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Abstract. In this paper we develop a potential theory for strongly degenerate parabolic

operators of the form

L := ∇X · (A(X,Y, t)∇X) +X · ∇Y − ∂t,
in unbounded domains of the form

Ω = {(X,Y, t) = (x, xm, y, ym, t) ∈ Rm−1 × R× Rm−1 × R× R | xm > ψ(x, y, ym, t)},
where ψ is assumed to satisfy a uniform Lipschitz condition adapted to the dilation structure
and the (non-Euclidean) Lie group underlying the operator L. Concerning A = A(X,Y, t) we
assume that A is bounded, measurable, symmetric and uniformly elliptic (as a matrix in Rm).
Beyond the solvability of the Dirichlet problem and other fundamental properties our results
include scale and translation invariant boundary comparison principles, boundary Harnack
inequalities and doubling properties of associated parabolic measures. All of our estimates
are translation- and scale-invariant with constants only depending on the constants defining
the boundedness and ellipticity of A and the Lipschitz constant of ψ. Our results represent
a version, for operators of Kolmogorov type with bounded, measurable coefficients, of the by
now classical results of Fabes and Safonov, any several others, concerning boundary estimates
for uniformly parabolic equations in (time-dependent) Lipschitz type domains.
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1. Introduction

The operator

K := ∇X · ∇X +X · ∇Y − ∂t
in RN+1, N = 2m, m ≥ 1, equipped with coordinates (X,Y, t) := (x1, ..., xm, y1, ..., ym, t) ∈
Rm ×Rm ×R, was introduced and studied by Kolmogorov in a famous note published in 1934
in Annals of Mathematics, see [21]. Kolmogorov noted that K is an example of a degenerate
parabolic operator having strong regularity properties and he proved that K has a fundamental
solution which is smooth off its diagonal. As a consequence,

Ku = f ∈ C∞ ⇒ u ∈ C∞,(1.1)

for every distributional solution of Ku = f . Today the property in (1.1) is stated

K is hypoelliptic.(1.2)

K.N was partially supported by grant 2017-03805 from the Swedish research council (VR).
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As can be read in the introduction of Hörmander’s monumental paper on the hypoellipticity of
operators published in Acta Mathematica in 1967, see [20], the operator studied by Kolmogorov
served as an important model case for Hörmander when he developed his theory. Today the
Kolmogorov operator, and more general operators of Kolmogorov-Fokker-Planck type with
variable coefficients, play central roles in many applications in analysis, physics and finance.

Kolmogorov was originally motivated by statistical physics and he studied K in the context
of stochastic processes. Indeed, the fundamental solution associated to K describes the density
of the stochastic process (Xt, Yt) which solves the Langevin system

(1.3)

{
dXt =

√
2 dWt,

dYt = Xt dt,

where Wt is a m-dimensional Wiener process. The system in (1.3) describes the density of
a system with 2m degrees of freedom. Given Z := (X,Y ) ∈ R2m, X = (x1, ..., xm) and
Y = (y1, ..., ym) are, respectively, the velocity and the position of the system.

Kinetic theory is concerned with the evolution of a particle distribution

f(X,Y, t) : D × D̃ × R+ → R, D, D̃ ⊂ Rm,

subject to geometric restrictions and models for the interactions and collisions between particles.
Generally, assuming no external forces, the evolution of the particle density is described by the
Boltzmann equation

∂tf +X · ∇Y f = Q(f, f).(1.4)

The left-hand side in (1.4) describes the evolution of f under the action of transport, with the
free streaming operator. The right-hand side describes elastic collisions through the nonlinear
Boltzmann collision operator. The Boltzmann equation is an integro- (partial)-differential
equation with non-local operator in the kinetic variable X. The Boltzmann equation is a
fundamental equation in kinetic theory in the sense that it has been derived rigorously, at least
in some settings, from microscopic first principles.

In the case of so called Coulomb interactions the Boltzmann collision operator is ill-defined
and Landau proposed an alternative operator for these interactions: this operator is now called
the Landau or the Landau-Coulomb operator. The operator can be stated as

∂tf +X · ∇Y f = ∇X · (A(f)∇Xf +B(f)f),(1.5)

where

A(f)(X,Y, t) := am,γ

∫
Rm

(
I − X ′

|X ′| ⊗
X ′

|X ′|

)
|X ′|γ+2f(X −X ′, Y, t) dX ′,

B(f)(X,Y, t) := bm,γ

∫
Rm

|X ′|γX ′f(X −X ′, Y, t) dX ′,

(1.6)

and γ ∈ [−m, 0], am,γ > 0, and obviously the collision term in (1.5) has a divergence structure.
The operator in (1.5) is a nonlinear drift-diffusion operator with coefficients given by convo-
lution like averages of the unknown. As mentioned above the Landau equation is considered
fundamental because of its close link to the Boltzmann equation for Coulomb interactions.
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In the case of long-range interactions, the Boltzmann and Landau-Coulomb operators show
local ellipticity provided the solution enjoys some pointwise bounds on the associated hydro-
dynamic fields and the local entropy. Indeed, assuming, for all (Y, t) ∈ D̃ × I, that

M1 ≤
∫
Rm

f(X,Y, t) dX ≤M0 (Local mass),

1

2

∫
Rm

f(X,Y, t)|X|2 dX ≤ E0 (Local energy),∫
Rm

f(X,Y, t) ln f(X,Y, t) dX ≤ H0 (Local entropy),

one can prove that

0 < λI ≤ A(f)(X,Y, t) ≤ ΛI, |B(f)(X,Y, t)| ≤ Λ,

for (X,Y, t) ∈ D × D̃ × I, i.e., under these assumptions the Landau equation becomes locally
uniformly elliptic. As a consequence, and as global well posedness for the Boltzmann equation
and the construction of solutions in the large is an outstanding open problem, the study of
conditional regularity for the Boltzmann and Landau equations has become a way to make
progress on the regularity issues for these equations. We refer to [34, 6, 11, 12, 13, 23, 35] for
more on the connections between Kolmogorov-Fokker-Planck equations, the Boltzmann and
Landau equation, statistical physics and conditional regularity. Furthermore, we have learned
a lot from the interesting survey of C. Mouhot [27].

As outlined above, kinetic theory and the idea of conditional regularity is one way to motivate
the study of the local regularity of weak solutions to the equation

∇X · (A∇Xu) +B∇Xu+X · ∇Y u− ∂tu = 0(1.7)

assuming A is measurable, bounded and uniformly elliptic and the starting point for our analysis
is the recent results concerning the local regularity of weak solutions to the equation in (1.7)
established in [18]. In [18] the authors extended the De Giorgi-Nash-Moser (DGNM) theory,
which in its original form only considers elliptic or parabolic equations in divergence form, to
hypoelliptic equations with rough coefficients including the ones in (1.7). Their result is the
correct scale- and translation-invariant estimates for local Hölder continuity and the Harnack
inequality for weak solutions.

The results in [18] represent an important achievement which paves the way for developments
concerning operators as in (1.9) in several fields of analysis and in the theory of PDEs. In this
paper we contribute to the understanding of the fine properties of the Dirichlet problems for a
subclass of operators of the form stated in (1.7), we will for simplicity here only consider the
case B ≡ 0, in appropriate domains Ω ⊂ RN+1, and we note that in general there is a rich
interplay between the operators considered, applications and geometry. Indeed, as discussed,
the Kolmogorov operator, and the more general operators of Kolmogorov-Fokker-Planck type
with variable coefficients considered in this paper, play central roles in many applications in
analysis, physics and finance and depending on the application different model cases for the
local geometry of Ω may be relevant:

(i) {(X,Y, t) = (x, xm, y, ym, t) ∈ RN+1 | xm > ψ1(x, Y, t)},
(ii) {(X,Y, t) = (x, xm, y, ym, t) ∈ RN+1 | ym > ψ2(X, y, t)},(1.8)

(iii) {(X,Y, t) = (x, xm, y, ym, t) ∈ RN+1 | t > ψ3(X,Y )}.



4 MALTE LITSGÅRD AND KAJ NYSTRÖM

In particular, in finance and in the context of option pricing and associated free boundary
problems, case (i) can be relevant. In kinetic theory it is relevant to restrict the particles to a
container making case (ii) relevant. Case (iii) captures, as a special case, the initial value or
Cauchy problem.

To be precise, in this paper we consider solutions to the equation Lu = 0 in Ω where L is
the operator

L := ∇X · (A(X,Y, t)∇X) +X · ∇Y − ∂t,(1.9)

in RN+1, N = 2m, m ≥ 1, (X,Y, t) := (x1, ..., xm, y1, ..., ym, t) ∈ Rm × Rm × R. We assume
that

A = A(X,Y, t) = {ai,j(X,Y, t)}mi,j=1

is a real-valued, m×m-dimensional, symmetric matrix valued function satisfying

κ−1|ξ|2 ≤
m∑

i,j=1

ai,j(X,Y, t)ξiξj , |A(X,Y, t)ξ · ζ| ≤ κ|ξ||ζ|,(1.10)

for some κ ∈ [1,∞), and for all ξ, ζ ∈ Rm, (X,Y, t) ∈ RN+1. We will refer to κ as the constant
of A. Throughout the paper we will also assume that

A = A(X,Y, t) ≡ Im outside some arbitrary but fixed compact subset of RN+1,(1.11)

where Im denotes the m×m identity matrix, and that

ai,j ∈ C∞(RN+1)(1.12)

for all i, j ∈ {1, ...,m}. The assumptions in (1.11) and (1.12) will only be used in a qualitative
fashion. The constants of our quantitative estimates will depend on m and κ. The assumption
(1.11) is only imposed to simplify matters as we will work in unbounded domains. In particular,
as our results are local by nature this assumption is a modest constraint. The assumption (1.12)
simplifies matters concerning the continuous Dirichlet problem. We note that the results in
[18] were derived for operators including the ones in (1.9) assuming (1.10) and also assuming,
implicitly, (1.12). Naturally, this is not an issue in situations when uniqueness of weak solutions
can be ensured. Concerning Ω we restrict ourselves to case (1.8) (i) and unbounded domains
Ω ⊂ RN+1 of the form

Ω = {(X,Y, t) = (x, xm, y, ym, t) ∈ RN+1 | xm > ψ(x, y, ym, t)},(1.13)

imposing restrictions on ψ of Lipschitz character. To generalize the program of this paper to
the geometrical contexts (1.8) (ii), (iii), are interesting and relevant projects.

Our main result is a potential theory for operators L as in (1.9), assuming only (1.10), (1.11)
and (1.12), in unbounded Lipschitz type domains as in (1.13). Beyond the solvability of the
Dirichlet problem and other fundamental properties our results include scale and translation
invariant boundary comparison principles, boundary Harnack inequalities and doubling prop-
erties of associated parabolic measures. All of our estimates are translation- and scale-invariant
with constants depending only m, κ, and the Lipschitz constant of ψ. These results are, up to
a point, established allowing A and ψ to depend on all variables with ym included. However,
the more refined results established are derived assuming in addition that A as well as ψ are
independent of the variable ym. The reason for this is discussed in detail in the paper but
this is a way to handle the rigidity in the underlying Harnack inequality, a rigidity that stems
from the subelliptic nature of the operators considered. In the prototype case A ≡ Im, i.e.,
in the case of the operator K, the corresponding results were established in [30] but we also



POTENTIAL THEORY FOR OPERATORS OF KOLMOGOROV TYPE 5

refer to [7], [8] and [9], where a number of important preliminary estimates concerning the
boundary behavior of non-negative solutions to equations of Kolmogorov-Fokker-Planck type
in non-divergence form in Lipschitz type domains were developed. Together, these papers seem
to represent the only previous result of their kind for operators of Kolmogorov type.

To put the importance of our results into perspective it is relevant to outline the progress on
the corresponding problems in the case of uniformly parabolic equations in Rm+1, i.e., in the
case when all dependence on the variable Y is removed in (1.9), leaving us with the operator

∇X · (A(X, t)∇X)− ∂t.(1.14)

In this case and in the case of (time-dependent) Lipschitz type domains, scale and translation
invariant boundary comparison principles, boundary Harnack inequalities and doubling proper-
ties of associated parabolic measures were settled in a number of fundamental papers including
[16], [17], [33], [15] and [28]. Subsequently, this type of results have found their applications in
several important fields of analysis including the analysis of free boundary problems, see [4],
[5] and [1] for instance.

2. Preliminaries

2.1. Group law and metric. Throughout the paper we will use the notation (Z, t) = (X,Y, t) =
(x, xm, y, ym, t) and (z, t) = (x, y, t). The natural family of dilations for L, (δr)r>0, on RN+1,
is defined by

(2.1) δr(X,Y, t) = (rX, r3Y, r2t),

for (X,Y, t) ∈ RN+1, r > 0. Our class of operators is closed under the group law

(2.2) (Z̃, t̃) ◦ (Z, t) = (X̃, Ỹ , t̃) ◦ (X,Y, t) = (X̃ +X, Ỹ + Y − tX̃, t̃+ t),

where (Z, t), (Z̃, t̃) ∈ RN+1. Note that

(2.3) (Z, t)−1 = (X,Y, t)−1 = (−X,−Y − tX,−t),
and hence

(2.4) (Z̃, t̃)−1 ◦ (Z, t) = (X̃, Ỹ , t̃)−1 ◦ (X,Y, t) = (X − X̃, Y − Ỹ + (t− t̃)X̃, t− t̃),
whenever (Z, t), (Z̃, t̃) ∈ RN+1. Given (Z, t) = (X,Y, t) ∈ RN+1 we let

(2.5) ‖(Z, t)‖ = ‖(X,Y, t)‖ := |(X,Y )|+ |t| 12 , |(X,Y )| =
∣∣X∣∣+

∣∣Y ∣∣1/3.
We recall that there exists a positive constant c = c(m) such that

‖(Z, t)−1‖ ≤ c‖(Z, t)‖, ‖(Z, t) ◦ (Z̃, t̃)‖ ≤ c(‖(Z, t)‖+ ‖(Z̃, t̃)‖),(2.6)

whenever (Z, t), (Z̃, t̃) ∈ RN+1. Using (2.6) it follows immediately that

(2.7) ‖(Z̃, t̃)−1 ◦ (Z, t)‖ ≤ c ‖(Z, t)−1 ◦ (Z̃, t̃)‖,
whenever (Z, t), (Z̃, t̃) ∈ RN+1. We define

(2.8) d((Z, t), (Z̃, t̃)) :=
1

2

(
‖(Z̃, t̃)−1 ◦ (Z, t)‖+ ‖(Z, t)−1 ◦ (Z̃, t̃)‖

)
.

Using (2.7) it follows that

c−1‖(Z̃, t̃)−1 ◦ (Z, t)‖ ≤ d((Z, t), (Z̃, t̃)) ≤ c‖(Z̃, t̃)−1 ◦ (Z, t)‖,
c−1‖(Z, t)−1 ◦ (Z̃, t̃)‖ ≤ d((Z, t), (Z̃, t̃)) ≤ c‖(Z, t)−1 ◦ (Z̃, t̃)‖

(2.9)
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with constants of comparison independent of (Z, t), (Z̃, t̃) ∈ RN+1. Again using (2.6) we also
see that

(2.10) d((Z, t), (Z̃, t̃)) ≤ c
(
d((Z, t), (Ẑ, t̂)) + d((Ẑ, t̂), (Z̃, t̃))

)
,

whenever (Z, t), (Ẑ, t̂), (Z̃, t̃) ∈ RN+1, and hence d is a symmetric quasi-distance. Based on d
we introduce the balls

(2.11) Br(Z, t) := {(Z̃, t̃) ∈ RN+1 | d((Z̃, t̃), (Z, t)) < r},
for (Z, t) ∈ RN+1 and r > 0. The measure of the ball Br(Z, t), |Br(Z, t)|, satisfies

c−1rq ≤ |Br(Z, t)| ≤ crq, q := 4m+ 2,

independent of (Z, t).

2.2. Geometry. A function ψ(x, y, ym, t) : Rm−1 × Rm−1 × R× R→ R satisfying

(2.12) |ψ(z, ym, t)− ψ(z̃, ỹm, t̃)| ≤M(‖(z̃, t̃)−1 ◦ (z, t)‖+ |ym − ỹm + (t− t̃)ψ(z̃, ỹm, t̃)|1/3),

for some constant M ∈ (0,∞), will be referred to as a Lipschitz function. Given a Lipschitz
function ψ we say that

(2.13) Ω := {(Z, t) = (x, xm, y, ym, t) ∈ RN+1 | xm > ψ(x, y, ym, t)}
is an unbounded Lipschitz domain with constant M , or simply a Lipschitz domain with constant
M .

Several of our scale- and translation-invariant estimates will be formulated using certain
reference points which we now introduce. Given ρ > 0 and Λ > 0 we let

A+
ρ,Λ :=

(
0,Λρ, 0,−2

3Λρ3, ρ2
)
∈ Rm−1 × R× Rm−1 × R× R,

Aρ,Λ := (0,Λρ, 0, 0, 0) ∈ Rm−1 × R× Rm−1 × R× R,
A−ρ,Λ :=

(
0,Λρ, 0, 2

3Λρ3,−ρ2
)
∈ Rm−1 × R× Rm−1 × R× R.

(2.14)

Given (Z0, t0) ∈ RN+1 we let

A±ρ,Λ(Z0, t0) := (Z0, t0) ◦A±ρ,Λ, Aρ,Λ(Z0, t0) := (Z0, t0) ◦Aρ,Λ.

2.3. Weak solutions. Consider UX×UY×J ⊂ RN+1 with UX ⊂ Rm, UY ⊂ Rm being bounded
domains, i.e, open, connected and bounded sets, and J = (a, b) with −∞ < a < b <∞. Then
u is said to be a weak solution to the equation

Lu = ∇X · (A(X,Y, t)∇Xu) +X · ∇Y u− ∂tu = 0,(2.15)

in UX × UY × J ⊂ RN+1 if

u ∈ L2
Y,t(UY × J,H1

X(UX)),(2.16)

and

−X · ∇Y u+ ∂tu ∈ L2
Y,t(UY × J,H−1

X (UX)),(2.17)

and if Lu = 0 in the sense of distributions, i.e.,∫∫∫ (
A(X,Y, t)∇Xu · ∇Xφ+ (X · ∇Y φ)u− u∂tφ

)
dX dY dt = 0,(2.18)
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whenever φ ∈ C∞0 (UX × UY × J). Similarly we say that u is a weak supersolution, Lu ≤ 0 for
short, if for all φ ∈ C∞0 (UX × UY × J) such that φ ≥ 0, we have∫∫∫ (

−A(X,Y, t)∇Xu · ∇Xφ− (X · ∇Y φ)u+ u∂tφ
)

dX dY dt ≤ 0.(2.19)

Further, u is a weak subsolution if −u is a weak supersolution.

We say that u is a weak solution to the equation Lu = 0 in Ω if u is a weak solution to
Lu = 0 in UX × UY × J ⊂ RN+1, where UX ⊂ Rm, UY ⊂ Rm are bounded domains, and
J = (a, b) with −∞ < a < b <∞, whenever UX × UY × J is compactly contained in Ω. Weak
super- and subsolutions are defined analogously.

3. Statement of main results

We first prove the following three theorems giving the solvability of the continuous Dirichlet
problem, a Hölder continuity estimate up to the boundary and an estimate usually referred to
as the Carleson estimate. Our standing assumptions concerning A is that A satisfies (1.10)
with constant κ and that (1.11) and (1.12) hold.

Theorem 3.1. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Given ϕ ∈ C0(∂Ω),
there exists a unique weak solution u = uϕ, u ∈ C(Ω̄), to the Dirichlet problem

(3.1)

{
Lu = 0 in Ω,

u = ϕ on ∂Ω.

Furthermore, there exists, for every (Z, t) = (X,Y, t) ∈ Ω, a unique probability measure ω(Z, t, ·)
on ∂Ω such that

u(Z, t) =

∫∫
∂Ω
ϕ(Z̃, t̃) dω(Z, t, Z̃, t̃).(3.2)

The measure ω(Z, t, E) is referred to as the parabolic measure associated to L in Ω and at
(Z, t) ∈ Ω and of E ⊂ ∂Ω.

Theorem 3.2. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Let (Z0, t0) ∈ ∂Ω
and r > 0. Let u be a weak solution of Lu = 0 in Ω ∩ B2r(Z0, t0), vanishing continuously
on ∂Ω ∩ B2r(Z0, t0). Then, there exists a constant c = c(m,κ,M), 1 ≤ c < ∞, and α =
α(m,κ,M) ∈ (0, 1), such that

(3.3) |u(Z, t)| ≤ c
(
d((Z, t), (Z0, t0))

r

)α
sup

Ω∩B2r(Z0,t0)
|u|

whenever (Z, t) ∈ Ω ∩ Br/c(Z0, t0).

Theorem 3.3. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . There exist positive
Λ = Λ(m,M) and c = c(m,κ,M), 1 ≤ c <∞, such that the following holds. Let (Z0, t0) ∈ ∂Ω
and r > 0. Assume that u is a non-negative weak solution to Lu = 0 in Ω ∩ B2r(Z0, t0),
vanishing continuously on ∂Ω ∩ B2r(Z0, t0). Then

u(Z, t) ≤ cu(A+
ρ,Λ(Z0, t0))

whenever (Z, t) ∈ Ω ∩ B2ρ/c(Z0, t0), 0 < ρ < r/c.
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We emphasize that Theorem 3.1-Theorem 3.3 are proven assuming only that Ω ⊂ RN+1 is
a Lipschitz domain with constant M , that A satisfies (1.10) with constant κ, and that (1.11)
and (1.12) hold. The latter assumptions are only used qualitatively. However, our next set of
results are proven under the following additional structural assumptions:

(i) A(X,Y, t) = A(x, xm, y, ym, t) = A(x, xm, y, t),

(ii) ψ(x, y, ym, t) = ψ(x, y, t),
(3.4)

whenever (x, xm, y, ym, t) ∈ RN+1. That is, in the following both A and ψ are assumed to
be independent of the variable ym. Using this additional assumption we prove the following
theorems.

Theorem 3.4. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). There exist positive Λ = Λ(m,M) and c = c(m,κ,M), 1 ≤ c < ∞, such that the
following holds. Let (Z0, t0) ∈ ∂Ω and r > 0. Assume that u is a non-negative solution to
Lu = 0 in Ω ∩ B2r(Z0, t0), vanishing continuously on ∂Ω ∩ B2r(Z0, t0). Let ρ0 = r/c,

m+ = u(A+
ρ0,Λ

(Z0, t0)), m− = u(A−ρ0,Λ
(Z0, t0)),(3.5)

and assume that m− > 0. Then there exist constants c1 = c1(m,κ,M), 1 ≤ c1 < ∞, c2 =
c2(m,κ,M,m+/m−), 1 ≤ c2 <∞, such that if we let ρ1 = ρ0/c1, then

u(Z, t) ≤ c2u(Aρ,Λ(Z̃0, t̃0)),

whenever (Z, t) ∈ Ω ∩ Bρ/c1(Z̃0, t̃0), for some (Z̃0, t̃0) ∈ ∂Ω ∩ Bρ1(Z0, t0), and 0 < ρ < ρ1.

Theorem 3.5. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). There exist positive Λ = Λ(m,M) and c = c(m,κ,M), 1 ≤ c < ∞, such that the
following holds. Let (Z0, t0) ∈ ∂Ω and r > 0. Assume that u and v are non-negative solutions
to Lu = 0 in Ω, vanishing continuously on ∂Ω ∩ B2r(Z0, t0). Let ρ0 = r/c,

m+
1 = v(A+

ρ0,Λ
(Z0, t0)), m−1 = v(A−ρ0,Λ

(Z0, t0)),

m+
2 =u(A+

ρ0,Λ
(Z0, t0)), m−2 = u(A−ρ0,Λ

(Z0, t0)),
(3.6)

and assume m−1 > 0, m−2 > 0. Then there exist constants c1 = c1(m,κ,M),

c2 = c2(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ),

1 ≤ c1, c2 < ∞, σ = σ(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ), σ ∈ (0, 1), such that if we let ρ1 = ρ0/c1,

then ∣∣∣∣v(Z, t)

u(Z, t)
− v(Z̃, t̃)

u(Z̃, t̃)

∣∣∣∣ ≤ c2

(
d((Z, t), (Z̃, t̃))

ρ

)σ v(Aρ,Λ(Z̃0, t̃0))

u(Aρ,Λ(Z̃0, t̃0))
,

whenever (Z, t), (Z̃, t̃) ∈ Ω∩Bρ/c1(Z̃0, t̃0), for some (Z̃0, t̃0) ∈ ∂Ω∩Bρ1(Z0, t0), and 0 < ρ < ρ1.

Theorem 3.6. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). Then there exist positive Λ = Λ(m,M), c = c(m,κ,M), 1 ≤ c < ∞, such that the
following is true. Let (Z0, t0) ∈ ∂Ω, 0 < ρ0 <∞. Then

ω
(
A+
cρ0,Λ

(Z0, t0), ∂Ω ∩ B2ρ(Z̃0, t̃0)
)
≤ cω

(
A+
cρ0,Λ

(Z0, t0), ∂Ω ∩ Bρ(Z̃0, t̃0)
)

for all balls Bρ(Z̃0, t̃0), (Z̃0, t̃0) ∈ ∂Ω, such that Bρ(Z̃0, t̃0) ⊂ B4ρ0(Z0, t0).
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As mentioned before, in the prototype case A ≡ Im, i.e., in the case of the operator K, Theo-
rems 3.4-3.6 are proved in [30], and our Theorems 3.4-3.6 represent far reaching generalizations
of the results in [30]. Here it is also fair to refer to [7], [8] and [9] for some relevant estimates in
the context of operators in non-divergence form. Compared to these previous results, the proofs
presented here consistently have to take into account that in this paper the coefficients {ai,j}
are, from a quantitative perspective, only assumed to be bounded, measurable, symmetric and
uniformly elliptic.

The results in [30] are established assuming that Ω ⊂ RN+1 is a Lipschitz domain with
constant M and that (3.4) (ii) holds (in [30] obviously (3.4) (i) is satisfied). In particular,
for reasons that are explained in detail in [30] the results, including the translation invariant
doubling property of parabolic measure, were derived using the assumption that the defining
function for Ω in (1.13), ψ, was assumed to be independent of the variable ym. This assumption
gave the authors a crucial additional degree of freedom at their disposal when building Harnack
chains to connect points: they could freely connect points in the xm variable, taking geometric
restrictions into account, accepting that the path in the ym variable will most likely not end
up in ‘the right spot’. This possibility to conduct translations in the ym variable is also reason
why we in Theorems 3.4-3.6 assume (3.4).

3.1. Structure of the paper. The rest of the paper is organized as follows. In Section 4
we establish crucial local estimates such as a maximum principle, energy estimates, interior
regularity estimates, Harnack inequalities and related estimates. We also introduce, and state
estimates of, the fundamental solution. Section 5 is devoted to the proof of Theorem 3.2 which
is based on estimates introduced in Section 4. In Section 6 we discuss the Dirichlet problem
and prove Theorem 3.1. We also prove a maximum principle on unbounded Lipschitz domains.
In Section 7 we prove Theorem 3.3. In Section 8 we introduce the Green function and discuss
its relation to the parabolic measure associated to L and Ω. In Section 9 we prove a weak com-
parison principle close to the boundary and discuss some consequences of it and the structural
assumption (3.4). Note that up until and including Lemma 9.1, assumption (3.4) is not used.
Furthermore, assumption (3.4) is only used explicitly in the proofs of Lemma 9.2 and Lemma
9.3, and implicitly in subsequent statements based on Lemma 9.2. In Section 10 we prove The-
orem 3.4. It is worth noting that Lemma 9.2 (and therefore assumption (3.4)) appears to be
crucial to the proof. In Section 11 we prove Theorem 3.5. In Section 12 we discuss properties
of the parabolic measure associated to L and Ω. In particular we prove Theorem 3.6 and prove
estimates of the related kernel function.

Convention concerning constants. Throughout the paper we will use following conventions.
By c we will denote a constant satisfying 1 ≤ c < ∞, and c will at most depend on m, κ and
M unless otherwise stated. We write that c1 . c2 if c1/c2 is bounded from above by a positive
constant depending at most on m, κ and M . We write c1 ≈ c2 if c1 . c2 and c2 . c1.

4. Basic principles and estimates

Throughout the paper we will use the notation

Qr := {(X,Y, t) | |xi| < r, |yi| < r3, |t| < r2},
QM,r := {(X,Y, t) | |xi| < r, i = 1, ...,m− 1, |xm| < 4Mr, |yi| < r3, |t| < r2},
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where r > 0, and given (Z0, t0) = (X0, Y0, t0) ∈ RN+1 we let Qr(Z0, t0) = (Z0, t0) ◦ Qr,
QM,r(Z0, t0) = (Z0, t0) ◦QM,r. Note that given M ≥ 0, there exists c = c(m,M) ≥ 1 such that

(4.1) Br/c(Z0, t0) ⊆ QM,r ⊆ Bcr(Z0, t0),

for every (Z0, t0) ∈ RN+1 and r > 0. Given ψ as in (2.12), Ω as in (2.13), and (Z0, t0) ∈ ∂Ω we
let

Ωr(Z0, t0) := QM,r(Z0, t0) ∩ {(X,Y, t) | ψ(x, Y, t) < xm < 4Mr + ψ(x0, Y0, t0)},
∆r(Z0, t0) := Qr(Z0, t0) ∩ {(X,Y, t) | xm = ψ(x, Y, t)}.(4.2)

Note that there exists c = c(m,M), 1 ≤ c <∞, such that

Ω ∩ Br/c(Z0, t0) ⊂ Ωr(Z0, t0) ⊂ Ω ∩ Bcr(Z0, t0)(4.3)

for all (Z0, t0) ∈ ∂Ω and r > 0.

Throughout the paper we will, given (Z0, t0) ∈ ∂Ω and r > 0, rather consistently use the
notation Qr(Z0, t0), Ωr(Z0, t0), and ∆r(Z0, t0) instead of the notation used in statement of our
main results: Br(Z0, t0), Ω∩Br(Z0, t0), and ∂Ω∩Br(Z0, t0). Using (4.1) and (4.3) we note that
we can readily move between the two different sets of notation.

4.1. Comparison/maximum principle. We first prove the weak maximum principle in
Ωr(Z0, t0) and we recall that we are qualitatively assuming (1.12).

Lemma 4.1. Let (Z0, t0) ∈ RN+1, r > 0, Ωr := Ωr(Z0, t0). Let u ∈ C2(Ωr) ∩ C(Ωr) be such
that

(4.4)

{
Lu ≥ 0 in Ωr,

u ≤ 0 on ∂Ωr.

Then u ≤ 0 in Ωr.

Proof. We can without loss of generality assume that (Z0, t0) = (0, 0). Using (1.10) we see
that am,m(Z, t) ≥ κ−1 > 0 for all (Z, t) ∈ RN+1. Using (1.12) we can rewrite the operator in
non-divergence form,

L =
m∑

i,j=1

ai,j(X,Y, t)∂xixj +
m∑
i=1

bi(X,Y, t)∂xj +X · ∇Y − ∂t,

where

bi(X,Y, t) :=

m∑
j=1

∂xiai,j(X,Y, t) ∈ L∞(QM,2r).

Assume that

(4.5) max
Ωr

u > max
∂Ωr

u.

For ε > 0, put uε = u+ εeKxm for some constant K > 1 to be chosen. Then uε → u uniformly
on Ωr as ε→ 0. Let (X̂ε, Ŷε, t̂ε) be such that uε(X̂ε, Ŷε, t̂ε) = maxΩr

uε. By compactness we may

pick a subsequence such that (X̂ε, Ŷε, t̂ε)→ (X̂, Ŷ , t̂) and by using the uniform convergence we
have

u(X̂, Ŷ , t̂) = max
Ωr

u.
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Using (4.5) we have (X̂, Ŷ , t̂) ∈ Ωr and, for ε small, (X̂ε, Ŷε, t̂ε) ∈ Ωr. Note that

∇X,Y,tuε(X̂ε, Ŷε, t̂ε) = 0,

and that
m∑

i,j=1

ai,j(X̂ε, Ŷε, t̂ε)∂xixjuε(X̂ε, Ŷε, t̂ε) = trace(A(X̂ε, Ŷε, t̂ε)HX(uε(X̂ε, Ŷε, t̂ε))) ≤ 0,

where HX(u(X,Y, t)) denotes the hessian matrix in the X-variable of u at (X,Y, t). Thus,

Luε(X̂ε, Ŷε, t̂ε) = trace(A(X̂ε, Ŷε, t̂ε)HX(uε(X̂ε, Ŷε, t̂ε)))

+

m∑
i,j=1

bi(X̂ε, Ŷε, t̂ε)∂xjuε(X̂ε, Ŷε, t̂ε)

+ X̂ε · ∇Y uε(X̂ε, Ŷε, t̂ε)− ∂tuε(X̂ε, Ŷε, t̂ε) ≤ 0.

(4.6)

On the other hand,

Luε(X̂ε, Ŷε, t̂ε) = Lu(X̂ε, Ŷε, t̂ε) + L
(
εeKxm

)
= Lu(X̂ε, Ŷε, t̂ε) + εKeKxm(Kam,m(X̂ε, Ŷε, t̂ε) + bm(X̂ε, Ŷε, t̂ε))

≥ εKeKxm(K/κ− ‖bm‖L∞(QM,r)) > 0,

for K large enough. This contradicts (4.6) and hence (4.5). Hence (4.5) is false and the proof
is complete. �

4.2. Energy estimates and local Hölder continuity. We state and prove the following
energy estimate.

Lemma 4.2. Let (Z0, t0) ∈ RN+1, r > 0. Let u be a weak solution to the equation Lu = 0 in
Q2r(Z0, t0). Then

(4.7)

∫∫∫
Qr(Z0,t0)

|∇Xu|2 dZ dt . r−2

∫∫∫
Q2r(Z0,t0)

|u|2 dZ dt.

Proof. The proof is standard and we note that can without loss of generality assume that
(Z0, t0) = (0, 0) and we let Qr := Qr(0, 0). Let φ be a test function such that φ ∈ C∞0 (Q2r),
φ = 1 in Qr and r|∇Xφ|+ r2|(X · ∇Y − ∂t)φ| . 1 in Q2r. Using that Lu = 0 in Q2r and using
φ2u as a test function, which is allowed due to that we are qualitatively assuming (1.12), we
obtain

(4.8)

∫∫∫
Q2r

(
A(X,Y, t)∇Xu · ∇X(φ2u) + (X · ∇Y (φ2u))u− u∂t(φ2u)

)
dZ dt = 0.

Manipulating this equality, using (1.10), Cauchy-Schwarz and the properties of φ, the lemma
readily follows. �

The following two lemmas are proven in [18].

Lemma 4.3. Let (Z0, t0) ∈ RN+1, r > 0. Let u be a weak solution to the equation Lu = 0 in
Q2r(Z0, t0). Then there exists α ∈ (0, 1), depending only on m and κ, so that

|u(Z, t)− u(Z̃, t̃)| .
(
d((Z, t), (Z̃, t̃))

r

)α
sup

Q2r(Z0,t0)
|u|
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whenever (Z, t), (Z̃, t̃) ∈ Qr(Z0, t0).

Lemma 4.4. Assume that Lu = 0 in Q2r = Q2r(Z0, t0) ⊂ RN+1. Given p ∈ (1,∞) there exists
a constant c = c(m,κ, p), 1 ≤ c <∞, such that

sup
Qr

|u| ≤ c
(
−
∫
−
∫
−
∫
Q2r

|u|p dZ dt

)1/p

.(4.9)

4.3. Harnack’s inequality and Harnack chains. To state the Harnack inequality we in-
troduce some further notation. We let

Q−r := {(X,Y, t) | |xi| < r, |yi| < r3, −r2 < t ≤ 0}, Q−r (Z0, t0) = (Z0, t0) ◦Q−r ,(4.10)

for (Z0, t0) ∈ RN+1. The following Harnack inequality is proved in [18].

Lemma 4.5. There exist constants c = c(m,κ) > 1 and α, β, γ, θ ∈ (0, 1), with 0 < α < β <
γ < θ2, such that the following is true. Assume u is a non-negative solution to Lu = 0 in
Q−r (Z0, t0) for some r > 0, (Z0, t0) ∈ RN+1. Then,

sup
Q̃−r (Z0,t0)

u ≤ c inf
Q̃+
r (Z0,t0)

u,

where

Q̃+
r (Z0, t0) =

{
(x, t) ∈ Q−θr(Z0, t0) | t0 − αr2 ≤ t ≤ t0

}
,

Q̃−r (Z0, t0) =
{

(x, t) ∈ Q−θr(Z0, t0) | t0 − γr2 ≤ t ≤ t0 − βr2
}
.

We remark that the constants α, β, γ, θ appearing in the above lemma can not be chosen
arbitrarily and this is in contrast to, for example, the case of uniformly parabolic equations.

Definition 1. A path γ : [0, T ]→ RN+1 is called admissible if it is absolutely continuous and
satisfies

(4.11)
d

dτ
γ(τ) =

m∑
j=1

ωj(τ)∂xj (γ(τ)) + λ(τ)
( m∑
k=1

xk∂yk(γ(τ))− ∂t(γ(τ))
)
, for a.e. τ ∈ [0, T ],

where ωj ∈ L2([0, T ]), for j = 1, . . . ,m, and λ is a non-negative measurable function. We say

that γ connects (Z, t) = (X,Y, t) ∈ RN+1 to (Z̃, t̃) = (X̃, Ỹ , t̃) ∈ RN+1, t̃ < t, if γ(0) = (Z, t)

and γ(T ) = (Z̃, t̃).

Definition 2. Given a domain Ω ⊂ RN+1, and a point (Z, t) ∈ Ω, we let A(Z,t) = A(Z,t)(Ω)
denote the closure of the set{

(Z̃, t̃) ∈ Ω | there exists an admissible γ : [0, T ]→ Ω, connecting (Z, t) to (Z̃, t̃)
}
.

We will refer to A(Z,t)(Ω) as the propagation set of the point (Z, t) with respect to Ω.

Definition 3. Let Ω ⊂ RN+1 be a domain. Let (Z, t), (Z̃, t̃) ∈ Ω, t̃ < t, be given. Let
{rj}kj=1 be a finite sequence of real positive numbers and let {(Zj , tj)}kj=1 be a sequence of

points such that (Z1, t1) = (Z, t). Then {{(Zj , tj)}kj=1, {rj}kj=1} is said to be a Harnack chain

in Ω, connecting (Z, t) to (Z̃, t̃), if

(i) Q−rj (Zj , tj) ⊂ Ω, for every j = 1, . . . , k,

(ii) (Zj+1, tj+1) ∈ Q̃−rj (Zj , tj), for every j = 1, . . . , k − 1,

(iii) (Z̃, t̃) ∈ Q̃−rk(Zk, tk).

(4.12)
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Let u be a non-negative weak solution to Lu = 0 in Ω. Assume that {{(Zj , tj)}kj=1, {rj}kj=1}
is a Harnack chain in Ω, connecting (Z̃, t̃) to (Z, t), and let c be the constant appearing in
Lemma 4.5. Then, using Lemma 4.5, we see that

u(Zj+1, tj+1) ≤ cu(Zj , tj), for every j = 1, . . . , k − 1,(4.13)

and hence,

u(Z̃, t̃) ≤ cu(Zk, tk) ≤ cku(Z, t).(4.14)

To use Lemma 4.5 efficiently we will build Harnack chains using admissible paths.

Lemma 4.6. Let γ(τ) : [0, t− t̃]→ RN+1, t̃ < t, be an admissible path, starting at a point with
time coordinate equal to t, with λ = λ(τ) ≡ 1, and let a, b be constants such that 0 ≤ a < b ≤ T ,
T := t− t̃. Then there exist positive constants h and η, depending only on m, such that

(4.15)

∫ b

a

||ω(τ)||2
h

dτ ≤ 1 ⇒ γ(b) ∈ Q−ηr(γ(a)), where r =
√
b− a.

Furthermore, the set Q−ηr(γ(a)) ∩ {t = T − b} is contained in Int
(
A(γ(a)(Q

−
r )
)
.

Proof. The first part of the lemma is a consequence of Lemma 2.2 in [3]. The second conclusion
follows by arguing as in the proof of Proposition 3.2 in [9]. �

Lemma 4.7. Let Ω ⊂ RN+1 be a domain. Let γ, t, t̃, λ, T , h, η, be as in Lemma 4.6 and
define {τj} as follows. Let τ0 = 0, and define τj+1, for j ≥ 0, recursively as follows:

(i) if

∫ t−t̃

τj

||ω(τ)||2
h

dτ > 1 then τj+1 = inf
{
σ ∈ (τj , t− t̃] :

∫ σ

τj

||ω(τ)||2
h

dτ > 1
}
,

(ii) if

∫ t−t̃

τj

||ω(τ)||2
h

dτ ≤ 1 then τj+1 := t− t̃.

Let k be smallest index such that τk+1 = t− t̃. Define, based on {τj}k+1
j=0 ,

(4.16) rj =

√
τj+1 − τj

η2
, j = 1, . . . , k,

and let (Zj , tj) = γ(τj) for j = 1, . . . , k. Assume that

γ(τ) : [0, t− t̃]→ Ω, and Q−rj (Zj , tj) ⊂ Ω,(4.17)

for every j = 1, . . . , k. Then there exists a constant c = c(m,κ), 1 ≤ c < ∞, such that if u is
a non-negative weak solution to Lu = 0 in Ω, then

u(Z̃, t̃) ≤ c
(

1+ 1
h

∫ t−t̃
0 ||ω(τ)||2 dτ

)
u(Z, t).(4.18)

Proof. This can be proved by proceeding as in the proof of Proposition 1.1 in [3] using Lemma
4.5 and Lemma 4.6. Indeed, let {{(Zj , tj)}kj=1, {rj}kj=1} be as in the statement of the lemma.

Using the assumption (4.17) and applying Lemma 4.6 then yields that {{(Zj , tj)}kj=1, {rj}kj=1}
is a Harnack chain connecting (Z̃, t̃) to (Z, t) with

k ≤ 1 +
1

h

∫ t−t̃

0
||ω(τ)||2 dτ.

This gives the inequality of the lemma. �
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Let

(4.19) B :=

(
0 Im
0 0

)
, E(s) = exp(−sB∗),

for s ∈ R, where Im and 0 represents the identity matrix and the zero matrix in Rm, respectively.
Furthermore, let

C(t) :=

∫ t

0
E(s)

(
Im 0
0 0

)
E∗(s) ds =

(
tIm − t2

2 Im
− t2

2 Im
t3

3 Im

)
,(4.20)

whenever t ∈ R. Note that det C(t) = t4m/12 and that

(C(t))−1 = 12

(
t−1

3 Im
t−2

2 Im
t−2

2 Im t−3Im

)
.(4.21)

Lemma 4.8. Let Ω ⊂ RN+1 be a domain. Let (Z, t), (Z̃, t̃) ∈ Ω, t̃ < t, be given. Consider the
path γ(τ) = (γ̃(τ), t− τ) : [0, t− t̃]→ RN+1 where

(4.22) γ̃(τ) = E(−τ)
(
Z + C(τ)C−1(t− t̃)(E(t− t̃)Z̃ − Z)

)
.

Then γ(0) = (Z, τ), γ(t − t̃) = (Z̃, τ̃) and (γ̃(τ), t − τ) is an admissible path. Moreover, the
path satisfies (4.11) with

(4.23) ω(τ) = (ω1(τ), .., ωm(τ)) = E(τ)∗C−1(t− t̃)(E(t− t̃)Z̃ − Z).

Let h, β, {τj}, {rj} and {(Zj , τj)} be as in Lemma 4.7. Assume that

γ(τ) : [0, t− t̃]→ Ω, and Q−rj (zj , tj) ⊂ Ω,(4.24)

for every j = 1, . . . , k. Then there exists a constant c = c(m,κ), 1 ≤ c < ∞, such that if u is
a non-negative weak solution to Lu = 0 in Ω, then

u(Z̃, t̃) ≤ c
(

1+ 1
h
〈C−1(t−t̃)(Z−E(t−t̃)Z̃),Z−E(t−t̃)Z̃〉

)
u(Z, t).(4.25)

Proof. That γ(τ) is an admissible curve satisfying (4.22) is shown by direct computation. Using
the assumption of the lemma we see that we can apply Lemma 4.7. However, in this case, by
a direct computation, we see that∫ t−t̃

0
||ω(τ)||2 dτ = 〈C−1(t− t̃)(Z − E(t− t̃)Z̃), Z − E(t− t̃)Z̃〉,

which proves the result. �

Remark 4.1. Just to be clear, to apply Lemma 4.8, the critical assumption to be verified in
a specific application is (4.24).

Based on the notion of propagation sets the following (general) geometric version of the
Harnack inequality can also be proved using Lemma 4.5 and Lemma 4.7.

Lemma 4.9. Let Ω ⊂ RN+1 be a domain and let (Z0, t0) ∈ Ω. Let K be a compact set contained
in the interior of A(Z0,t0)(Ω). Then there exists a positive constant cK = c(m,κ,M,K), such
that

sup
K
u ≤ cK u(Z0, t0),

for every non-negative weak solution u of Lu = 0 in Ω.
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Proof. The lemma can be proved using the same reasoning as in the proof of Lemma 4.7; we
refer to [2] for details. �

In light of Lemma 4.9 we could pose the following alternative definition of a Harnack chain:
{{(Zj , tj)}kj=1, {rj}kj=1} is a Harnack chain in Ω, connecting (Z, t) to (Z̃, t̃), if

(i) Q−rj (Zj , tj) ⊂ Ω, for every j = 1, . . . , k,

(ii) (Zj+1, tj+1) ∈ Kj ⊂ Int(A(Zj ,tj)(Ω)), for every j = 1, . . . , k − 1,

(iii) (Z̃, t̃) ∈ Kk ⊂ Int(A(Zk,tk)(Ω)),

(4.26)

where Kj is a compact set, for each j = 1, · · · , k, and Int(A(Zj ,tj)(Ω)) denotes the interior of

the set A(Zj ,tj)(Ω). Note that similarly as before, if u is a non-negative weak solution to Lu = 0

in Ω and if {{(Zj , tj)}kj=1, {rj}kj=1} is a Harnack chain in the sense above, then by Lemma 4.9

u(Zj+1, tj+1) ≤ cKju(Zj , tj), for every j = 1, . . . , k − 1,

and hence

u(Z̃, t̃) ≤ cu(Zk, tk) ≤ cku(Z, t),(4.27)

where c := max{cKj}kj=1.

4.4. Admissible paths and cones.

Lemma 4.10. Let Λ be a positive constant. Define

(4.28) zΛ =
(
0,Λ, 0,−2

3Λ
)
∈ Rm−1 × R× Rm−1 × R.

Then, the path

[0, 1]→ RN+1, τ 7→ γ(τ) = δ1−τ (zΛ, 1)

is admissible.

Proof. Note that by definition

γ(τ) =
(
0, (1− τ)Λ, 0,−2

3(1− τ)3Λ, (1− τ)2
)
, τ ∈ [0, 1].

By a direct computation we see that

d

dτ
γ(τ) = (0,−Λ, 0, 2(1− τ)2Λ,−2(1− τ)), τ ∈ [0, 1].

In particular,

(4.29)
d

dτ
γ(τ) =

m∑
j=1

ωj(τ)∂xj (γ(τ)) + λ(τ)

(
m∑
k=1

xk∂yk(γ(τ))− ∂t(γ(τ))

)
, τ ∈ [0, 1],

where ωj ≡ 0 for j ∈ {1, ..,m− 1}, ωm = −Λ and λ(τ) = 2(1− τ). �

To continue, we recall the following cones, or cone like objects, introduced in [9]. Given
(Z0, t0) ∈ RN+1, Z̄ ∈ RN , t̄ ∈ R+, consider an open neighborhood U ⊂ RN of Z̄, and let

Z+
Z̄,t̄,U

(Z0, t0) =
{

(Z0, t0) ◦ δs(Z, t̄) | Z ∈ U, 0 < s ≤ 1
}
,

Z−
Z̄,t̄,U

(Z0, t0) =
{

(Z0, t0) ◦ δs(Z,−t̄) | Z ∈ U, 0 < s ≤ 1
}
.

(4.30)
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Given ρ > 0 and Λ > 0, recall the points A+
ρ,Λ, Aρ,Λ, A−ρ,Λ, introduced in (2.14). In addition we

introduce

Ã+
ρ,Λ = (0,−Λρ, 0,

2

3
Λρ3, ρ2),

Ã−ρ,Λ = (0,−Λρ, 0,−2

3
Λρ3,−ρ2),

(4.31)

and

Ã±ρ,Λ(Z0, t0) = (Z0, t0) ◦ Ã±ρ,Λ,(4.32)

whenever (Z0, t0) ∈ RN+1. Let the points z±ρ,Λ, z̃±ρ,Λ be defined through the relations

(4.33) A±ρ,Λ = (z±ρ,Λ, ρ
2), Ã±ρ,Λ = (z̃±ρ,Λ, ρ

2).

Given η, 0 < η � 1, Λ, and ρ > 0 we let

U±ρ,η,Λ := Bηρ((z±ρ,Λ, 0)) ∩ {(Z, t) | t = 0}.
Then, based on (4.30), we define

C±ρ,η,Λ(Z0, t0) = Z±
A±ρ,Λ,U

±
ρ,η,Λ

(Z0, t0),

C̃±ρ,η,Λ(Z0, t0) = Z±
Ã±ρ,Λ,U

±
ρ,η,Λ

(Z0, t0).
(4.34)

The sets

C±ρ,η,Λ(Z0, t0), C̃±ρ,η,Λ(Z0, t0),(4.35)

will be referred to as cones with vertex at (Z0, t0) as, for η small, they represent cones around

admissible paths passing through (Z0, t0) as well as the points A±ρ,Λ(Z0, t0), and Ã±ρ,Λ(Z0, t0).

4.5. Cones in Lipschitz domains. The standing assumption in all lemmas stated in this
subsection is that Ω ⊂ RN+1 is a Lipschitz domain with Lipschitz constant M , and that
Ωr = Ωr(Ẑ0, t̂0), ∆r = ∆r(Ẑ0, t̂0) for some (Ẑ0, t̂0) ∈ ∂Ω fixed, and for r > 0.

Lemma 4.11. Consider Ω2r. There exist Λ = Λ(m,M), 1 ≤ Λ < ∞, and c0 = c0(m,M),
1 ≤ c0 < ∞, such that the following is true. Let ρ0 = r/c0, consider (Z0, t0) ∈ ∆ρ0 and
0 < ρ < ρ0. Then there exists η = η(m,M), 0 < η � 1, such that if we introduce C±ρ,2η,Λ(Z0, t0),

C̃±ρ,2η,Λ(Z0, t0), as in (4.34), then

(i) C±ρ,2η,Λ(Z0, t0) ⊂ Ωr,

(ii) C̃±ρ,2η,Λ(Z0, t0) ⊂ RN+1 \ Ωr.
(4.36)

Proof. This is a consequence of Lemma 4.4 in [9]. �

Lemma 4.12. Consider Ω2r. There exist Λ = Λ(m,M), 1 ≤ Λ < ∞, and c0 = c0(m,M),
1 ≤ c0 <∞, such that the following is true. Let ρ0 = r/c0, consider (Z0, t0) ∈ ∆ρ0, 0 < ρ < ρ0,

and let A±ρ,Λ(Z0, t0), Ã±ρ,Λ(Z0, t0), be the reference points introduced. Then

A±ρ,Λ(Z0, t0) ∈ Ωr,

Ã±ρ,Λ(Z0, t0) ∈ RN+1 \ Ωr,
(4.37)
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and

(i) 1 ≈ d(Pρ,Λ(Z0, t0), (Z0, t0))/ρ,

(ii) 1 . d(Pρ,Λ(Z0, t0),∆2r)/ρ,(4.38)

whenever Pρ,Λ(Z0, t0) ∈ {A±ρ,Λ(Z0, t0), Ã±ρ,Λ(Z0, t0)}. Furthermore, the paths

γ+(τ) = A+
(1−τ)ρ,Λ(Z0, t0), γ−(τ) = A−(1−τ)ρ,Λ(Z0, t0), τ ∈ [0, 1],(4.39)

are admissible paths.

Proof. Note that (4.37) follows immediately from Lemma 4.11. Furthermore, (4.38) is a con-
sequence of Lemma 4.4 in [9]. That the paths in (4.39) are admissible follows from Lemma
4.10. �

Lemma 4.13. Consider Ω2r. There exist Λ = Λ(m,M), 1 ≤ Λ < ∞, and c0 = c0(m,M),
1 ≤ c0 < ∞, such that the following is true. Let ρ0 = r/c0, ρ1 = ρ0/c0, assume (Z, t) ∈ Ωρ,
0 < ρ < ρ1, and let d = d((Z, t),∆2r). Then there exist (Z±0 , t

±
0 ) ∈ ∆c0ρ and ρ± such that

(Z, t) = A±
ρ±,Λ(Z±0 , t

±
0 ) and ρ±/d ≈ 1.

Remark 4.2. Consider Ω2r. From now on we will let Λ = Λ(m,M), 1 ≤ Λ < ∞, c0 =
c0(m,M), 1 ≤ c0 < ∞, and η = η(m,M), 0 < η � 1, be such that Lemma 4.11 and Lemma
4.12 hold whenever (Z0, t0) ∈ ∆ρ0 and 0 < ρ < ρ0, ρ0 = r/c0, and such that Lemma 4.13 holds
whenever (Z, t) ∈ Ωρ, 0 < ρ < ρ1, ρ1 = ρ0/c0.

4.6. The Harnack inequality in cones. The standing assumption in all lemmas stated in
this subsection is that Ω ⊂ RN+1 is a Lipschitz domain with Lipschitz constant M , and that
Ωr = Ωr(Ẑ0, t̂0), ∆r = ∆r(Ẑ0, t̂0) for some (Ẑ0, t̂0) ∈ ∂Ω fixed, and for r > 0. Furthermore, Λ,
c0, η, ρ0 = r/c0, ρ1 = ρ0/c0, are chosen in accordance with Remark 4.2.

Lemma 4.14. Consider Ω2r. Let δ, 0 < δ < 1, be a degree of freedom. There exists c =
c(m,κ,M, δ), 1 ≤ c < ∞, such that following holds. Assume that u is a non-negative weak
solution to Lu = 0 in Ω2ρ0, let (Z0, t0) ∈ ∆ρ1, and consider ρ such that 0 < ρ < ρ1. Then

(i) sup
Bρ/c(A+

δρ,Λ(Z0,t0))

u ≤ c inf
Bρ/c(A+

ρ,Λ(Z0,t0))
u,

(ii) inf
Bρ/c(A−δρ,Λ(Z0,t0))

u ≥ c−1 sup
Bρ/c(A−ρ,Λ(Z0,t0))

u,
(4.40)

and

(i′) A+
δρ,Λ(Z̃0, t̃0) ∈ Bρ/c(A+

δρ,Λ(Z0, t0)),

(ii′) A−δρ,Λ(Z̃0, t̃0) ∈ Bρ/c(A−δρ,Λ(Z0, t0)),
(4.41)

whenever (Z̃0, t̃0) ∈ ∆ρ/c(Z0, t0).

Proof. Let δ as in the statement of the lemma be given. By construction and Lemma 4.11 there
exists a constant c̃ = c̃(m,M, δ) such that

(4.42) Bρ/c̃(A±δρ,Λ) ⊂ C±ρ,2η,Λ(Z0, t0) ⊂ Ωr.
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Using translation and dilation invariance, we may assume that (Z0, t0) = (0, 0) and that ρ = 1.
We need to show then, that there exist c1, c2 and c3, each only depending on m, κ, M and δ,
such that

(4.43) sup
B1/c1

(A+
δ,Λ)

u ≤ c2u(A+
1,Λ), inf

B1/c1
(A−δ,Λ)

u ≥ c−1
2 u(A−1,Λ),

and

(4.44) A+
δ,Λ(Z̃0, t̃0) ∈ B1/c1(A+

δ,Λ), A−δ,Λ(Z̃0, t̃0) ∈ B1/c1(A−δ,Λ),

whenever (Z̃0, t̃0) ∈ ∆1/c3 . Note that using (4.42) and Lemma 4.12 we see that

A+
δ,Λ ∈ Int

(
AA+

1,Λ

(
C+

1,2η,Λ(0, 0)
))

,

and hence there exists a constant ĉ = ĉ(m,M, δ) such that

B1/ĉ(A
+
δ,Λ) ⊂ Int

(
AA+

1,Λ

(
C+

1,2η,Λ(0, 0)
))

.

Similarly,

A−δ,Λ ∈ Int
(
A(Z̃,t̃)

(
C−1,2η,Λ(0, 0)

))
,

when (Z̃, t̃) ∈ B1/ĉ′(A
−
δ,Λ). Now (4.43) follows by putting c1 = max{ĉ, ĉ′} and applying Lemma

4.9. Finally, as A±δ,Λ ∈ B1/c1(A±δ,Λ), and using from continuity of the map

(Ẑ0, t̂0) 7→ A±δ,Λ(Ẑ0, t̂0),

we see that (4.44) holds. �

Lemma 4.15. Consider Ω2r. There exists γ = γ(m,κ,M), 0 < γ <∞, such that the following
holds. Assume that u is a non-negative weak solution to Lu = 0 in Ω2ρ0, let (Z0, t0) ∈ ∆ρ1 and
consider ρ, ρ̃, 0 < ρ̃ ≤ ρ < ρ1. Then

u(A+
ρ̃,Λ(Z0, t0)) . (ρ/ρ̃)γu(A+

ρ,Λ(Z0, t0)),

u(A−ρ̃,Λ(Z0, t0)) & (ρ̃/ρ)γu(A−ρ,Λ(Z0, t0)).
(4.45)

Proof. By constructing Harnack chains along the paths given in (4.39) and applying Lemma
4.14, the lemma follows. See Lemma 4.3 in [9] for further details. �

Lemma 4.16. Consider Ω2r. There exist c = c(m,κ,M), 1 ≤ c < ∞, and γ = γ(m,κ,M),
0 < γ < ∞, such that the following holds. Assume that u is a non-negative weak solution to
Lu = 0 in Ω2ρ0 and let (Z0, t0) ∈ ∆ρ1. Then

u(Z, t) . (ρ/d)γu(A+
ρ,Λ(Z0, t0)),

u(Z, t) & (d/ρ)γu(A−ρ,Λ(Z0, t0)),
(4.46)

whenever (Z, t) ∈ Ω2ρ/c(Z0, t0), 0 < ρ < ρ1, with d = d((Z, t),∆2r).

Proof. This lemma is proved by combining Lemma 4.15 with Lemma 4.13 and applying Lemma
4.14. We refer to the proof of Lemma 3.10 in [30] for further details. �
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4.7. Fundamental solutions and estimates thereof. In this subsection we introduce a
fundamental solution to L. The adjoint operator to L is defined as

(4.47) L∗ := ∇X · (A(X,Y, t)∇X)−X · ∇Y + ∂t.

Definition 4. A fundamental solution for L is a continuous and positive function Γ = Γ(Z, t, Z̃, t̃),

defined for t̃ < t and Z, Z̃ ∈ RN , such that

(i) Γ(·, ·, Z̃, t̃) is a weak solution of Lu = 0 in RN × (t̃,∞) and Γ(Z, t, ·, ·) is a weak solution
of L∗u = 0 in RN × (−∞, t),

(ii) for any bounded function φ ∈ C(RN ) and Z, Z̃ ∈ RN , we have

lim
(Z,t)→(Z̃,t̃)

t>t̃

u(Z, t) = φ(Z̃), lim
(Z̃,t̃)→(Z,t)

t>t̃

v(Z̃, t̃) = φ(Z),(4.48)

where

u(Z, t) :=

∫∫
RN

Γ(Z, t, Z̃, t̃)φ(Z̃) dZ̃, v(Z̃, t̃) :=

∫∫
RN

Γ(Z, t, Z̃, t̃)φ(Z) dZ.(4.49)

Remark 4.3. Note that for any φ ∈ C∞0 (RN+1) the following identities hold∫∫∫ (
A(X,Y, t)∇XΓ(·, ·, Z̃, t̃) · ∇Xφ+ Γ(·, ·, Z̃, t̃)(X · ∇Y φ− ∂tφ)

)
dX dY dt = φ(Z̃, t̃),∫∫∫ (

A(X̃, Ỹ , t̃)∇X̃Γ(Z, t, ·, ·) · ∇X̃φ− Γ(Z, t, ·, ·)(X̃ · ∇Ỹ φ− ∂t̃φ)
)

dX̃ dỸ dt̃ = φ(Z, t).

Remark 4.4. The functions in (4.49) are weak solutions of the following backward and forward
Cauchy problems,{

Lu(Z, t) = 0, (Z, t) ∈ RN × (t̃,∞),

u(Z, t̃) = φ(Z), Z ∈ RN ,

{
L∗v(Z̃, t̃) = 0, (Z̃, t̃) ∈ RN × (−∞, t),
v(Z̃, t) = φ(Z̃) Z̃ ∈ RN .

Let B and E be as defined in (4.19) and let C be defined as in (4.20). Recall (4.21). Using
this notation, an explicit fundamental solution to the constant coefficient operator

(4.50) Lλ :=
λ

2
∇X · ∇X +X · ∇Y − ∂t,

with pole at (Z̃, t̃), Γλ(·, ·, Z̃, t̃), can be defined by

(4.51) Γλ(Z, t, Z̃, t̃) := Γλ(Z − E(t− t̃)Z̃, t− t̃, 0, 0)

where

Γλ(Z, t, 0, 0) =
1

(2πλ)m
√

det C(t)
e(−

1
2λ
〈C(t)−1Z,Z〉), if t > 0,(4.52)

Γλ(Z, t, 0, 0) = 0, if t ≤ 0.(4.53)

Here 〈·, ·〉 denotes the standard inner product on RN .

Lemma 4.17. Assume that A satisfies (1.10) and (1.12). Then there exists a fundamental so-

lution Γ(Z, t, Z̃, t̃) to L in the sense of Definition 4. Furthermore, there exist positive constants
λ+, λ−, depending only on m and κ, such that

(4.54) Γλ
−

(Z, t, Z̃, t̃) . Γ(Z, t, Z̃, t̃) . Γλ
+

(Z, t, Z̃, t̃)

for all (Z, t), (Z̃, t̃) with t > t̃.
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Proof. We refer to [31, 14, 10] for the existence of the fundamental solution for L under the
additional condition that the coefficients are Hölder continuous. See also [25]. �

Using Lemma 4.17, and the arguments in Subsection 2.2 in [30], we have the upper bound

(4.55) Γ(Z, t, Z̃, t̃) .
1

d((Z, t), (Z̃, t̃))q−2
,

for all (Z, t), (Z̃, t̃) with t > t̃.

5. Boundary Hölder continuity: Proof of Theorem 3.2

Theorem 3.2 is an immediate consequence of Lemma 5.4 stated and proved below. To start
the argument towards the proof of Lemma 5.4 we first need to introduce some additional
notation.

Recall the reference points defined in (4.31) and, in particular,

Ã−ρ,Λ = (0,−Λρ, 0,−2

3
Λρ3,−ρ2) ∈ Rm−1 × R× Rm−1 × R× R.

Recall that if (Z0, t0) ∈ ∂Ω, then Ã−ρ,Λ(Z0, t0) = (Z0, t0) ◦ Ã−ρ,Λ is a reference point in RN+1 \Ω
and into past relative to t0. We furthermore let

Q̂r := {(X,Y ) | |xi| < r, |yi| < r3},(5.1)

for r > 0. We also let
Q̂r(Z, t) := ((Z, t) ◦Qr) ∩ {(Z̃, t̃) | t̃ = t},

whenever (Z, t) ∈ RN+1. We recall the cylinders Q−r introduced in (4.10), and we, in addition,
introduce

Q−r1,r2 := Q̂r1 × {t | −r2
2 < t ≤ 0}, Q−r1,r2(Z, t) = (Z, t) ◦Q−r1,r2 .

The following is the key lemma proved in this section.

Lemma 5.1. Let (Z0, t0) ∈ ∂Ω and r > 0. Then there exists a constant K = K(m,κ,M) �
1, such that the following is true. Let u be a non-negative weak solution of Lu = 0 in
Ω ∩ Q−Kr,2r(Z0, t0), vanishing continuously on ∂Ω ∩ Q−Kr,2r(Z0, t0). Then there exists θ =

θ(m,κ,M,K), 0 < θ < 1, such that

sup
Ω∩Q−

r/K
(Z0,t0)

u ≤ θ sup
Ω∩Q−Kr,2r(Z0,t0)

u.

Proof. We first note that we can without loss of generality assume that (Z0, t0) = (0, 0) and
r = 1. Let K � 1 be a constant to be fixed below. We let φ1 ∈ C∞0 (RN ) be such that
0 ≤ φ1 ≤ 1, and φ1 ≡ 1 on

Q̂(K+1) \ Q̂(K−1),

and such that φ1 ≡ 0 on
Q̂(K−2) ∪ (RN \ Q̂(K+2)).

Similarly, we let φ2 ∈ C∞0 (RN ) be such that 0 ≤ φ2 ≤ 1, φ2 ≡ 1 on

Q̂(K+1) \ (B2/M (Ã−2,Λ) ∩ {t | t = −4}),
and such that φ2 ≡ 0 on

(B1/M (Ã−2,Λ) ∩ {t | t = −4}) ∪ (RN \ Q̂(K+2)).
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Note that by construction we have (B2/M (Ã−2,Λ) ∩ {t | t = −4}) ⊂ RN+1 \ Ω̄. Using φ1 and φ2

we let Φ1(Z, t) and Φ2(Z, t) be the solutions to the Cauchy problem for L with data φ1 and φ2,
respectively, on {t = −4}. Hence LΦ1(Z, t) = 0 = LΦ2(Z, t) whenever (Z, t) ∈ RN+1, t > −4
and we can represent Φ1(Z, t) and Φ2(Z, t) using the fundamental solution. The remainder of
the proof will consist of showing the validity of four claims from which the lemma will follow.

Claim 1: There exists a constant c = c(m,κ,M) ≥ 1 such that

(5.2) 1 ≤ cΦ1(Z, t),

whenever (Z, t) ∈ ∂Q−K,2 ∩ {(Z, t) | −4 < t < 0}.
Proof of the claim. Using Lemma 4.17 we see that solution to the Cauchy problem with initial
data φ1 can be represented as

Φ1(Z, t) =

∫∫
RN

Γ(Z, t, Z̃,−4)φ1(Z̃) dZ̃,

where Γ(·, ·, Z̃, t̃) is the fundamental solution for L with pole at (Z̃, t̃). Note that by Lemma
4.17 we have the lower bound

(5.3) cΓλ(Z, t, Z̃,−4) ≤ Γ(Z, t, Z̃,−4)

for some c = c(m,κ) > 0, where Γλ(·, ·, Z̃, t̃), λ := λ−, is the fundamental solution for the
constant coefficient operator defined in (4.50). Hence,

Φ1(Z, t) ≥ c
∫∫

RN
Γλ(Z, t, Z̃,−4)φ1(Z̃) dZ̃.

Let δ > 0 some small fixed constant and consider the shifted cube

Q̂δ(Z,−4) = ((Z,−4) ◦Qδ) ∩ {(Z, t) | t = −4}.
Note that Q̂δ(Z,−4) ⊂ (Q̂K+1\Q̂K−1) × {(Z, t) | t = −4}. Using this together with the fact

that Γλ is non-negative, smooth and not identically zero in Q̂δ(Z,−4), we have∫∫
RN

Γλ(Z, t, Z̃,−4)φ1(Z̃) dZ̃ ≥
∫∫

Q̂δ(Z,−4)
Γλ(Z, t, Z̃,−4) dZ̃ & 1.

The completes the proof of the claim. �

To simplify notation a little, we will in the sequel write

(5.4) Ψ := sup
Ω∩Q−K,2

u.

With this notation, we see that by using (5.2) and the maximum principle on Ω ∩ Q−K,2 we
obtain

(5.5) u(Z, t) ≤ cΨΦ1(Z, t) + ΨΦ2(Z, t),

when (Z, t) ∈ Ω ∩Q−K,2, and thus, in particular, when (Z, t) ∈ Ω ∩Q−1 .

Claim 2: If (Z, t) ∈ Ω ∩Q−1 , then there exist c ≥ 1, and an integer η � 1, both independent of
K, such that

(5.6) Φ1(Z, t) ≤ ce−c−1K2
Kη.
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Q−
1

Q̂K+2\Q̂K−2

Figure 1. The shaded regions represent the two cases in the proof of Claim 2.

Proof of the claim. Again using Lemma 4.17, with λ := λ+, we have

Φ1(Z, t) =

∫∫
RN

Γ(Z, t, Z̃,−4)φ1(Z̃) dZ̃

≤
∫∫

Q̂K+2\Q̂K−2

Γ(Z, t, Z̃,−4) dZ̃

.
∫∫

Q̂K+2\Q̂K−2

Γλ(Z, t, Z̃,−4) dZ̃

.
1

λm(t+ 4)2m

∫∫
Q̂K+2\Q̂K−2

e
− 1

2λ

(
1
t+4
|X−X̃|2+ 3

(t+4)3
|2(Y−Ỹ )+(t+4)(X+X̃)|2

)
dZ̃.

We now consider now the two cases,

|X − X̃|2 ≥ m|K − 3|2, and |X − X̃|2 < m|K − 3|2.
In the first case we immediately see that

e
− 1

2λ

(
1
t+4
|X−X̃|2+ 3

(t+4)3
|2(Y−Ỹ )+(t+4)(X+X̃)|2

)
≤ e−cK2

.(5.7)

In the second case we note that |Y − Ỹ |2 & mK6, for K large enough, and due to the geometry

of Q̂K+2\Q̂K−2. Also, |X + X̃|2 . K2 and using that∣∣∣2(Y − Ỹ ) + (t+ 4)(X + X̃)
∣∣∣2 = 3|Y − Ỹ |2 − (t+ 4)2|X + X̃|2 + |Y − Ỹ + 2(t+ 4)(X + X̃)|2

. 3|Y − Ỹ |2 − (t+ 4)2|X + X̃|2 +
(
|Y − Ỹ |+ 2(t+ 4)|X + X̃|

)2
,

we can also in the second case conclude the validity of (5.7) for some c > 0 independent of K.
This together with the elementary fact that there exists η > 1 (independent of K) such that

|Q̂K+2\Q̂K−2| ≤ Kη, yields that

Φ1(Z, t) ≤ c
∫∫

Q̂K+2\Q̂K−2

e−
1
c
K2

dZ̃ ≤ ce−c−1K2
Kη,

which is the statement of the claim. �

To be able to estimate Φ2(Z, t) we write

Φ2 = 1− Φ̂2
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where now, in particular, Φ̂2 is a non-negative function such that

Φ̂2(Z,−4) = 1,

whenever (Z,−4) ∈ (B1/M (Ã−2,Λ) ∩ {t | t = −4}).
Claim 3: There exist ε > 0 small, and c ≥ 1, both depending only on m, κ and M , such that

(5.8) Φ̂2(Z, t) ≥ c−1,

whenever (Z, t) ∈ (B(1−ε)/M (Ã−2(1−ε),Λ) ∩ {t | t = −4(1− ε)2}).
Proof of the claim. As in the proof of Claim 1 above we fix a small δ > 0. Let ε > 0 be such
that

Q̂δ(Z,−4) ⊂ (B1/M (Ã−2,Λ) ∩ {t | t = −4}),
when (Z, t) ∈ (B(1−ε)/M (Ã−2(1−ε),Λ) ∩ {t | t = −4(1− ε)2}). Now, since φ̂2 = 1− φ2 is bounded

on RN , we can represent Φ̂2 as

Φ̂2(Z, t) =

∫∫
RN

Γ(Z, t, Z̃,−4)φ̂2(Z̃) dZ̃

and the claim follows by essentially the same argument as in the proof of Claim 1. �

Claim 4: There exists K0 = K0(m,κ,M)� 1 such that if K ≥ K0 then

(5.9) Φ̂2(Z, t) ≥ c̃−1,

whenever (Z, t) ∈ Ω ∩Q−1/K , for a constant c̃ = c̃(m,κ,M) ≥ 1.

Proof of the claim. The idea is to choose an admissible curve γ(τ) connecting the origin to

Ã2,Λ and construct a Harnack chain along it. Consider the curve

γ(τ) = Ã−2τ,Λ.

A direct calculation shows that

d

dτ
γ(τ) =

m∑
j=1

ωj(τ)∂xjγ(τ) + λ(τ)

(
m∑
k=1

xk∂ykγ(τ)− ∂tγ(τ)

)
,

with ωm = −2Λ, ωj = 0 for j = 1, · · · ,m − 1, and λ(τ) = 8τ . Hence γ(τ) is admissible.

Furthermore γ(0) = (0, 0) and γ(1) = Ã2,Λ. Hence, using Lemma 4.7 we deduce that

(5.10) sup
Bε̃(Ã−2(1−ε̃),Λ)

Φ̂2 ≤ Cε̃Φ̂2(0, 0),

for some Cε̃ > 0 and ε̃ > 0 small. It follows from (5.8) that

Φ̂2(0, 0) ≥ c−1.

Using that γ is admissible it can be shown that for δ > 0 small, γ̃(τ) = Ã−2τ,Λ(Z0, t0) is

admissible whenever (Z0, t0) ∈ Q−δ . Pick then δ > 0 small enough so that γ̃ is admissible and

γ̃(1) ∈ (B(1−ε)/M (Ã−2(1−ε),Λ) ∩ Bε̃(Ã−2(1−ε̃),Λ)),

whenever (Z0, t0) ∈ Q−δ . The claim now follows by picking K0 > 1/δ. �

As a consequence of the last claim we have

(5.11) Φ2(Z, t) = 1− Φ̂2(Z, t) ≤
(
1− c̃−1

)
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whenever (Z, t) ∈ Ω ∩Q−1/K . We now put the estimates together and we can conclude that we

have proved that if K ≥ K0, then

u(Z, t) ≤ cΨΦ1(Z, t) + ΨΦ2(Z, t) ≤ Ψ(ce−c
−1K2

Kη +
(
1− c̃−1

)
),

whenever (Z, t) ∈ Ω∩Q−1/K as we see from (5.5), (5.6) and (5.11). Given c̃, we choose K ≥ K0

so that

ce−c
−1K2

Kη ≤ 1

2c̃
,

and we let θ = 1− (2c̃)−1 < 1. Put together we see that

(5.12) u(Z, t) ≤ θΨ,
whenever (Z, t) ∈ Ω ∩Q−1/K . This completes the proof of the lemma. �

Lemma 5.2. Let (Z0, t0) ∈ ∂Ω and r > 0. Let u be a non-negative weak solution of Lu = 0
in Ω ∩Q2r(Z0, t0), vanishing continuously on ∂Ω ∩Q2r(Z0, t0). Let 0 < θ < 1 be given. Then
there exists a constant c = c(m,κ,M, θ), 1 ≤ c <∞, such that

sup
Ω∩Qr/c(Z0,t0)

u ≤ θ sup
Ω∩Q2r(Z0,t0)

u.

Proof. The lemma is an immediate consequence of Lemma 5.1. �

Lemma 5.3. Let (Z0, t0) ∈ ∂Ω and r > 0. Let u be a non-negative weak solution of Lu = 0
in Ω ∩ Q2r(Z0, t0), vanishing continuously on ∂Ω ∩ Q2r(Z0, t0). Then, there exist a constant
c = c(m,κ,M), 1 ≤ c <∞, and α = α(m,κ,M) ∈ (0, 1), such that

u(Z, t) ≤ c
(
d((Z, t), (Z0, t0))

r

)α
sup

Ω∩Q2r(Z0,t0)
u

whenever (Z, t) ∈ Ω ∩Qr/c(Z0, t0).

Proof. The lemma follows immediately from Lemma 5.2. �

Lemma 5.4. Let (Z0, t0) ∈ ∂Ω and r > 0. Then there exists a constant K = K(m,κ,M) �
1, such that the following is true. Let u be a non-negative weak solution of Lu = 0 in
Ω ∩ Q−Kr,2r(Z0, t0), vanishing continuously on ∂Ω ∩ Q−Kr,2r(Z0, t0). Then there exists θ =

θ(m,κ,M,K), 0 < θ < 1, such that

sup
Ω∩Q−

r/K
(Z0,t0)

u± ≤ θ sup
Ω∩Q−Kr,2r(Z0,t0)

u±,

where u+(Z, t) = max{0, u(Z, t)}, u−(Z, t) = −min{0, u(Z, t)}.

Proof. We first prove the lemma for u+. In this case the argument is essentially the same as
that in the proof of Lemma 5.1. In particular, if we let

Ψ+ = sup
Ω∩Q−Kr,2r(Z0,t0)

u+,

then we see that (5.5) still holds but with Ψ replaced by Ψ+. Furthermore, simply repeating
the argument in Lemma 5.1 we deduce

u(Z, t) ≤ θΨ+,
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whenever (Z, t) ∈ Ω∩Q−r/K(Z0, t0). Obviously this completes the proof for u+. Concerning the

same estimate for u− we see, by analogy, that

(5.13) − u(Ẑ, t) ≤ θΨ−,
where

Ψ− = sup
Ω∩Q−Kr,2r(Z0,t0)

(−u) = sup
Ω∩Q−Kr,2r(Z0,t0)

u−,

whenever (Z, t) ∈ Ω∩Q−r/K(Z0, t0) and from (5.13) we deduce Lemma 5.4 for u−. This completes

the proof of the lemma. �

6. The Dirichlet problem: proof of Theorem 3.1

We here consider the well-posedness of the Dirichlet problem with continuous boundary
data for the operator L in domains Ωr(Z0, t0) introduced in (4.2). We recall that in Definition
3 in [30] it was introduced what we here, as in [30], refer to as the Kolmogorov boundary
of Ωr(Z0, t0), denoted ∂KΩr(Z0, t0). The notion of the Kolmogorov boundary replaces the
notion of the parabolic boundary used in the context of uniformly parabolic equations and by
definition ∂KΩr(Z0, t0) ⊂ ∂Ωr(Z0, t0) is the set of all points on the topological boundary of
Ωr(Z0, t0) which is contained in the closure of the propagation set of at least one interior point
in Ωr. The Kolmogorov boundary ∂KΩr(Z0, t0) is the largest subset of the topological boundary
of Ωr(Z0, t0) on which we can attempt to impose boundary data if we want to construct non
trivial solutions to the Dirichlet problem in Ωr(Z0, t0) for the operator L. The notion of regular
points on ∂Ωr(Z0, t0) for the Dirichlet problem only makes sense for points on the Kolmogorov
boundary. Based on this we consider the well-posedness of the boundary value problem

(6.1)

{
Lu = 0 in Ωr(Z0, t0),

u = ϕ on ∂Ωr(Z0, t0).

where ϕ ∈ C(RN+1). The boundary data should be understood as only imposed on the
Kolmogorov boundary. Indeed, we define solutions to (6.1) as follows.

Definition 5. Let ϕ ∈ C(RN+1). We say that u is a solution to the Dirichlet problem in (6.1)
if u is a weak solution to Lu = 0 in Ωr(Z0, t0), if u is continuous on the closure of Ωr(Z0, t0)
and if u = ϕ on ∂KΩr(Z0, t0).

To prove solvability of the Dirichlet problem in (6.1), as defined in Definition 5, we will make
use of our qualitative assumption in (1.12). We remark that the assumption in (1.12) can be
removed once uniqueness of solutions to (6.1) can be established under the assumption that
coefficients have no smoothness beyond being bounded and measurable. Indeed, in this case,
and by an approximation argument, is suffices to consider the Dirichlet problem in (6.1) for
the regularized operator

Lε := ∇X · (Aε(X,Y, t)∇X) +X · ∇Y − ∂t,(6.2)

where ε > 0 is small and Aε is a regularization of A constructed by a group convolution of A
with respect to an approximation of the identity with parameter ε.

Lemma 6.1. Assume (1.10) and (1.12). Let ϕ ∈ C(RN+1). Then the Dirichlet problem in
(6.1) has a unique solution u and

||u||L∞(Ωr(Z0,t0)) ≤ ||ϕ||L∞(∂KΩr(Z0,t0)).
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Proof. As A is smooth we can freely switch between considering L as an operator in divergence
form and as an operator in non-divergence form. In non-divergence form we have

L :=

m∑
i,j=1

ai,j∂xixj +

m∑
i,j=1

∂xiai,j∂xj +X · ∇Y − ∂t,(6.3)

with ∂xiai,j locally bounded. The lemma now follows from the methods employed in [26]. In
particular, it is enough to prove existence of barrier functions at each (Z, t) ∈ ∂KΩr(Z0, t0). In
the following we can, without loss of generality, assume that (Z0, t0) = (0, 0). We introduce
the sets

S±1,i = Ωr ∩ {(X,Y, t) | xi = ±r}, i = 1, · · · ,m− 1,

S±2,i = Ωr ∩ {(X,Y, t) | ±xi > 0, yi = ±r3}, i = 1, · · · ,m,
S3 = Ωr ∩ {(X,Y, t) | t = −r2}
S4 = Ωr ∩ {(X,Y, t) | xm = 4Mr},

and we note that

∂KΩr(Z0, t0) = ∆r ∪i S±1,i ∪i S±2,i ∪ S3 ∪ S4.

As points of the sets S±1,i and S4 are non-characteristic for the operators these points are regular

for the Dirichlet problem. Indeed for a point (Ẑ, t̂) ∈ S±1,i ∪ S4, the function

w(Z, t) = e−K|ν|
2 − e−K|(Z,t)−(Ẑ,t̂)−ν|2 ,

where ν is an exterior normal and K � 1 is large enough, is a barrier at (Ẑ, t̂). For points

(Ẑ, t̂) ∈ S±2,i, the function

w(Z, t) = ±((ŷ)i − yi)
is a barrier. For the set S3 a barrier is constructed analogously, in particular the function

w(Z, t) = t+ r2

is a barrier at (Ẑ,−r2) ∈ S3. Finally, consider (Ẑ, t̂) ∈ ∆r. It follows from Lemma 4.11 that

there exist η = η(m,M), Λ = Λ(m,M), and 0 < ρ < r such that the cone C̃−ρ,η,Λ(Ẑ, t̂), as

defined in (4.34), satisfies

C̃−ρ,η,Λ(Ẑ, t̂) ∈ RN+1 \ Ωr.

This implies that (Ẑ, t̂) satisfies the assumptions of Theorem 6.3 in [26] and thus is a regular
point. In particular, the set of regular points coincides with ∂KΩr(Z0, t0). The inequality

||u||L∞(Ωr(Z0,t0)) ≤ ||ϕ||L∞(∂KΩr(Z0,t0))

is a consequence of the maximum principle of Lemma 4.1. �

6.1. Proof of Theorem 3.1. Let Ω ⊂ RN+1 be a Lipschitz domain with defining function ψ
and constant M . Let ϕ ∈ C(∂Ω) ∩ L∞(∂Ω) be such that ϕ(Z, t) → 0 as ||(Z, t)|| → ∞. To
prove Theorem 3.1 we first need to prove that there exists a unique solution u = uϕ, u ∈ C(Ω̄),
to the Dirichlet problem

(6.4)

{
Lu = 0 in Ω,

u = ϕ on ∂Ω.
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The uniqueness part of this statement is a consequence of Lemma 6.2 stated and proved below.
To prove existence we note that we can without loss of generality assume that (0, 0) ∈ ∂Ω,
and that ϕ ≥ 0. Given ϕ, let uk, for k ≥ 1, be the unique weak solution to Lu = 0 in
Ωk = Ω ∩Qk(0, 0) with boundary values

uk(Z, t) = ϕ(Z, t)φ

( ||(Z, t)||
k

)
, when (Z, t) ∈ ∆k,

and u = 0 on ∂Ω\∆k. Here, φ is a continuous decreasing function on [0,∞) such that 0 ≤ φ ≤ 1,
φ(s) = 1 for 0 ≤ s ≤ 1/2, and φ(s) = 0 for s > 3/4. Existence and uniqueness of uk follows
from Lemma 6.1. By construction 0 ≤ uk ≤ uk+1 ≤ ||ϕ||L∞(∂Ωk∩∂Ω) in Ωk and we deduce,
using the maximum principle and the Harnack inequality that

sup
Ωl

|uk − uj | . (uk − uj)(A+
cl,Λ), if k > j � l,

for some constant c = c(m,κ,M). In particular, u can be constructed as the monotone and
uniform limit of {uk} as k →∞ on the closure of Ωl for each l ≥ 1. Furthermore and similarly,
by the maximum principle and the Riesz representation theorem we deduce that

u(Z, t) =

∫∫
∂Ω
ϕ(Z̃, t̃) dω(Z, t, Z̃, t̃),

for all (Z, t) ∈ Ω, where {ω(Z, t, ·) | (Z, t) ∈ Ω} is a family of Borel regular probability measures
on ∂Ω. This finishes the proof of Theorem 3.1. �

We next prove the following version of the weak maximum principle in unbounded Lipschitz
domains used in the proof of the uniqueness part of Theorem 3.1.

Lemma 6.2. Let Ω be a Lipschitz domain. Let u ∈ C2(Ω) ∩ C(Ω) be such that

(6.5)

{
Lu = 0 in Ω,

u ≤ 0 on ∂Ω.

Then u ≤ 0 in Ω.

Proof. We can without loss of generality assume that (0, 0) ∈ ∂Ω. Consider Qρ = Qρ(0, 0),
Ωρ = Ω ∩Qρ, for ρ > 0. Let R > 0 and

M := max
Ω2R

u.

We let Ã be a smooth matrix-valued function such that

Ã(Z, t) =

{
A(Z, t), if (Z, t) ∈ QR
Im, if (Z, t) ∈ RN+1\Q2R.

Then, using (1.11) we see that if R is large enough then Ã ≡ A on RN+1. We fix R so

large that this holds. Then Ã is constant and equal to the m × m identity matrix outside
the cube Q2R. Ã defines the operator L̃ which coincides with L on RN+1 and in particular
with K outside Q2R. Let ε > 0 be given and assume that u ≥ 2ε at some point in Ω. Note
that the maximum principle that we are to prove is known to hold for K. Therefore, using
Theorem 3.2 and estimates for the fundamental solution, see Lemma 4.17, we see that there
exists 0 < δ = δ(ε,M)� 1 such that u < ε in Ω\UR,δ, where

UR,δ := ΩR/δ ∩ {(Z, t) = (x, xm, y, ym, t) ∈ RN+1 | xm > ψ(x, y, ym, t) + δ}.
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Hence u ≥ 2ε at some point in UR,δ. However, applying Lemma 4.1 we see u ≤ ε in UR,δ, which
yields a contradiction. Hence u ≤ 0 in Ω and the proof is complete. �

Recall that the operator adjoint to L is

(6.6) L∗ = ∇X · (A(X,Y, t)∇X)−X · ∇Y + ∂t.

In the case of the adjoint operator L∗ we denote the associated Kolmogorov boundary of Ωr

by ∂∗KΩr. Lemma 6.1 and Theorem 3.1 then apply to L∗ subject to the natural modifications.
In particular, the following is true.

Theorem 6.1. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Given ϕ ∈ C0(∂Ω),
there exists a unique weak solution u = uϕ, u ∈ C(Ω̄), to the Dirichlet problem{

L∗u = 0 in Ω,

u = ϕ on ∂Ω.

Furthermore, there exists, for every (Z, t) = (X,Y, t) ∈ Ω, a unique probability measure
ω∗(Z, t, ·) on ∂Ω such that

u(Z, t) =

∫∫
∂Ω
ϕ(Z̃, t̃) dω∗(Z, t, Z̃, t̃).

The measure ω∗(Z, t, E) is referred to as the parabolic measure associated to L∗ in Ω and at
(Z, t) ∈ Ω and of E ⊂ ∂Ω.

Definition 6. Let (Z, t) ∈ Ω. Then ω(Z, t, ·) is referred to as the parabolic or Kolmogorov
measure associated to L relative to (Z, t) and Ω, and ω∗(Z, t, ·) is referred to as the (adjoint)
parabolic or Kolmogorov measure associated to L∗ relative to (Z, t) and Ω.

7. Proof of theorem 3.3

To prove Theorem 3.3 it suffices, by a simple argument as in the proof of Theorem 1.1 in [9],
to prove the following proposition.

Proposition 7.1. Ω ⊂ RN+1 is a Lipschitz domain with Lipschitz constant M . Let (Z0, t0) ∈
∂Ω, r > 0, and let Λ, c0, η, ρ0, ρ1, be chosen in accordance with Remark 4.2. Assume that u is
a non-negative weak solution to Lu = 0 in Ω2r(Z0, t0) vanishing continuously on ∆2r(Z0, t0).
Then

sup
Ω2ρ/c(Z0,t0)

u . u(A+
ρ,Λ(Z0, t0)),

for all 0 < ρ < ρ1.

Proof. Without loss of generality we may assume that (Z0, t0) = (0, 0), r = 1. Fix 0 < ρ < ρ1.
By Lemma 4.12, we have for, any 0 < τ < 1, that A+

(1−τ)ρ,Λ = A+
(1−τ)ρ,Λ(0, 0) is a point on

an admissible path starting at A+
ρ,Λ = A+

ρ,Λ(0, 0). Moreover, A+
(1−τ)ρ,Λ is an interior point of

the propagation set AA+
ρ,Λ

(
C+
ρ,η,Λ(0, 0)

)
as defined in Definition 1. Hence, for τ ∈ (0, 1/4] fixed,

there exists ε = ε(τ) > 0 such that

K := Qε

(
A+

(1−τ)ρ,Λ

)
⊂ Int

(
AA+

ρ,Λ

(
C+
ρ,η,Λ(0, 0)

))
.
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By Lemma 4.9 there then exists a constant cK = cK(m,κ,M, τ) such that

sup
K
u ≤ cKu(A+

ρ,Λ).

Note that we can, due to linearity of L, without loss of generality assume that cKu(A+
ρ,Λ) = 1

and hence

(7.1) sup
K
u ≤ 1.

Furthermore, using the continuity of the function (Z, t) 7→ A+
(1−τ)ρ,Λ(Z, t) we can conclude there

exists ε1 = ε1(m,M, τ), 0 < ε1 < 1 such that

(7.2) A+
(1−τ)ρ,Λ(Z, t) ∈ K, whenever (Z, t) ∈ ∆ε1 .

To proceed we fix 0 < θ < 1 to satisfy 0 < θ < c−γ , where c is the constant in (2.10), and γ
is as in Lemma 4.16. We then choose (ε0, σ, λ) subject to the restriction

ε0 < min

{
ρ1, ε1, (1− τ)ρ,

1

c2
Mc

,
1

c̃(1− τ)ρc0

}
,

σ < min

{
1,

1

2c0cMc
,
cM
c0

}
,

λ > max

{
1, c1(2cMcc)γ , c1

(
cMc3

(
1 + 2c

)
2c0

ε0(1− cθ
1
γ )

)γ}
,

(7.3)

where c̃ is the constant appearing in Lemma 4.13, cM is the constant appearing in (4.3), ε1 is
as in (7.2), c1 is the constant c in Lemma 4.16, and c is the constant appearing in Lemma 5.2.

Suppose now that there exists a point (Z1, t1) ∈ Ωσε0
cM

= Ωσε0
cM

(0, 0) such that

(7.4) u(Z1, t1) > λ.

The idea of the argument is to, based on the assumption in (7.4), derive contradiction to the
assumption that u is continuous up to the boundary. Note that (4.3) and the choice of σ in
(7.3) imply that

(7.5) (Z1, t1) ∈ Ω ε0
c0

∩Qσε0 .

To complete the argument by contradiction it suffices to prove the following claim.

Claim: If (7.4) holds, then there exists a sequence of points {Zj , tj}∞j=1 ⊂ Ω ε0
c0

, such that

u(Zj , tj) > λθ1−j ,

and such that

(7.6) d((Zj , tj),∆ε0)→ 0, as j →∞.

Proof of the claim. We are going to use induction to prove that there exists a sequence
{Zj , tj}∞j=1 such that for every j ∈ N, we have

(7.7) (Zj , tj) ∈ Ω ε0
c0

and u(Zj , tj) > λθ1−j .

To proceed by induction, we first note that by our choice of (Z1, t1), (7.7) holds for j = 1.
Next, assume that (7.7) holds for j = k. Using Lemma 4.13 and that ε0c

−1
0 < ρ1, we deduce
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that there exist (Ẑk, t̂k) ∈ ∆ε0 and ρ̂k <
cε0

c0(1−τ)ρ < 1 such that (Zk, tk) = A+
ρ̂k(1−τ)ρ,Λ(Ẑk, t̂k).

Note that A+
(1−τ)ρ(Ẑk, t̂k) ∈ K, by (7.2) since ε0 < ε1. Using Lemma 4.16 we see that

(7.8) λθ1−k < u(Zk, tk) = u(A+
ρ̂k(1−τ)ρ,Λ(Ẑk, t̂k)) ≤ c1

(
(1− τ)ρ

d

)γ
u(A+

(1−τ)ρ,Λ(Ẑk, t̂k)),

where d = d((Zk, tk), ∂Ω). In particular, using that d ≤ d((Zk, tk), (Ẑk, t̂k)), (7.8), (7.1), and
that (1− τ)ρ < 1, we see that

(7.9) ρk := d((Zk, tk), (Ẑk, t̂k)) < c
1
γ

1 λ
− 1
γ θ

k−1
γ .

We now want to apply Lemma 5.2, but to do that we first have to show that

(7.10) ∂Ω ∩Q2cρk(Ẑk, t̂k) ⊂ ∆2.

By using (2.10), (7.9), and (4.3), we see that for any (Z, t) ∈ Q2cρk(Ẑk, t̂k) we have

d((Z, t), (0, 0)) ≤ c(d((Z, t), (Ẑk, t̂k)) + d((Ẑk, t̂k), (0, 0)))

≤ c(2cρk + cM ε0) ≤ 2

cM
,

because of the bounds on ε0 and λ in (7.3). This together with (4.3) proves (7.10). Hence, we
can use Lemma 5.2 to deduce that

λθ1−k < u(Zk, tk) ≤ sup
Ωρk (Ẑk,t̂k)

u ≤ θ sup
Ω2cρk

(Ẑk,t̂k)

u.

In particular, we see that there exists (Zk+1, tk+1) ∈ Ω2cρk(Ẑk, t̂k) such that

λθ−k < u(Zk+1, tk+1),

which is the second statement of (7.7). We need to check that (Zk+1, tk+1) ∈ Ω ε0
c0

. By repeat-

edly using the pseudo-triangular inequality (2.10), we see that

(7.11) d((Zk+1, tk+1), (0, 0)) ≤ c

(
d((Z1, t1), (0, 0)) +

k∑
j=1

cjd((Zj+1, tj+1), (Zj , tj))

)
.

Now, notice that

d((Zj+1, tj+1), (Zj , tj)) ≤ c(d((Ẑj , t̂j), (Zj , tj)) + d((Zj+1, tj+1), (Ẑj , t̂j)))

≤ c(ρj + 2cρj)

≤ c(1 + 2c)c
1
γ

1 λ
− 1
γ θ

j−1
γ ,

where the last inequality follows from (7.9). Plugging this into (7.11), and recalling (7.5) yields

d((Zk+1, tk+1), (0, 0)) ≤ c

(
σε0 + c(1 + 2c)c

1
γ

1(λ θ)
− 1
γ

∞∑
j=1

(
θ

1
γ c
)j)

<
ε0

c0cM
,

due to the choice of σ and λ in (7.3). Using the above and (4.3), we see that

(Zk+1, tk+1) ∈ Q ε0
c0cM

∩ Ω2 ⊆ Ω ε0
c0

.

Hence (7.9) holds for j = k+ 1 and hence, by induction, for all j. Note that (7.9) implies (7.6).
Thus proof of the claim is complete. �
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To complete the proof of Proposition 7.1 we now see that the claim implies a contradiction
as, by continuity, limj→∞ u(Zj , tj) = 0. Hence, (7.4) can not be true and therefore

sup
Ωσε0
cM

u ≤ λcKu(A+
ρ,Λ).

This finishes the proof of the proposition. �

8. Relations for the Kolmogorov measure and the Green function

We define the Green function for L associated to Ω, with pole at (Ẑ, t̂) ∈ Ω, as

G(Z, t, Ẑ, t̂) = Γ(Z, t, Ẑ, t̂)−
∫∫

∂Ω
Γ(Z̃, t̃, Ẑ, t̂) dω(Z, t, Z̃, t̃),(8.1)

where Γ is the fundamental solution to the operator L, see Lemma 4.17. If we instead consider
(Z, t) ∈ Ω as fixed, then, for (Ẑ, t̂) ∈ Ω,

G(Z, t, Ẑ, t̂) = Γ(Z, t, Ẑ, t̂)−
∫∫

∂Ω
Γ(Z, t, Z̃, t̃) dω∗(Ẑ, t̂, Z̃, t̃),(8.2)

where ω∗(Ẑ, t̂, ·) is the (adjoint) parabolic measure associated to L∗ and defined relative to

(Ẑ, t̂) and Ω.

Lemma 8.1. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Let Λ, c0, η, be in
accordance with Remark 4.2. Let (Z0, t0) ∈ ∂Ω and r > 0. Then

rq−2G(Z, t, A+
r,Λ(Z0, t0)) . ω(Z, t,∆r(Z0, t0)),

whenever (Z, t) ∈ Ω, t ≥ 8r2 + t0.

Proof. We can without loss of generality assume that (Z0, t0) = (0, 0). Hence we want to prove
that

rq−2G(Z, t, A+
r,Λ) . ω(Z, t,∆r),

whenever (Z, t) ∈ Ω, t ≥ 8r2.

Let in the following (Z, t) ∈ Ω. By Definition 8.1 we have

(8.3) G(Z, t, A+
r,Λ) = Γ(Z, t, A+

r,Λ)−
∫∫

∂Ω
Γ(Z̃, t̃, A+

r,Λ) dω(Z, t, Z̃, t̃).

Obviously, we have that

G(Z, t, A+
r,Λ) ≤ Γ(Z, t, A+

r,Λ),(8.4)

whenever (Z, t) ∈ Ω. Let 0 < δ � 1, be a degree of freedom such that Qδr(A
+
r,Λ) ⊂ Ω. We

introduce the sets

S1 = {(Z, t) ∈ Ω | t = r2} \Qδr/2(A+
r,Λ),

S2 = {(Z, t) ∈ Ω | t > r2} ∩ ∂(Qδr/2(A+
r,Λ)).

(8.5)

Using (4.55) and (8.4) we see that there exists c = c(m,κ, δ) such that

G(Z, t, A+
r,Λ) ≤ cr−(q−2),(8.6)

when (Z, t) ∈ S2.



32 MALTE LITSGÅRD AND KAJ NYSTRÖM

Next, let v(Z, t) = ω(Z, t,∆r) for (Z, t) ∈ Ω. Then Lv = 0 in Ω, 0 ≤ v(z, t) ≤ 1 in Ω and
v(Z, t) = 1 in ∆r. Hence the function u(Z, t) = 1− v(Z, t) satisfies the assumptions of Lemma
5.2 and it follows that

ω(A+
r/c,Λ,∆r) & 1.(8.7)

We now note that if we choose δ = δ(m,κ,M) sufficiently small, then S2 ⊂ Br/c(A+
r,Λ) where

the constant c = c(m,κ,M, δ) is the one appearing in (4.40) of Lemma 4.14. Then using (8.7),
and apply inequality (i) of (4.40) to the function v(Z, t) = ω(Z, t,∆r), to can conclude that

ω(Z, t,∆r) & 1 whenever (Z, t) ∈ S2.(8.8)

Note that G(Z, t, A+
r,Λ) = 0 if (Z, t) ∈ S1. Hence, from (8.6), (8.8), and from the maximum

principle, it follows that

rq−2G(Z, t, A+
r,Λ) . ω(Z, t,∆r),(8.9)

whenever (Z, t) ∈ Ω ∩ {(Z, t) | t ≥ 8r2}. This completes the proof of the lemma. �

Lemma 8.2. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Let (Z0, t0) ∈ ∂Ω and
r > 0. Then∫∫∫

Ωr(Z0,t0)
|∇X̃G(Z, t, Z̃, t̃)|2 dZ̃ dt̃ .

1

r2

∫∫∫
Ω2r(Z0,t0)

|G(Z, t, Z̃, t̃)|2 dZ̃ dt̃,

whenever (Z, t) ∈ Ω, t ≥ 8r2 + t0.

Proof. We can without loss of generality assume that (Z0, t0) = (0, 0) and we simply write

Ωr = Ωr(Z0, t0). Let u(Z̃, t̃) := G(Z, t, Z̃, t̃). We wish to estimate∫∫∫
Ωr

|∇X̃u(Z̃, t̃)|2 dZ̃ dt̃.

Given ε > 0 we let

Ωε
r := Ωr ∩ {(Z̃, t̃) | d((Z̃, t̃), ∂Ω) > ε}

and

Sε := Ω
ε/2
2r \ Ωε

2r.

Let φr ∈ C∞0 (Q2r) be such that φ1 ≡ 1 in Qr and let ηε ∈ C∞0 (Ω
ε/2
2r ) be such that ηε ≡ 1 in

Ωε
2r. We furthermore choose φr and ηε so that

r|∇Xφr|+ r2|(X · ∇Y − ∂t)φr| . 1,

and

ε|∇Xηε|+ ε2|(X · ∇Y − ∂t)ηε| . 1.

Note ηε can easily be constructed by considering (RN+1, d, dZ dt) as a homogeneous space and
proceeding through a partition of unity associated to Whitney decompositions of Ω, see below.
Using this notation we note that∫∫∫

Ωr

|∇X̃u|2 dZ̃ dt̃ ≤ lim
ε→0

∫∫∫
Ω2r

|∇X̃u(Z̃, t̃)|2(η2
εφ

2
r) dZ̃ dt̃,

and we compute∫∫∫
Ω2r

|∇X̃u(Z̃, t̃)|2(η2
εφ

2
r) dZ̃ dt̃ .

∫∫∫
Ω2r

(A∇X̃u · ∇X̃u)η2
εφ

2
r dZ̃ dt̃
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=

∫∫∫
Ω2r

A∇X̃u · ∇X̃(uη2
εφ

2
r) dZ̃ dt̃

−
∫∫∫

Ω2r

A∇X̃u · u∇X̃(η2
εφ

2
r) dZ̃ dt̃ =: I1,ε + I2,ε.

We first consider I1,ε and we note that uη2
εφ

2
r is a valid test function in the weak formulation

for L∗u = 0 in Ωr, as A is assumed to be smooth. Therefore, using that L∗u = 0 in Ωr, and by
the properties of ηε and φr, we have

|I1,ε| .
∫∫∫

Ω2r

u2|(X̃ · ∇Ỹ − ∂t̃)(η2
εφ

2
r)| dZ̃ dt̃

.
1

ε2

∫∫∫
Sε

u2φ2
r dZ̃ dt̃+

1

r2

∫∫∫
Ω2r

u2 dZ̃ dt̃.

(8.10)

Let

Jε :=
1

ε2

∫∫∫
Sε

u2φ2
r dZ̃ dt̃.

Now, applying Theorem 3.2, the adjoint version of Theorem 3.3, and using (4.55) and (8.4),
we see that

Jε .
1

ε2

∫∫∫
Ω2r

|G(Z, t, Z̃, t̃)|2χSε dZ̃ dt̃

.
1

ε2

( ε
r

)α
sup

(Z0,t0)∈∆2r

G(Z, t, A−r,Λ(Z0, t0))

∫∫∫
Sε

G(Z, t, Z̃, t̃) dZ̃ dt̃

.
1

ε2

( ε
r

)α
r−q+2

∫∫∫
Sε

G(Z, t, Z̃, t̃) dZ̃ dt̃.

Now, using that (RN+1, d, dZ dt) is a homogeneous space, let Wε = {Ij}j be a covering of Sε
with Whitney cubes {Ij} such that |Ij | . εq. Let (Zj , tj) ∈ ∂Ω be a point on ∂Ω closest to Ij
as measured by d. For (Z̃, t̃) ∈ Ij we have, by Theorem 3.3 and Lemma 8.1, that

G(Z, t, Z̃, t̃) . G(Z, t, A+
cε,Λ(Zj , tj)) . ε

−q+2ω(Z, t,∆cε(Zj , tj)),

where c = c(m,κ,M), 1 ≤ c <∞. Hence∫∫∫
Sε

G(Z, t, Z̃, t̃) dZ̃ dt̃ .
∑
Ij∈Wε

|Ij |ε−q+2ω(Z, t,∆cε(Zj , tj))

.
∑
Ij∈Wε

ε2ω(Z, t,∆cε(Zj , tj)) . ε
2.

We can conclude that

Jε .
( ε
r

)α
r−q+2 → 0, as ε→ 0,

and that the estimate of I1,ε is complete.

Now we turn our attention to the term I2,ε and in this case we immediately see using Cauchy
Schwarz that

I2,ε . ε̃
∫∫∫

Ω2r

|∇X̃u(Z̃, t̃)|2(η2
εφ

2
r) dZ̃ dt̃

+ ε̃−1

(
1

ε2

∫∫∫
Sε

u2φ2
r dZ̃ dt̃+

1

r2

∫∫∫
Ω2r

u2 dZ̃ dt̃

)
,
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where ε̃ is a degree of freedom. Hence we can reuse the estimates starting from (8.10) to
complete the estimate of I2,ε and hence to complete the proof of the lemma. �

Lemma 8.3. Given θ ∈ C∞0 (RN+1) we have the representation formulas

θ(Z, t) =

∫∫
∂Ω
θ(Z̃, t̃) dω(Z, t, Z̃, t̃)−

∫∫∫
Ω
A∇X̃G(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃) dZ̃ dt̃

+

∫∫∫
Ω
G(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃,

θ(Ẑ, t̂) =

∫∫
∂Ω
θ(Z̃, t̃) dω∗(Ẑ, t̂, Z̃, t̃)−

∫∫∫
Ω
A∇XG(Z, t, Ẑ, t̂)∇Xθ(Z, t) dZ dt

+

∫∫∫
Ω
G(Z, t, Ẑ, t̂)(−X · ∇Y + ∂t)θ(Z, t) dZ dt,

whenever (Z, t), (Ẑ, t̂) ∈ Ω.

Proof. We introduce Ĝ(Z, t, Z̃, t̃) := Γ(Z, t, Z̃, t̃)− V (Z, t, Z̃, t̃), where

V (Z, t, Z̃, t̃) =

{∫∫
∂Ω Γ(Ẑ, t̂, Z̃, t̃) dω(Z, t, Ẑ, t̂), if (Z̃, t̃) ∈ Ω

Γ(Z, t, Z̃, t̃), if (Z̃, t̃) ∈ RN+1\Ω.

Using the maximum principle we see that

Γ(Z, t, Z̃, t̃) =

∫∫
∂Ω

Γ(Ẑ, t̂, Z̃, t̃) dω(Z, t, Ẑ, t̂),

whenever (Z, t) ∈ Ω and (Z̃, t̃) ∈ RN+1\Ω. Then, using Lemma 8.2 we see that∫∫∫
Ω
A∇X̃G(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃)−G(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃

=

∫∫∫
RN+1

A∇X̃Ĝ(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃)− Ĝ(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃.

Using the definition of Ĝ, properties of Γ, and Fubini’s theorem we see that the integral in the
last display equals

−θ(Z, t) +

∫∫
∂Ω

(∫∫∫
RN+1

A∇X̃Γ(Ẑ, t̂, Z̃, t̃)∇X̃θ(Z̃, t̃)

− Γ(Ẑ, t̂, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃

)
dω(Z, t, Ẑ, t̂)

which, again by properties of Γ, equals

−θ(Z, t) +

∫∫
∂Ω
θ(Ẑ, t̂) dω(Z, t, Ẑ, t̂).

This finishes the proof of the first formula. The proof of the second formula is analogous. �



POTENTIAL THEORY FOR OPERATORS OF KOLMOGOROV TYPE 35

Using Lemma 8.3 we see, in particular, that∫∫
∂Ω
θ(Z̃, t̃) dω(Z, t, Z̃, t̃) =

∫∫∫
Ω
A∇X̃G(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃) dZ̃ dt̃

−
∫∫∫

Ω
G(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃,∫∫

∂Ω
θ(Z̃, t̃) dω∗(Ẑ, t̂, Z̃, t̃) =

∫∫∫
Ω
A∇XG(Z, t, Ẑ, t̂)∇Xθ(Z, t) dZ dt

−
∫∫∫

Ω
G(Z, t, Ẑ, t̂)(−X · ∇Y + ∂t)θ(Z, t) dZ dt,

whenever θ ∈ C∞0 (RN+1 \ {(Z, t)}) and θ ∈ C∞0 (RN+1 \ {(Ẑ, t̂)}), respectively.

Lemma 8.4. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Let Λ, c0, η, be in
accordance with Remark 4.2. Let (Z0, t0) ∈ ∂Ω and r > 0. There exists c = c(m,κ,M),
1 ≤ c <∞, such that

ω(Z, t,∆r/c(Z0, t0)) . rq−2G(Z, t, A−r,Λ(Z0, t0)),

whenever (Z, t) ∈ Ω, t ≥ 8r2 + t0.

Proof. We can without loss of generality assume that (Z0, t0) = (0, 0). Hence we want to prove
that there exists c = c(m,κ,M), 1 ≤ c <∞, such that

ω(Z, t,∆r/c) . r
q−2G(Z, t, A−r,Λ),

whenever (Z, t) ∈ Ω, t ≥ 8r2.

Let (Z, t) ∈ Ω∩{(Z, t) | t ≥ 8r2} and let δ, 0 < δ � 1, be a degree of freedom to be chosen.
Given δ, we let θ ∈ C∞(RN+1) be such that θ ≡ 1 on the set Qδr/2, θ ≡ 0 on the complement
of Q3δr/4, and such that

(δr)|∇Xθ|+ (δr)2|(X · ∇Y − ∂t)θ| . 1.

By the definition of θ we have

ω(Z, t,∆δr/2) ≤
∫∫

∂Ω
θ(Z̃, t̃) dω(Z, t, Z̃, t̃).(8.11)

By the representation formula of Lemma 8.3,

θ(Z, t) =

∫∫
∂Ω
θ(Z̃, t̃)dω(Z, t, Z̃, t̃)−

∫∫∫
A∇X̃G(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃) dZ̃ dt̃

+

∫∫∫
Ω
G(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃.

By construction θ(Z, t) = 0 whenever (Z, t) ∈ Ω∩{(Z, t) | t ≥ 8r2}, and hence through the last
two displays we deduce that

ω(Z, t,∆δr/2) ≤
∣∣∣∣ ∫∫∫ A∇X̃G(Z, t, Z̃, t̃)∇X̃θ(Z̃, t̃) dZ̃ dt̃

∣∣∣∣
+

∣∣∣∣ ∫∫∫
Ω
G(Z, t, Z̃, t̃)(X̃ · ∇Ỹ − ∂t̃)θ(Z̃, t̃) dZ̃ dt̃

∣∣∣∣.(8.12)
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In particular, Cauchy-Schwarz, and (8.12) yields

ω(Z, t,∆δr/2) . (δr)
q−2

2

(∫∫∫
Ωδr

|∇X̃G(Z, t, Z̃, t̃)|2 dZ̃ dt̃

) 1
2

+ (δr)
q−4

2

(∫∫∫
Ωδr

|G(Z, t, Z̃, t̃)|2 dZ̃ dt̃

) 1
2

.

(8.13)

Using Lemma 8.2 with r replaced by δr we obtain∫∫∫
Ωδr

|∇X̃G(Z, t, Z̃, t̃)|2 dZ̃ dt̃ .
1

(δr)2

∫∫∫
Ω2δr

|G(Z, t, Z̃, t̃)|2 dZ̃ dt̃.

Using this inequality, and (8.13), we have

ω(Z, t,∆δr/2) . (δr)
q−4

2

(∫∫∫
Ωδr

|G(Z, t, Z̃, t̃)|2 dZ̃ dt̃

) 1
2

.(8.14)

To complete the proof we now use the adjoint version of Theorem 3.3 and deduce

ω(Z, t,∆δr/2) . (δr)q−2G(Z, t, A−cδr,Λ),

and this completes the proof of the lemma if we choose δ = δ(m,κ,M) small. �

9. A Weak comparison principle and its consequences

In this section we prove the following lemma.

Lemma 9.1. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M . Let (Z0, t0) ∈ ∂Ω, r > 0
and let Λ, c0, η, ρ0 = r/c0, ρ1 = ρ0/c0 be in accordance with Remark 4.2. Assume that u and v
are non-negative weak solutions to Lu = 0 in Ω2r(Z0, t0) and that u and v vanish continuously
on ∆2r(Z0, t0). Then there exists c = c(m,κ,M), 1 ≤ c <∞, such that

(9.1)
v(A−ρ,Λ(Z0, t0))

u(A+
ρ,Λ(Z0, t0))

.
v(Z, t)

u(Z, t)
.
v(A+

ρ,Λ(Z0, t0))

u(A−ρ,Λ(Z0, t0))
,

whenever (Z, t) ∈ Ωρ/c(Z0, t0) and 0 < ρ ≤ ρ1.

Proof. Again we can without loss of generality assume that (Z0, t0) = (0, 0) and we let Ω2r =
Ω2r(Z0, t0), ∆r = ∆r(Z0, t0), and A±ρ,Λ = A±ρ,Λ(Z0, t0).

Let 0 < ε� 1 be a degree of freedom only depending on m and M and consider the set

∆6ερ\∆4ερ.

Claim 1: There exist 0 < δ � 1, only depending on m and M , and a set of points {(Zi, ti)}Li=1
with (Zi, ti) ∈ ∆6ερ\∆4ερ such that

(9.2) {∆δερ(Zi, ti)}Li=1 is a covering of ∆6ερ\∆4ερ,

and such that

(9.3) ∆δερ/λ(Zi, ti) ∩∆δερ/λ(Zj , tj) = ∅ whenever i 6= j,
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for some λ(m,M, c) ≥ 1, where c is the constant from (2.10). Furthermore, this covering can
be constructed so that

(9.4)
L∑
i=1

ω(Z, t,∆δερ(Zi, ti)) & 1,

whenever

(9.5) (Z, t) ∈ ∂Ω5ερ ∩ {(Z, t) ∈ Ω2r | d((Z, t),∆2r) ≤ δ2ερ}.

Proof of the claim. The claim follows immediately from a standard Vitali covering argument,
Lemma 5.2 and the same argument as in the proof of (8.7). �

Based on {(Zi, ti)}Li=1 we introduce the function

(9.6) Ψ(Z, t) :=

L∑
i=1

ω(Z, t,∆δερ(Zi, ti)) + (ερ)q−2G(Z, t, A−Kερ,Λ),

where K � 1 is an additional degree of freedom to be chosen. We now partition the boundary
of Ω5ερ into the sets

Σ1 := ∂Ω5ερ ∩ {(Z, t) ∈ Ω2r | d((Z, t),∆2r) ≤ δ2ερ},
Σ2 := ∂Ω5ερ ∩ {(Z, t) ∈ Ω2r | d((Z, t),∆2r) > δ2ερ}.

(9.7)

Note that Σ1 is the part of the boundary of Ω5ερ which is close to ∂Ω5ερ ∩ ∂Ω and Σ2 is the
remaining part.

By the construction of the covering above, in particular using (9.4), we see that

(9.8) Ψ(Z, t) & 1,

whenever (Z, t) ∈ Σ1. To estimate Ψ on Σ2 we prove the following claim.

Claim 2: There exist K � 1, depending at most on m, κ and M , such that

(9.9) (ερ)q−2G(Z, t, A−Kερ,Λ) ≥ c−1 for all (Z, t) ∈ Σ2.

Proof of the claim. Suppose (Z, t) ∈ Σ2. It follows from Lemma 4.16 that there exists K � 1,
depending at most on m, κ and M , such that

(9.10) (ερ)q−2G(Z, t, A−Kερ,Λ) & (ερ)q−2G(A−Kερ/λ,Λ, A
−
Kερ,Λ).

Therefore the claim follows if we can show that

(9.11) (ερ)q−2G(A−Kερ/λ,Λ, A
−
Kερ,Λ) & 1.

To prove this, let G̃ be the Green function for the set Q4ερ(A
−
kερ,Λ). Then by scaling, and the

continuity of G close to A−Kερ,Λ, we can conclude that there exists η̃ = η̃(m), 0 < η̃ � 1, such
that

(ερ)q−2G̃(A−K(1−η̃)ερ,Λ, A
−
Kερ,Λ) & 1.

Therefore, by the maximum principle,

(ερ)q−2G(A−K(1−η̃)ερ,Λ, A
−
Kερ,Λ) & 1.
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Finally, by the Harnack inequality, see Lemma 4.15, we obtain

(9.12) (ερ)q−2G(A−Kερ/λ,Λ, A
−
Kερ,Λ) & (ερ)q−2G(A−K(1−η̃)ερ,Λ, A

−
Kερ,Λ) & 1,

and the claim is proved. �

Using (9.9) we can conclude Ψ(Z, t) ≥ c−1, when (Z, t) ∈ ∂Ω5ερ. Furthermore, applying
Theorem 3.3 we also see that we can without loss of generality assume that K is such that

(9.13) v(Z, t) . v(A+
Kερ,Λ),

when (Z, t) ∈ Ω6ερ. Hence, v is assumed to vanish on ∆2r it follows from the maximum principle
and (9.13) that

(9.14) v(Z, t) . v(A+
Kερ,Λ)Ψ(Z, t),

whenever (Z, t) ∈ Ω5ερ.

Having established an estimate on v from above, we now need to establish an estimate on u
from below. We proceed by arguing similarly to the proof of Lemma 8.1. We define the two
sets

S1 := {(Z, t) ∈ Ω2r | t = −(kερ)2}\Qδρ/2(A−Kερ,Λ),

S2 := {(Z, t) ∈ Ω2r | t > −(kερ)2} ∩ ∂Qδρ/2(A−Kερ,Λ),
(9.15)

and as in the proof of Lemma 8.1, see (8.6), we obtain

(9.16) c−1(ερ)q−2G(Z, t, A−Kερ,Λ) ≤ 1, for all (Z, t) ∈ Ω5ερ.

Note that we can choose δ � 1 so that the closure of Qδρ/2(A−Kερ,Λ) is contained in the cone

C−Kερ,η,Λ(0, 0). Using this, continuity of u, and the maximum principle, we have

(9.17) u(Z, t) & (ερ)q−2G(Z, t, A−Kερ,Λ)u(A−Kερ,Λ),

when (Z, t) ∈ Ω5ερ.

Claim 3:

(9.18) (ερ)q−2G(Z, t, A−Kερ,Λ) & Ψ(Z, t),

whenever (Z, t) ∈ ∂Ωερ.

Proof of the claim. By arguing as in the proof of Lemma 8.4 we deduce that

(9.19) ω(Z, t,∆δερ(Zi, ti)) . (ερ)q−2G(Z, t, A−Kερ,Λ),

whenever (Z, t) ∈ ∂Ωερ and for all i = 1, ...., L. This yields (9.18) by construction. �

Combining Claim 3 and (9.17) we first obtain the estimate

(9.20) u(Z, t) & u(A−Kερ,Λ)Ψ(Z, t),

when (Z, t) ∈ Ωερ. Using this in combination with (9.14) we can conclude that

(9.21) u(Z, t) &
u(A−Kερ,Λ)

v(A+
Kερ,Λ)

v(Z, t),

Finally, putting ε = 1
K completes the proof of the lemma in one direction. The proof on the

other direction follows by simply interchanging u and v. �
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Lemma 9.2. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). Let (Z0, t0) ∈ ∂Ω, r > 0 and let Λ, c0, η, ρ0 = r/c0, ρ1 = ρ0/c0 be in accordance with
Remark 4.2. Assume that u is a non-negative weak solutions to Lu = 0 in Ω2r(Z0, t0) and that
u vanishes continuously on ∆2r(Z0, t0). Define y0

m through (Z0, t0) = (x0, x0
m, y

0, y0
m, t

0). Then
there exists c = c(m,κ,M), 1 ≤ c <∞, such that

u(A−ρ0,Λ
(Z0, t0))

u(A+
ρ0,Λ

(Z0, t0))
.
u(x, xm, y, y

0
m, t)

u(x, xm, y, ym, t)
.
u(A+

ρ0,Λ
(Z0, t0))

u(A−ρ0,Λ
(Z0, t0))

,(9.22)

whenever (x, xm, y, ym, t) ∈ Ωρ1/c(Z0, t0).

Proof. Again we can without loss of generality assume that (Z0, t0) = (0, 0) and we let Ω2r =
Ω2r(Z0, t0), ∆r = ∆r(Z0, t0), and A±ρ,Λ = A±ρ,Λ(Z0, t0).

We fix 0 < ε0 � 1 and consider ũ(Z, t) = u(x, xm, y, ym + ε3r3, t), with ε ∈ (−ε0, ε0). Put

r̃ =
r(1− ε)

4
.

Then ũ is a solution to Lu = 0 in Ω2r̃, and since Ω2r is ym-independent ũ vanishes continuously
on ∆2r̃. Using this and that Ω2r̃ ⊂ Ω2r we can apply Lemma 9.1 to the functions u and v = ũ
in Ω2r̃ to obtain

(9.23)
ũ(A−ρ̃1,Λ

)

u(A+
ρ̃1,Λ

)
.
ũ(Z, t)

u(Z, t)
.
ũ(A+

ρ̃1,Λ
)

u(A−ρ̃1,Λ
)
,

for all (Z, t) ∈ Ωρ̃1/c, ρ̃1 = ρ̃0/c0 = r̃/c2
0. As, by definition, ρ̃1 ≤ ρ̃0, it follows immediately from

Lemma 4.14 that

u(A+
ρ̃1,Λ

) . cu(A+
ρ̃0,Λ

), u(A−ρ̃1,Λ
) & u(A−ρ̃0,Λ

),(9.24)

as the constant appearing in Lemma 4.14 depends on m κ, M and δ, and with δ in this case
fixed as δ = 1/c0, where 1 ≤ c0 < ∞ is the constant associated to Ω2r̃ in accordance with
Remark 4.2.

Next, note that given a small degree of freedom 0 < δ � 1, if ε ≤ ε0 ≤ δ/c2
0, then we

obviously have

A+
ρ̃1,Λ

+ (0, 0, 0, ε3r3, 0) ∈ Qδρ̃1(A+
ρ̃1,Λ

),

A−ρ̃1,Λ
+ (0, 0, 0, ε3r3, 0) ∈ Qδρ̃1(A−ρ̃1,Λ

).
(9.25)

We can now choose δ, depending on m, κ, M and c0, so that we again can apply Lemma 4.14
to conclude that

ũ(A+
ρ̃1,Λ

) ≤ sup
Qδρ̃1 (A+

ρ̃1,Λ
)

u . u(A+
ρ̃0,Λ

),

ũ(A−ρ̃1,Λ
) ≥ inf

Qδρ̃1 (A−ρ̃1,Λ
)
u & u(A−ρ̃0,Λ

).
(9.26)

By combining this with (9.23) the lemma follows. �

Lemma 9.3. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). Let (Ẑ0, t̂0) ∈ ∂Ω, r > 0 and let Λ, c0, η, ρ0 = r/c0, ρ1 = ρ0/c0 be in accordance with
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Remark 4.2. Assume that u is a non-negative weak solutions to Lu = 0 in Ω2r(Ẑ0, t̂0) and that

u vanishes continuously on ∆2r(Ẑ0, t̂0). Let

m+ = u(A+
ρ0,Λ

(Ẑ0, t̂0)), m− = u(A−ρ0,Λ
(Ẑ0, t̂0)),

and assume that m− > 0. Then there exist constants 1 ≤ c1(m,κ,M) < ∞ and 1 ≤
c2(m,κ,M,m+/m−) <∞, such that

(9.27) u(A−ρ,Λ(Z0, t0)) ≤ c2u(Aρ,Λ(Z0, t0)) ≤ c2
2u(A+

ρ,Λ(Z0, t0)),

whenever 0 < ρ < ρ1/c1 and (Z0, t0) ∈ ∆ρ1(Ẑ0, t̂0).

Proof. We start by noticing that the path

γ(τ) := (Z0, t0) ◦ (0,Λρ, 0, τΛρ,−τ), τ ∈
[
0, ρ2

]
is admissible and that

γ(0) = Aρ,Λ(Z0, t0),

γ(ρ2) = (Z0, t0) ◦ (0,Λρ, 0,Λρ3,−ρ2).

Furthermore, by (2.14) and as Ω is ym-independent we have by construction that

γ
([

0, ρ2
])
⊂ Ω2r(Ẑ0, t̂0).

By constructing a Harnack chain we can deduce, using Lemma 4.7, that

(9.28) u(γ(ρ2)) . u(Aρ,Λ(Z0, t0)).

Noting that A−ρ,Λ(Z0, t0) and γ(ρ2) only differ in the ym-coordinate and applying Lemma 9.2
we obtain

(9.29)
m−

m+
.

u(γ(ρ2))

u(A−ρ,Λ(Z0, t0))
.
m+

m−
,

when 0 < ρ < ρ1/c. The above inequality together with (9.28) yields that

u(A−ρ,Λ(Z0, t0)) .
m+

m−
u(Aρ,Λ(Z0, t0)),

when 0 < ρ < ρ1/c. This proves the first part of (9.27), and the second part is proven in
analogy. We omit further details. �

10. Proof of theorem 3.4

To prove Theorem 3.4 it suffices to prove the following lemma.

Lemma 10.1. Let Ω ⊂ RN+1 be a Lipschitz domain with constant M and assume in addition
(3.4). Let (Z0, t0) ∈ ∂Ω, r > 0 and let Λ, c0, η, ρ0 = r/c0 be in accordance with Remark 4.2.
Assume that u is a non-negative solution to Lu = 0 in Ω2r(Z0, t0), vanishing continuously on
∆2r(Z0, t0). Let

m+ = u(A+
ρ0,Λ

(Z0, t0)), m− = u(A−ρ0,Λ
(Z0, t0)),(10.1)

and assume that m− > 0. Then there exist constants c1 = c1(m,κ,M), 1 ≤ c1 < ∞, c2 =
c2(m,κ,M,m+/m−), 1 ≤ c2 <∞, such that if we let ρ1 = ρ0/c1, then

u(Z, t) ≤ c2u(Aρ,Λ(Z0, t0)),

whenever (Z, t) ∈ Ωρ/c1(Z0, t0), and 0 < ρ < ρ1.
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Proof. We will assume that (Z0, t0) = (0, 0). To prove the lemma we have to show that there
exist constants 1 ≤ c1 < ∞ depending only on m, κ and M , and 1 ≤ c2 < ∞ depending only
on m, κ, M and m+/m−, such that

u(Z, t) ≤ c2u(Aρ,Λ),

when (Z, t) ∈ Ωρ/c1 and 0 < ρ < ρ1. Let ρ0 be defined as in the statement of the lemma, and
let ρ, 0 < ρ < ρ1, be fixed. Consider the number

(10.2) ρ∗ := max{ρ̃ | ρ ≤ ρ̃ ≤ ρ0, φ(ρ̃) ≥ φ(ρ)},
where

(10.3) φ(ρ̃) := ρ̃−γu(A+
ρ̃,Λ),

and where γ is the constant in Lemma 4.15. Then

(10.4) u(A+
ρ,Λ) ≤

(
ρ

ρ∗

)γ
u(A+

ρ∗,Λ).

From Lemma 4.15 we obtain

(10.5) u(A−ρ∗,Λ) ≤ c
(
ρ∗

ρ

)γ
u(A−ρ,Λ).

We prove the following claim.

Claim: There exists a constant c = c(m,κ,M,m+/m−), 1 ≤ c <∞, such that

(10.6) u(A+
ρ∗,Λ) ≤ cu(A−ρ∗,Λ).

Proof of the claim. Let K � 1 be a large degree of freedom. We consider two cases.

Case 1: ρ0

8K < ρ∗. In this case the claim is trivial in the sense that Lemma 4.15 yields

u(A+
ρ∗,Λ)

u(A−ρ∗,Λ)
.

(
ρ0

ρ∗

)2γ u(A+
ρ0,Λ

)

u(A−ρ0,Λ
)
,

so that

u(A+
ρ∗,Λ) .

m+

m−

(
ρ0

ρ∗

)2γ

u(A−ρ∗,Λ).

Case 2: ρ0

8K ≥ ρ∗. In this case we first note, by the definition of ρ∗, that ρ < ρ∗ < ρ0 and as
ρ∗ < 2Kρ∗ < ρ0 it follows from the definition of ρ∗ that

u(A+
ρ∗,Λ) > (2K)−γu(A+

2Kρ∗,Λ).

Using this inequality and applying Theorem 3.3 we see that

(10.7) c−1(2K)−γ sup
Ω2Kρ∗/c

u ≤ u(A+
ρ∗,Λ),

for some 1 ≤ c <∞ depending on m, κ and M . By dilation we can from now on and without
loss of generality assume that ρ∗ = 1 and we put K̃ := K/c. Then (10.7) states that

(10.8) c̃−1(2K̃)−γ sup
U2K̃

u ≤ u(A+
1,Λ),
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for some 1 ≤ c̃ < ∞ depending on m, κ and M and where UR for 0 < R < ∞ is the thin in
time cylinder

(10.9) UR := ΩR ∩ {(Z, t) ∈ RN+1 | −4 < t < 1}.
We may also assume, without loss of generality, that

sup
U2K̃

u = 1,

which transforms (10.8) into

(10.10) u(A+
1,Λ) ≥ c̃−1(2K̃)−γ .

We define

Σ−
K̃

:= (∂KU2K̃) ∩ {(Z, t) ∈ RN+1 | t = −4},
Σint
K̃

:= ((∂KU2K̃)\Σ−
K̃

)\∆2K̃ .
(10.11)

Then, given a weak solution u to Lu = 0 in Ω2K̃ , vanishing continuously on ∆2K̃ , we have by
Theorem 3.1 that if (Z, t) ∈ U2K̃ , then

(10.12) u(Z, t) =

∫∫
Σ−
K̃

u(Z̃, t̃) dω(Z, t, Z̃, t̃) +

∫∫
Σint
K̃

u(Z̃, t̃) dω(Z, t, Z̃, t̃).

Using (10.12), applying Lemma 10.2 stated and proved below, and (10.10) we see that

u(A+
1,Λ) ≤

∫∫
Σ−
K̃

u(Z, t) dω(A+
1,Λ, Z, t) +

1

2
c̃−1(2K̃)−γ

≤
∫∫

Σ−
K̃

u(Z, t) dω(A+
1,Λ, Z, t) +

1

2
u(A+

1,Λ),

(10.13)

where Σ−
K̃

is as in (10.11). Thus,

(10.14) u(A+
1,Λ) ≤ 2 sup

Σ−
K̃

u.

To proceed we use again Theorem 3.3 to see that for each choice of (Z̃, t̃) ∈ Σ−
K̃
∩ ∂Ω there

exists a small ε > 0, depending only on m, κ and M , such that

sup
Σ−
K̃
∩Ωε(Z̃,t̃)

u ≤ cu(A+
cε,Λ(Z̃, t̃)).

This inequality, together with (10.14) and Lemma 4.12, yield

u(A+
1,Λ) ≤ 2cu(Ẑ, t̂),

for some (Ẑ, t̂) ∈ Ũ2K̃,ε where

Ũ2K̃,ε := U2K̃ ∩ {(Z, t) ∈ RN+1 | −4 ≤ t ≤ −4 + (cε)2}
∩ {(Z, t) ∈ RN+1 | d((Z, t), ∂Ω) ≥ ε/c}.

(10.15)

The claim now follows from an application of Lemma 10.3 which is stated and proved below. �
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Using Theorem 3.3, (10.4), (10.5) and the claim we see that

sup
Ωρ/c

u ≤ cu(A+
ρ,Λ) ≤ c

(
ρ

ρ∗

)γ
u(A+

ρ∗,Λ)

≤ cc
(
ρ

ρ∗

)γ
u(A−ρ∗,Λ) ≤ c2cu(A−ρ∗,Λ).

(10.16)

Existence of the sought constants c1 and c2 now follow from Lemma 9.3 and the proof of the
lemma, and therefore Theorem 3.4, is complete. �

10.1. Technical lemmas: Lemma 10.2 and Lemma 10.3.

Lemma 10.2. Let c̃ and γ be as in (10.10). Then there exists K̃ = K̃(m,κ,M), 1 < K <∞,
such that ∫∫

Σint
K̃

u(Z, t) dω(A+
1,Λ, Z, t) ≤

1

2
c̃−1(2K̃)−γ .

Proof. We have

(10.17)

∫∫
Σint
K̃

u(Z, t) dω(A+
1,Λ, Z, t) ≤ ω(A+

1,Λ,Σ
int
K ).

Let 1 ≤ λ < K̃ be a degree of freedom. We construct similarly to in the proof of Lemma 5.3 a
test function φ ∈ C∞(RN+1), 0 ≤ φ ≤ 1, such that

(10.18)


φ(Z, t) = 1, for (Z, t) ∈ QK̃+λ\QK̃−λ ∩ {(Z, t) ∈ RN+1 | t = −4},
φ(Z, t) = 0, for (Z, t) ∈ QK̃−λ−1 ∩ {(Z, t) ∈ RN+1 | t = −4},
φ(Z, t) = 0, for (Z, t) ∈ (RN+1\QK̃+λ+1) ∩ {(Z, t) ∈ RN+1 | t = −4},

and let Φ be the solution to{
LΦ = 0, in {(Z, t) ∈ RN+1 | t > −4},
Φ(Z,−4) = φ(Z,−4).

Arguing as in the proof of Claim 1 in the proof of Lemma 5.3, we see that there exist 1 ≤ c <∞
and 1 ≤ λ <∞ both only depending on m, κ and M , such that

Φ(Z, t) ≥ c−1,

whenever (Z, t) ∈ Σint
K̃

. It follows then by the maximum principle that

(10.19)

∫∫
Σint
K̃

u(Z, t) dω(A+
1,Λ, Z, t) ≤ cΦ(A+

1,Λ).

Furthermore, by noting that

Φ(A+
1,Λ) =

∫∫
RN+1

Γ(A+
1,Λ, Ẑ,−4)φ(Ẑ,−4) dẐ,

and arguing as in the proof of Claim 2 in the proof of Lemma 5.3, we may deduce that

(10.20) Φ(A+
1,Λ) ≤ ce−c−1K̃2

K̃η,
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with both 1 ≤ c < ∞ and 1 < η < ∞ independent of K̃. Combining the above with (10.19)
yields

(10.21)

∫∫
Σint
K̃

u(Z, t) dω(A+
1,Λ, Z, t) ≤ ce−c

−1K̃2
K̃η.

Thus the lemma follows by picking K̃ large enough. �

Lemma 10.3. Let (Z, t) ∈ ŨK̃,ε be arbitrary. Then there exists a constant

c = c(m,κ,M, ε, K̃,m+/m−),

such that

u(Z, t) ≤ cu(A−1,Λ).

Proof. This is a consequence of Lemma 6.2 in [30]. Indeed, in [30] it is proved, using Lemma
4.7 and Lemma 4.8, that it is possible to construct an admissible path, connecting an arbitrary
point (Z, t) ∈ ŨK̃,ε to A−1,Λ, and an associated Harnack chain so that one, in combination with

Lemma 9.2 can prove that

u(Z, t) ≤ c(m,κ,M, ε, K̃,m+/m−)u(A−1,Λ).

We omit further details and refer the reader to Lemma 6.2 in [30]. �

11. Proof of theorem 3.5

In this section we give the proof of Theorem 3.5. To set up, let Ω ⊂ RN+1 be a Lipschitz
domain with constant M and assume (3.4). Without loss of generality we assume that (0, 0) ∈
∂Ω. Let r > 0 and consider Ω2r = Ω2r(0, 0). Let Λ, c0, ρ0 and ρ1 be as in Remark 4.2.
Assume that u and v are non-negative weak solutions to Lu = 0 in Ω, vanishing continuously
on ∆2r = ∆2r(0, 0). Let m±1 and m±2 be as in (3.6) and recall that by Lemma 4.16, we have

min{m−1 ,m−2 } > 0 =⇒ min{m+
1 ,m

+
2 } > 0.

For any r̃ > 0 and (Z, t) ∈ Ω2r ∪∆2r we will in the following use the notation

oscr̃,(Z,t)(u) := sup
Ω2r∩Qr̃(Z,t)

u− inf
Ω2r∩Qr̃(Z,t)

u

for the oscillation of a function u in the set Ω2r ∩Qr̃(Z, t). Our proof will be based on a
decrease of the oscillation

oscr̃,(Z,t)

(v
u

)
.

Note first that by Lemma 9.1 and the assumptions on m±1 and m±2 , there exists a constant
c = c(m,κ,M) such that

oscρ1/c,(0,0)

(v
u

)
≤ cm

−
1

m+
2

− c−1m
+
1

m−2
<∞.

Let now r̃ > 0 be fixed and let ε = ε(m,κ,M), 0 < ε < 1 be a small degree of freedom to be
chosen later. Fix 0 < ρ < εr̃ and (Z, t) ∈ Ωεr̃. We consider two cases.

Case 1: Qρ(Z, t) ⊂ Ω2r.
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In this case we assume that ρ ≤ d((Z, t),∆2r). Consider the function

(11.1) ṽ(Z̃, t̃) :=
(

oscρ,(Z,t)

(v
u

))−1
[
v(Z̃, t̃)− inf

Ω2r∩Qρ(Z,t)

(v
u

)
u(Z̃, t̃)

]
.

Two immediate consequences of the definition of the above function are

(11.2) 0 ≤ ṽ(Z̃, t̃)

u(Z̃, t̃)
≤ 1,

when (Z̃, t̃) ∈ Ω2r ∩Qρ(Z, t), and

(11.3) oscρ,(Z,t)

(
ṽ

u

)
= 1.

We introduce an additional small degree of freedom 0 < δ < 1 and assume

(11.4)
ṽ((Z, t) ◦ (0,−δρ2))

u((Z, t) ◦ (0,−δρ2))
≥ 1

2
.

By Lemma 4.5, we see there exists δ̃ = δ̃(m, δ), 0 < δ̃ < 1, such that

(11.5) ṽ((Z, t) ◦ (0,−δρ2)) ≤ cṽ(Z̃, t̃),

and

(11.6) u(Z̃, t̃) ≤ cu((Z, t) ◦ (0, δρ2)),

when (Z̃, t̃) ∈ Qδ̃ρ(Z, t). Furthermore, using Theorem 3.4 we see that

(11.7) u((Z, t) ◦ (0, δρ2)) ≤ cu((Z, t) ◦ (0,−δρ2)).

We arrive then by using (11.2)-(11.7) at

(11.8)
1

2
≤ ṽ((Z, t) ◦ (0,−δρ2))

u((Z, t) ◦ (0,−δρ2))
≤ c ṽ(Z̃, t̃)

u(Z̃, t̃)
≤ c,

for a constant c = c(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ), when (Z̃, t̃) ∈ Qδ̃ρ(Z, t) and thus,

(11.9) oscδ̃ρ,(Z,t)

(
ṽ

u

)
≤ θ,

with θ = 1− 1/(2c), in particular 0 < θ < 1. Plugging in the definition of ṽ into (11.9) yields(
oscρ,(Z,t)

(v
u

))−1
oscδ̃ρ,(Z,t)

(v
u

)
≤ θ

and consequently

(11.10) oscδ̃ρ,(Z,t)

(v
u

)
≤ θ oscρ,(Z,t)

(v
u

)
.

Note that if (11.4) does not hold then we replace ṽ by u − ṽ and note that (11.2), (11.3) and
(11.4) holds for u− ṽ, so that we may deduce that

oscδ̃ρ,(Z,t)

(
u− ṽ
u

)
≤ θ,

and hence that (11.10) holds. By iterating (11.10) we obtain

(11.11) oscρ,(Z,t)

(v
u

)
≤
(

ρ

δ̃d((Z, t),∆2r)

)σ1

oscd((Z,t),∆2r),(Z,t)

(v
u

)
,
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for some σ1 = σ1(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ), 0 < σ1 < 1.

Case 2: Qρ(Z, t) ∩ (RN+1\Ω2r) 6= ∅.
In this case we assume that ρ > d((Z, t),∆2r). Fix a point (Z0, t0) ∈ ∆2r such that

d((Z, t), (Z0, t0)) = d((Z, t),∆2r).

Then there exists a constant c = c(m,κ,M), 1 ≤ c <∞, such that

(11.12) Qρ(Z, t) ⊂ Q2cρ(Z0, t0),

and thus

oscρ,(Z,t)

(v
u

)
≤ osc2cρ,(Z,t)

(v
u

)
.

Let ĉ be the constant appearing in Lemma 9.1 and put ρ̃ := 8ĉcρ. Define now ṽ as in (11.1)
but with ρ replaced by ρ̃ and (Z, t) replaced by (Z0, t0). Consequently, (11.2) and (11.3) holds
with ρ replaced by ρ̃ and (Z, t) replaced by (Z0, t0). Assume now that

(11.13)
ṽ(A−ρ̃/2,Λ(Z0, t0))

u(A−ρ̃/2,Λ(Z0, t0))
≥ 1

2
.

Since ṽ and u both are solutions to Lu = 0 in Ω2r that are non-negative in Ω2r ∩ Qρ̃(Z0, t0)
and vanish continuously on ∆2r, we may apply Lemma 9.1 and (11.2) to obtain

(11.14)
ṽ(A−ρ̃/2,Λ(Z0, t0))

u(A+
ρ̃/2,Λ(Z0, t0))

≤ ĉ ṽ(Z̃, t̃)

u(Z̃, t̃)
≤ ĉ,

when (Z̃, t̃) ∈ Ω2r ∩ Q2cρ(Z0, t0). Arguing as in the proof of Theorem 3.4, recall in particular
(10.6), we conclude that

(11.15)
ṽ(A−ρ̃/2,Λ(Z0, t0))

u(A−ρ̃/2,Λ(Z0, t0))
≤ c

ṽ(A−ρ̃/2,Λ(Z0, t0))

u(A+
ρ̃/2,Λ(Z0, t0))

,

where c = c(m,κ,M,m+
2 /m

−
2 ), and hence

1

2
≤ cĉ ṽ(Z̃, t̃)

u(Z̃, t̃)
≤ cĉ,

whenever (Z̃, t̃) ∈ Ω2r ∩Q2cρ(Z0, t0). It follows then that

(11.16) osc2cρ,(Z0,t0)

(
ṽ

u

)
≤ θ,

where θ = 1−1/(2cĉ), in particular we have again 0 < θ < 1. Rearranging the above expression
similarly as in Case 1 and using (11.12), we obtain

(11.17) oscρ,(Z,t)

(v
u

)
≤ θ oscρ̃,(Z0,t0)

(v
u

)
.

Also similarly to Case 1, if (11.13) does not hold we replace ṽ by u− ṽ and conclude again that
(11.17) holds. Iterating (11.17) yields

(11.18) oscρ,(Z,t)

(v
u

)
≤
(
ρ̃

r̃

)σ2

oscr̃,(Z0,t0)

(v
u

)
,

for some σ2 = σ2(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ), 0 < σ2 < 1.
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Now we combine (11.11) and (11.18), and put σ = min{σ1, σ2} to arrive at

(11.19) oscρ,(Z,t)

(v
u

)
≤ c

(ρ
r̃

)σ
oscr̃,(Z0,t0)

(v
u

)
whenever (Z, t) ∈ Ωρ, ρ ≤ εr̃. Let now (Z̃, t̃) ∈ Ωρ. From the above inequality it follows by
choosing ε small enough, and applying Lemma 9.1 and Theorem 3.4, that∣∣∣∣∣v(Z, t)

u(Z, t)
− v(Z̃, t̃)

u(Z̃, t̃)

∣∣∣∣∣ ≤ oscd((Z,t),(Z̃,t̃)),(Z,t)

(v
u

)
≤ c

(
d((Z, t), (Z̃, t̃))

r̃

)σ
oscr̃,(0,0)

(v
u

)
≤ c

(
d((Z, t), (Z̃, t̃))

r̃

)σ
v(Ar̃,Λ)

u(Ar̃,Λ)
.

(11.20)

This concludes the proof.

12. Proof of Theorem 3.6

The purpose of this section is to prove Theorem 3.6. The content of the theorem is that
if Ω is a Lipschitz domain and (3.4) holds, then the associated Kolmogorov measure is a
doubling measure, with doubling constant depending only on m, κ, and M . Theorem 3.6
follows immediately from the following lemma as we without loss of generality can assume that
(Z0, t0) = (0, 0).

Lemma 12.1. Let Ω be a Lipschitz domain with constant M and assume (3.4). Let r > 0 and
let Λ be as in Remark 4.2. Then there exists a constant c = c(m,κ,M), 1 ≤ c <∞, such that

(12.1) ω(A+
r,Λ,∆2r̃(Z̃0, t̃0)) . ω(A+

r,Λ,∆r̃(Z̃0, t̃0)),

when (Z̃0, t̃0) ∈ ∂Ω and ∆r̃(Z̃0, t̃0) ⊂ ∆r/c.

Proof. Let (Z̃0, t̃0) ∈ ∂Ω and r̃ > 0 be such that ∆r̃(Z̃0, t̃0) ⊂ ∆r/c, where c = c(m,κ,M),
c > 1 is a large degree of freedom to be chosen. Then by choosing c large enough and applying
Lemma 8.4, we obtain

(12.2) ω(A+
r,Λ,∆2r̃(Z̃0, t̃0)) . rq−2G(A+

r,Λ, A
−
2c̃r̃,Λ(Z̃0, t̃0)),

for some c̃ = c̃(m,κ,M), 1 ≤ c̃ <∞, where G(A+
r,Λ, ·) is the adjoint Green function for Ω with

pole at A+
r,Λ.

Claim: It holds that

(12.3)
G(A+

r,Λ, A
+
r/1000,Λ)

G(A+
r,Λ, A

−
r/1000,Λ)

≈ 1.

To prove the claim we first deduce using the definition of the Green function, the maximum
principle and Lemma 4.15, and by a similar argument as in the proof of Claim 2 in the proof
of Lemma 9.1, that

ĉ−1 ≤ rq−2G(A+
r,Λ, A

+
r/1000,Λ) ≤ ĉ,

rq−2G(A+
r,Λ, A

−
r/1000,Λ) ≤ ĉ,

(12.4)
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for some ĉ = ĉ(m,κ,M), 1 ≤ ĉ <∞. We need to establish a lower bound for G(A+
r,Λ, A

−
r/1000,Λ).

Using the adjoint version of Theorem 3.3 we see that

(12.5) sup
Ω r

c

G(A+
r,Λ, (Z, t)) . G(A+

r,Λ, A
−
r/1000,Λ).

On the other hand, arguing again similarly as in the proof of Claim 2 in the proof of Lemma
9.1, we see that

(12.6) sup
Ω r

c

G(A+
r,Λ, (Z, t)) ≥ G(A+

r,Λ, A
+
r/(100c),Λ) & r2−q.

The claim follows.

Using the claim, the adjoint version of Theorem 3.4, and the scale-invariance of Theorem
3.4 we find that

(12.7) G(A+
r,Λ, A

−
2c̃r̃(Z̃0, t̃0)) . G(A+

r,Λ, A
+
2c̃r̃(Z̃0, t̃0)),

whenever (Z̃0, t̃0) ∈ ∂Ω and Qr̃(Z̃0, t̃0) ⊂ Qr/c. Now an application of the adjoint version of
Lemma 4.15 and Lemma 8.1 yields

(12.8) r̃q−2G(A+
r,Λ, A

+
2c̃r̃(Z̃0, t̃0)) . r̃q−2G(A+

r,Λ, A
+
r̃ (Z̃0, t̃0)) . ω(A+

r,Λ,∆r̃(Z̃0, t̃0)).

Combining (12.2), (12.7), and (12.8) finishes the proof. �

12.1. Estimates of the kernel function. We end this section by proving two further esti-
mates. Lemma 12.2 and Lemma 12.3 are analogues in our setting to Lemma 4.13 and Lemma
4.14 in [29], where they are proven for the operator K.

Lemma 12.2. Let Ω be a Lipschitz domain with constant M and assume (3.4). Let (Z0, t0) ∈
∂Ω and r > 0. Let Λ be in accordance with Remark 4.2. Let (Z̃0, t̃0) ∈ ∂Ω and r̃ > 0 be such

that Qr̃(Z̃0, t̃0) ⊂ Qr(Z0, t0). Then there exists c = c(m,κ,M), 1 ≤ c <∞, such that

K(A+
cr̃,Λ(Z̃0, t̃0), Z̄, t̄) := lim

r̄→0

ω(A+
cr̃,Λ(Z̃0, t̃0),∆r̄(Z̄, t̄))

ω(A+
cr,Λ(Z0, t0),∆r̄(Z̄, t̄))

(12.9)

exists for a.e. (Z̄, t̄) ∈ ∆r̃(Z̃0, t̃0), and

c−1 ≤ ω(A+
cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))K(A+

cr̃,Λ(Z̃0, t̃0), Z̄, t̄) ≤ c(12.10)

whenever (Z̄, t̄) ∈ ∆r̃(Z̃0, t̃0).

Proof. First of all, we notice that (12.9) exists for a.e. (Z̄, t̄) ∈ ∆r̃(Z̃0, t̃0) by Lemma 4.15.

We have to show that (12.10) holds. Let (Z̄, t̄) ∈ ∆r̃(Z̃0, t̃0) and let r̄ < r̃. We see that as a
consequence of Lemma 8.1 and Lemma 8.4 there exists c = c(m,κ,M), 1 ≤ c <∞ so that

G(A+
cr̃,Λ(Z̃0, t̃0), A+

r̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), A−r̄,Λ(Z̄, t̄))

.
ω(A+

cr̃,Λ(Z̃0, t̃0),∆r̄(Z̄, t̄))

ω(A+
cr,Λ(Z0, t0),∆r̄(Z̄, t̄))

.
G(A+

cr̃,Λ(Z̃0, t̃0), A−r̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), A+

r̄,Λ(Z̄, t̄))
.

(12.11)
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Next, using the adjoint versions of Theorem 3.4 and Lemma 9.3, and arguing as in the proof
of Lemma 12.1 (see in particular (12.7)), we deduce that

(12.12)
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), Ar̄,Λ(Z̄, t̄))

≈
G(A+

cr̃,Λ(Z̃0, t̃0), A+
r̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), A−r̄,Λ(Z̄, t̄))

.

We can then conclude that

(12.13)
ω(A+

cr̃,Λ(Z̃0, t̃0),∆r̄(Z̄, t̄))

ω(A+
cr,Λ(Z0, t0),∆r̄(Z̄, t̄))

≈
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), Ar̄,Λ(Z̄, t̄))

Note that a consequence of the adjoint version of Theorem 3.5 is a boundary Harnack inequality
for solutions to the equation L∗u = 0. Furthermore, when u and v in the formulation of (the

adjoint version of) Theorem 3.5 are the functions G(A+
cr̃,Λ(Z̃0, t̃0), ·) and G(A+

cr,Λ(Z̃0, t̃0), ·)
respectively, we can use Lemma 8.1 and Lemma 8.4 to estimate the quotients m+

1 /m
−
1 and

m+
2 /m

−
2 so that in this particular case we have

c2(m,κ,M,m+
1 /m

−
1 ,m

+
2 /m

−
2 ) = c2(m,κ,M),

where c2 is as in the formulation of Theorem 3.5. We hence deduce that there exists some
c̃ = c̃(m,κ,M) > 1 such that

(12.14)
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̄,Λ(Z̄, t̄))

G(A+
cr,Λ(Z0, t0), Ar̄,Λ(Z̄, t̄))

≈
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̃/c̃,Λ(Z̃0, t̃0))

G(A+
cr,Λ(Z0, t0), Ar̃/c̃,Λ(Z̃0, t̃0))

Thus, we see that

(12.15)
ω(A+

cr̃,Λ(Z̃0, t̃0),∆r̄(Z̄, t̄))

ω(A+
cr,Λ(Z0, t0),∆r̄(Z̄, t̄))

≈
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̃/c̃,Λ(Z̃0, t̃0))

G(A+
cr,Λ(Z0, t0), Ar̃/c̃,Λ(Z̃0, t̃0))

.

Using arguments similar to those used in Claim 2 in the proof of Lemma 9.1, see in particular
(9.11), the (adjoint) Harnack inequality, and arguing as in Lemma 12.1, see (12.3), and then
using Lemma 8.1, we see that

(12.16) 1 .
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̃/c̃,Λ(Z̃0, t̃0))

G(A+
cr,Λ(Z0, t0), Ar̃/c̃,Λ(Z̃0, t̃0))

ω(A+
cr,Λ(Z0, t0),∆r̃/c̃(Z̃0, t̃0)).

Using (12.16) and arguing similarly, wee obtain

(12.17)
G(A+

cr̃,Λ(Z̃0, t̃0), Ar̃/c̃,Λ(Z̃0, t̃0))

G(A+
cr,Λ(Z0, t0), Ar̃/c̃,Λ(Z̃0, t̃0))

≈ 1

ω(A+
cr,Λ(Z0, t0),∆r̃/c̃(Z̃0, t̃0))

.

Finally, using the obvious relation

ω(A+
cr,Λ(Z0, t0),∆r̃/c̃(Z̃0, t̃0)) ≤ ω(A+

cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))

together with Lemma 12.1, we have

ω(A+
cr̃,Λ(Z̃0, t̃0),∆r̄(Z̄, t̄))

ω(A+
cr,Λ(Z0, t0),∆r̄(Z̄, t̄))

≈ 1

ω(A+
cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))

.

Letting r̄ → 0 concludes the proof. �
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Lemma 12.3. Let Ω be a Lipschitz domain with constant M and assume (3.4). Let (Z0, t0) ∈
∂Ω and r > 0. Let Λ be in accordance with Remark 4.2. Let (Z̃0, t̃0) ∈ ∂Ω and r̃ > 0 be such

that Qr̃(Z̃0, t̃0) ⊂ Qr(Z0, t0). Then there exists c = c(m,κ,M), 1 ≤ c <∞, such that

ω(A+
cr,Λ(Z0, t0), E)

ω(A+
cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))

≈ ω(A+
cr̃,Λ(Z̃0, t̃0), E),

whenever E ⊂ ∆r̃(Z̃0, t̃0).

Proof. Fix some subset E ⊂ ∆r̃(Z̃, t̃). By definition we then have

ω(A+
cr̃,Λ(Z̃, t̃), E) =

∫∫
E
K(A+

cr̃,Λ(Z̃, t̃), (Z̄, t̄)) dω(A+
cr,Λ(Z0, t0), (Z̄, t̄)).

Using Lemma 12.2, (12.10), we see that∫∫
E
ω(A+

cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))K(A+
cr̃,Λ(Z̃, t̃), (Z̄, t̄)) dω(A+

cr,Λ(Z0, t0), (Z̄, t̄))

.
∫∫

E
dω(A+

cr,Λ(Z0, t0), (Z̄, t̄))

and hence that

ω(A+
cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))ω(A+

cr̃,Λ(Z̃0, t̃0), E) . ω(A+
cr,Λ(Z0, t0), E).

Analogously, we see that

ω(A+
cr,Λ(Z0, t0), E) . ω(A+

cr,Λ(Z0, t0),∆r̃(Z̃0, t̃0))ω(A+
cr̃,Λ(Z̃0, t̃0), E),

which finishes the proof. �

References

[1] I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of
solutions to phase transition problems, Annals of mathematics, 143 (1996), 413-434.

[2] F. Anceschi, M. Eleuteri, S. Polidoro, A geometric statement of the Harnack inequality for a degenerate
Kolmogorov equation with rough coefficients, (preprint: arXiv:1801.03847)

[3] U. Boscain and S. Polidoro, Gaussian estimates for hypoelliptic operators via optimal control, Rend. Lincei
Mat. Appl, 18 (2007), 343-349.

[4] L. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184.
[5] L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4(1998), 383-402.
[6] C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech. (Arch. Mech.

Stos.) 34, 3 (1982), 231–241 (1983).
[7] C. Cinti, K. Nyström and S. Polidoro, A note on Harnack inequalities and propagation sets for a class of

hypoelliptic operators, Potential Analysis 33 (2010), 341-354.
[8] , A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form,

Annali di Matematica Pura ed Applicata, 191 (2012), 1-23.
[9] , A Carleson-type estimate in Lip(1,1/2)-domains for non-negative solutions to Kolmogorov opera-

tors, Annali della Scuola Normale Superiore di Pisa (Classe Scienze), Serie V, 12 (2013), 439-465.
[10] F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential

equations, J. Funct. Anal., 259 (2010), pp. 1577–1630.
[11] L. Desvillettes, Entropy dissipation estimates for the Landau equation in the Coulomb case and applications.

J. Funct. Anal. 269, 5 (2015), 1359–1403.
[12] L. Desvillettes, C. Mouhot, and C. Villani, Celebrating Cercignani’s conjecture for the Boltzmann equation.

Kinet. Relat. Models 4, 1 (2011), 277–294.
[13] L. Desvillettes, and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I.

Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25, 1-2 (2000), 179–259.

http://arxiv.org/abs/1801.03847


POTENTIAL THEORY FOR OPERATORS OF KOLMOGOROV TYPE 51

[14] M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, AMRX
Appl. Math. Res. Express, 3 (2005), pp. 77–116.

[15] E. Fabes, N. Garofalo & S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative
solutions of parabolic equations, Illinois J. Math. 30 (1986), 536-565.

[16] E. Fabes & M. Safonov, Behaviour near the boundary of positive solutions of second order parabolic equa-
tions, J. Fourier Anal. Appl. 3 (1997), 871-882.

[17] E. Fabes, M. Safonov & Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic
equations.II, Trans. Amer. Math. Soc. 351 (1999), 4947-4961.

[18] F. Golse, C. Imbert, C. Mouhot and A. F. Vasseur, Harnack inequality for kinetic Fokker-Planck equations
with rough coefficients and applications to the Landau equation, Annali della Scuola Normale Superiore di
Pisa - Classe di Scienze 253 (2019), 19.

[19] N. Garofalo & E. Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate
equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), 775-792.
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