν
)

A†
PAP

+Vat

∑

P ,k,q

(

A†
P cP

3
−k− q

2
,bcP

3
+q,gcP

3
+k− q

2
,r + h.c.

)

,

(S1)

where εtP = P 2/(6m) and A
(†)
P are the kinetic energy and

the annihilation (creation) operator of the closed chan-
nel trimer with the energy level ν, respectively. Here, we
have considered the equal mass for all types of fermions
and defined εp,γ = |p|2/(2m). For simplicity, we ignore
other background interactions by assuming that the sys-
tem is far away from ordinary magnetic Feshbach reso-
nances.
The atom-trimer coupling Vat may occur through the

hyperfine interaction or the optical transition as in the
case of the optical Feshbach resonance. The closed-
channel trimer state would be found in few-body or quan-
tum chemical calculations [S1–S3], as well as in future
precise spectroscopic experiments [S4]. In this model,
the three-body T -matrix T3(P ,Ω+) is given by

T3(P ,Ω) =
V 2
at

Ω+ − εtP − ν − V 2
atΞ0(P ,Ω)

, (S2)

where Ξ0(P ,Ω+) is the bare three-body propagator.

Before considering the one-dimensional case of interest
here, we first consider the bare three-body propagator in
three dimensions, which can be obtained as

Ξ0(P ,Ω+) =
∑

k,q

1

Ω+ − εP
3
−k− q

2
,r − εP

3
+q,g − εP

3
+k− q

2

= − m

12
√
3π3

[

Λ2

(

mΩ− P 2

6
+

Λ2

2

)

+

(

mΩ− P 2

6

)

ln

(

Λ2 + P 2/6−mΩ+

P 2/6−mΩ+

)]

.

(S3)

At P = Ω+ = 0, therefore, we obtain the three-body
T -matrix in three dimensions as

T3,3D(0, 0) =

(

− ν

V 2
at

+
mΛ4

24
√
3π3

)−1

≡ −V 2
at

νR
, (S4)

where the renormalized trimer energy level νR is defined
as

νR = ν − mΛ4

24
√
3π3

V 2
at. (S5)

Equation (S4) indicates that a bound trimer state can
appear at νR ≃ 0, while the three-body coupling can be
changed by tuning νR as in the case of the magnetic Fesh-
bach resonance in which the renormalized closed channel
molecular energy is tuned [S5].

In one dimension, the present coupled channel model
can be reduced to the single-channel model when Vat and
ν become sufficiently large in such a way as to keep V 2

at/ν
finite. In fact, T3(P,Ω+) is given by

T3(P,Ω+) =

[

Ω+ − P 2/(6m)− ν

V 2
at

+
m

2
√
3π

× ln

(

Λ2 + P 2/6−mΩ+

P 2/6−mΩ+

)]−1

, (S6)

which reduces to Eq. (S8) when one sets g3 = −V 2
at/ν

and |ν| ≫ |Ω+ − P 2/(6m)|.
For more realistic situations, we have to consider a

light-induced loss in the presence of an optical transi-
tion between open and closed channels. Recently, how-
ever, the “dark-state” optical method has been proposed
to avoid such a loss [S6, S7]. Indeed, the optical con-
trol of a scattering length and an effective range in two-
body scattering is experimentally feasible for a 6Li Fermi
gas [S8–S10]. Application of this method to the present
atom-trimer resonance is left for future work.
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S2. PROPERTIES OF THREE-BODY BOUND

STATE IN VACUUM

In this supplement, we summarize the properties of the
three-body bound state in vacuum. One can obtain the
renormalization group flow of g3 as

∂g3
∂ lnλ

=
m√
3π

g23 , (S7)

indicating the asymptotic freedom, together with the
emergence of an additional momentum scale Λ after the
integration with respect to the momentum scale λ at
which one probes g3. Then, after analytically performing
the momentum integration in T3(P,Ω+) in vacuum and
finding the negative energy pole, we obtain

T3(P,Ω+) =

[

1

g3
+

m

2
√
3π

ln

(

Λ2 + P 2/6−mΩ+

P 2/6−mΩ+

)]−1

≃ 2
√
3π

m

[

ln

(

mEB

P 2/6−mΩ+

)]−1

,

(S8)

where

EB =
Λ2

m
e

2
√

3π
mg3 (S9)

is the three-body binding energy in vacuum, which is
consistent with that derived in Ref. [S11]. In the second
line of Eq. (S8), we assumed Λ ≫

√
mEB. We remark

that one can derive Eq. (S7) from the condition ∂EB

∂ ln Λ = 0,
i.e., EB in Eq. (S9) does not explicitly depend on Λ after
the renormalization of g3.

S3. SAHA-LANGMUIR EQUATION FOR A

FERMION-TRIMER MIXTURE

In this supplement, we derive the degree of dissocia-
tion α ≡ ρf/ρ and the dissociation temperature Tα in a
classical fermion-trimer mixture of total fermion number
density ρ and free fermion number density ρf from the
Saha-Langmuir equation,

ρ3f
ρ− ρf

= 33/2
mT

2π
e−EB/T , (S10)

which can in turn be obtained from

ρf = 3

∫

dp

2π
exp

[

−p2/(2m)− µ

T

]

= 3z

√

mT

2π
(S11)

and

ρ− ρf = 3

∫

dP

2π
exp

[

−P 2/(6m)− EB − 3µ

T

]

= 3z3eEB/T

√

3mT

2π
, (S12)
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FIG. S2: The dissociation temperatures Tα as functions of (a)

the chemical potential µ/EB and (b) the fugacity z = eµ/T in
the low-density regime. The number alongside each dashed
line denotes the degree of dissociation α.

where z = eµ/T is the fugacity. In terms of the fugacity,
which is supposed to be sufficiently small, we can write
the degree of dissociation as

α =
1

1 +
√
3z2eEB/T

. (S13)

By solving Eq. (S13) with respect to T and setting the
resultant T as Tα, one finally obtains

Tα =
2µ+ EB

ln
(

1−α√
3α

) . (S14)

To clarify the role played by the dissociation tempera-
ture Tα, Eq. (6), in explaining the low-density behavior
of T ∗, we have drawn Figs. S2(a) and (b) in which Tα is
plotted as a function of the chemical potential µ and the
fugacity z, respectively, in the low-density regime. One
can see from Fig. S2(a) that Tα=0.9 is close to T ∗ in the
sufficiently low-density regime (µ/EB <∼ −10). This sug-
gests that thermal dissociation in terms of α gives a valid
picture of the trimer phase at finite temperature up to
∼ T ∗.
Then, let us proceed to consider the behavior of Tα in

the T -µ plane as shown in Fig. 1. According to this be-
havior, α decreases with increasing temperature at given
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µ. To understand such a seemingly counterintuitive re-
sult, it is useful to see the fugacity dependence of Tα

shown in Fig. S2(b). One can find from this figure that at
given z, α monotonically increases with increasing tem-
perature. This tendency can be easily understood from
Eq. (S13). We thus conclude that the decrease in α
with increasing temperature at given µ is due to the si-
multaneous enhancement of z and that the comparison
between T ∗ and Tα as shown in Fig. 1 is still meaningful.
Strictly speaking, the Saha-Langmuir equation be-

comes no longer valid in the region where the thermal
medium leads the trimer binding to vanish (T >∼ T ∗)
since the robust trimer binding is taken for granted in
this equation. The estimate of α from the Saha-Langmuir
equation is nevertheless useful to roughly know how dis-
sociated fermions and trimers are distributed in the deep
inside of the tightly bound trimer phase (T <∼ T ∗). Ac-
cording to such an estimate at largely negative chemi-
cal potential, the region near the vacuum where the fu-
gacity is vanishingly small is dominated by dissociated
fermions, while the fraction of the tightly bound trimers,
1− α, increases up to about 0.1 around T ∗, as shown in
Fig. S2(a). Note, however, that the medium effect has to
suppress such a trimer fraction above T ∗.

S4. GROUND-STATE PROPERTIES BASED ON

A MCLERRAN-REDDY-LIKE MODEL FOR THE

COOPER TRIPLE STATE

In order to see the role of Cooper triples on the behav-
ior of the isothermal compressiblity, we consider a simple
1D effective model of the fermion-triple mixture where
the total density is given by

ρ = 3ρf,0 + 3ρC. (S15)

In Eq. (S15), we have defined the number density of an
ideal Fermi gas as

ρf,0 =
(2mµ)

1

2

π
(S16)

and the number density of degenerate composite fermions
(i.e., Cooper triples) as

ρC =
(2m)

1

2

π
(3µ+ EM

B )
1

2 , (S17)

In a non-relativistic system at T = 0, the sound velocity
cs can be obtained from

c2s =
1

mρκ
, (S18)

where

κ =
1

ρ2

(

∂ρ

∂µ

)

(S19)

is the compressibility. Obviously, the sound-velocity
maximum is deeply related to the minimum of κ. One
can analytically obtain

κ =
3(2m)

1

2

2πρ2





1√
µ
+

1
√

3µ+ EM
B

(

3 +
∂EM

B

∂µ

)



 . (S20)

In particular, the dimensionless quantity κ/κ0 calculated
in Ref. [S13] (κ0 is the ideal-gas value) is given by

κ

κ0
= 1 +

√

µ

3µ+ EM
B

(

3 +
∂EM

B

∂µ

)

, (S21)

which indicates that the in-medium three-body binding
energy EM

B plays a crucial role in the behavior of κ/κ0

and thus cs. First of all, it is important to note that EM
B

is a decreasing function of µ at low temperature. Then,

the term
∂EM

B

∂µ (≤ 0) acts to decrease κ. Secondly, it is to

be noted that EM
B sharply decreases around the crossover

region, i.e., µ ≃ 0.05EB. This behavior leads to the min-
imum of κ in the crossover regime. Although this mini-
mum could be negative and hence indicate a breakdown
of the present simple model, one can qualitatively under-
stand from this analysis how crucial the Cooper triple
formation is for the sound-velocity peak in the crossover
regime, which is reminiscent of quarkyonic matter.
We remark that the isothemal compressibility has the

same tendency in 3D. In fact, it is given by

κ3D =
3(2m)

3

2

4π2ρ2

[√
µ+

√

3µ+ EM
B

(

3 +
∂EM

B

∂µ

)]

,

(S22)

where the term
∂EM

B

∂µ appears in the same way as

Eq. (S20). Thus, the emergence of the Cooper triples
is a possible origin of the sound velocity in the hadron-
quark crossover. Indeed, this simple model based on the
fermion-trimer mixture is similar to the McLerran-Reddy
model for quarkyonic matter in Ref. [S12].

[S1] M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault,
and J.-M. Launay, J. Chem. Phys. 127, 074302 (2007).

[S2] E. N. Ghassemi, J. Larson, and Å. Larson, J. Chem.
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