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Electron hydrodynamics gives rise to surprising correlated behaviors in which electrons “cooper-
ate” to quench dissipation and reduce the electric fields needed to sustain the flow. Such collective
“free” flows are usually expected at the hydrodynamic lengthscales exceeding the electron-electron
scattering mean free path `ee. Here we predict that in two-dimensional electron gases the collective
free flows actually occur at the distances much smaller than `ee, in a nominally ballistic regime. The
sub-`ee free flows arise due to retroreflected holes originating from head-on quasiparticle collisions;
the holes retrace the paths of impinging electrons and cancel out their potential. An exact solution,
obtained in Corbino geometry, predicts potential strongly screened by the hole backflow. Screened
potential is described by a fractional power law r−5/3 over a wide range of r values, from macroscales
down to deep sub-`ee scales, and a distinct non-Fermi-liquid temperature dependence.

Electron hydrodynamics has emerged recently as a new
tool for understanding transport in strongly-interacting
electron systems[1–13]. Its appeal stems from the high
sensitivity of hydrodynamics to microscopics even in
fairly simple Fermi liquids, as well as from anticipa-
tion that new kinds of exotic hydrodynamics can arise
for exotic quantum matter[14–23]. In this vein, it was
predicted recently that two-dimensional electron gases
exhibit “tomographic” hydrodynamics, a unique behav-
ior that originates from strong collinear scattering of
quasiparticles[24–27]. These collinear scattering pro-
cesses endow electron fluids with a long-time directional
memory that creates an exotic hydrodynamic behavior
at large distances, pushing the onset to the conventional
Navier-Stokes hydrodynamics to the length scales that
greatly exceed the electron collision mean free path `ee.

Here we argue that the tomographic behavior also
dominates at ultrashort distances r � `ee, overriding
the conventional ballistic regime that normally occurs
at such length scales. The unusual behavior at sub-`ee

distances arises due to hole retroreflection. The back-
reflected holes retrace the paths of impinging electrons,
thereby allowing the information about the ee collisions
to propagate back into the sub-`ee region. As a result,
the tomographic dynamics and directional memory ef-
fects dominate not only at the length scales r > `ee but
also at r < `ee, pushing the onset of the ballistic behavior
down to abnormally short lengthscales

r ∼ ξb � `ee, ξb/`ee ∼
√
T/TF � 1. (1)

This peculiar behavior can be understood as a nonclas-
sical quasi-ballistic dynamics of compound objects, the
particle-hole pairs composed of particles and holes prop-
agating opposite to each other, as illustrated in Fig.1.
In this regime the electric current is transmitted by a
highly coordinated electron flow and a hole counterflow.
The latter, being equal and opposite to the electron flow,
gives a contribution that tends to double the current and
cancel out the potential, as illustrated in Fig.1. Such
restructuring of the flow leads to a dramatic reduction
(superscreening) of current-induced fields and of Joule
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FIG. 1: (a) Schematic illustration of the spatial hierarchy
of the ballistic, tomographic and hydrodynamic regimes for
a radial flow. Red and blue lines represent electron trajecto-
ries and back-propagating hole trajectories. The tomographic
regime (yellow panel) spans a wide range of lengthscales from
r � `ee down to deep sub-`ee lengthscales. (b) Current-
induced potential distribution around a point source: the ex-
act result obtained from Eqs.(3),(2) (blue line) and the ana-
lytic result for the tomographic regime, Eq.(25), (black line).
Potential harmonics feature a scaling behavior φk ∼ k−ζ with
the exponents ζ = 0, 1/3, and 1 in the three regimes. Dashed
lines with these slopes are shown as a guide to the eye. Verti-
cal gray lines mark the boundaries of the tomographic regime
ξ−1
h < k < ξ−1

b . The conventional ballistic/hydrodynamic
crossover, expected at k`ee = 1 (dashed gray line), does not
occur due to the predominance of head-on scattering in 2D
electron systems. Parameter values used are given beneath
Eq.(8). Inset illustrates hole backreflection in head-on scat-
tering, a process that is immune to averaging over scattering
angles for the final states.
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dissipation W ∼ jE, an effect occurring in a wide range
of lengthscales, from r � `ee down to r � `ee.

From an experimental viewpoint, probing tomographic
physics at sub-`ee lengthscales has distinct advantages
since it considerably softens the limitations that plagued
previous searches for electron hydrodynamics. Indeed,
the lengthscales at which conventional viscous effects
dominate over the ohmic effects satisfy `ee < r <

√
`ee`p

where `p is the mean free path for momentum-relaxing
scattering processes. The materials where the electron
fluids are currently being probed, such as graphene or
GaAs quantum wells, feature weak phonon and disorder
scattering such that the lengthscale `p can exceed `ee by
as much as an order of magnitude. Yet, the slow square
root dependence in

√
`ee`p can make the competing re-

quirements on r challenging to fulfill.
In contrast, the proliferation of tomographic hydrody-

namics to the deep sub-`ee lengthscales facilitates probing
this physics in experiments. As illustrated in Fig. 1 for
the current flowing radially in the Corbino geometry, the
counterpropagating electrons and holes comprising the
current cancel out each others’ charge; as a result the
net potential is suppressed below the values expected for
collisionless electron flow. At tomographic lengthscales,
the potential drops as a power law r−5/3, and then even
faster at the length scales where the Navier-Stokes-like
viscous regime sets in. Strikingly, this power law behav-
ior, which is shown in Fig. 1, is identical on both sides
of the region r ∼ `ee, where the ballistic/hydrodynamic
crossover is usually expected to occur (the line k`ee = 1
in Fig.1). The suppression of the current-induced po-
tential and the resulting quenching of dissipation upon
raising temperature, originating from particle-hole com-
pensation, occur at deep sub-`ee length scales accessible
by the state-of-the-art scanning techniques[20–23].

A quantity that plays the key role in our analysis, yield-
ing a closed-form solution valid in the entire range of
relevant spatial scales, is the continued fraction[32]

Γ(k) = γ2 +
z2

γ3 + z2

γ4+ z2

γ5+...

, z ≡ kvF /2, (2)

where k is the wavenumber, related to the spatial scale
as k ∼ 1/r. The quantities γm are the eigenvalues of the
collision operator of 2D electrons, a set of numbers that
represent a “genetic code” of the 2D electron system giv-
ing the relaxation rates for different angular harmonics of
the perturbed Fermi surface[24, 26]. The infinite contin-
ued fraction Γ(k), defined in the usual way as a limit of
finite continued fractions, is well behaved, since the quan-
tities γm are finite and positive at large m. The quantity
Γ(k) captures all the intricacies of the nonlocal response
in the presence of momentum-conserving scattering.

As a parenthetical remark, other powerful approaches
relying on continued fractions have been used recently to
tackle various aspects of many-body dynamics[28–31].

We present a detailed analysis of transport induced
by a point current injector, a simple arrangement that

mimics Corbino geometry with a rich behavior spanning
a wide range of lengthscales as shown in Fig.1. Fully ac-
counting for the collinear electron scattering, a process
that dominates in 2D systems where electron hydrody-
namics is currently being probed, our analysis predicts a
current-induced potential distribution

φ(r) =

∫
d2k

(2π)2
eikrφk, φk =

I

2νe2Γ(k)
, (3)

where I is the net injected current, ν is the density of
states, e is carrier charge. This result, derived assuming
electroneutrality[32], is valid at distances greater than
the Thomas-Fermi screening length λTF.

As a function of r the potential φ(r) exhibits three dif-
ferent regimes and a hierarchy of lengthscales illustrated
in Fig. 1. The tomographic hydrodynamics spans a wide
range of scales in between the conventional ballistic and
viscous regimes:

ξb < r < ξh, ξb � `ee, ξh � `ee, (4)

pushing the ballistic regime down to deep sub-`ee scales
r ∼ ξb and pushing the onset of Navier-Stokes hydrody-
namics up to unusually large distances r ∼ ξh � `ee [the
values ξb and ξh are estimated below, see Eqs.(9),(11)].
We predict a power law behavior Γ(k) ∼ k1/3 in the
tomographic regime, which translates into a power law
dependence of the current-induced potential:[33]

φ(r) ∝ Ir− 5
3 , ξb < r < ξh. (5)

It is a previously uncharted behavior that is manifested
in several surprising effects.

One is that the small value ξb � `ee indicates an ex-
pansion of the low-dissipation transport to ultrashort dis-
tances. The origin of this striking behavior, illustrated
in Fig. 1, is that the retroreflected holes compensate the
charge of the impinging electrons without current relax-
ation (since the opposite-moving holes produce the same
current as the impinging electrons). As a result, the in-
jected current will flow without significantly perturbing
the charge and potential distribution in the system.

The large-r behavior is also unlike that of classical flu-
ids, where a point injector creates pressure gradients and
an excess dissipation confined to a thin layer r . `ee near
the injector and negligible at larger r [13, 34]. Instead,
tomographic hydrodynamics generates a power-law pro-
file extending to much larger distances r ∼ ξh � `ee.

The extinction of electric fields due to hole counter-
flow resembles some aspects of Andreev hole retroreflec-
tion in superconducting NS systems. In contrast, the
behavior considered here is neither a low-temperature
nor a phase-coherent phenomenon, which superconduc-
tivity is. In electron fluids it arises at elevated tempera-
tures, becoming prominent at the temperatures for which
electron-electron collisions dominate over other collision
types. Still, in strong resemblance to Andreev transport,
superscreening arises from retroreflected holes which re-
trace the ballistic paths of impinging electrons.



3

A useful starting point for our analysis is the case when
all nonvanishing rates are equal, γm = γ, m 6= 0,±1.
While it does not describe collinear scattering and tomo-
graphic transport, the equal-rate model has been popu-
lar in the field since it was introduced in Ref.[35]. In this
case the continued fraction is straightforward to evalu-

ate, giving Γ(k) = 1
2

(
γ +

√
γ2 + k2v2

F

)
. This gives a

closed-form expression for the potential distribution

φ(r) =
I

2πνe2

∫ ∞
0

dk
kJ0(kr)

γ +
√
γ2 + k2v2

F

. (6)

In the absence of scattering, γ = 0, using the identity∫∞
0
dxJ0(x) = 1, we recover the 1/r profile expected for

a radial flow of free particles: φ(r) = I
2πνe2vF r

. In the

presence of scattering, γ > 0, the free-particle 1/r profile
persists up to r ≈ lee = vF /γ, dropping sharply to zero
at larger r. Eq.(6) predicts the dependence

φ(r) ≈ I

2πνe2vF r
e−λr/ξ, ξ = vF /2γ, (7)

with a dimensionless λ ≈ 1. The exponential falloff at
r > ξ marks the onset of the hydrodynamic flow.

In order to describe tomographic transport we must
account for the effects of collinear collisions. In this case
the odd-m rates γm are much smaller than the even-m
rates and scale as m4[26, 27],

γm even = γ, γm odd = γ′m4, m� m?. (8)

We assume that γ′ � γ, which describes the regime of
interest T � εF (with γ ∼ T 2/εF , γ′ ∼ T 4/ε3F ). The
odd-m rates γm initially grow as m4, saturating at the
even-m value γ at a large m & m? = (γ/γ′)1/4.

The current-induced potential, Eq.(3), is illustrated in
Fig. 1(b) for the ratio γ′/γ = 5×10−8, with the wavenum-
ber measured in units of `−1

ee = γ/vF [the details of evalu-
ating continued fractions are given in [32]]. A small value
γ′/γ was chosen to widen the tomographic regime to il-
lustrate small deviations from scaling discussed below.

The predicted dependence φk asymptotes to a constant
at small k and to 1/k at large k. This checks with φ(r)
falling off abruptly at large distances and behaving as 1/r
at short distances, similar to the conventional transport,
Eq.(7). A new, tomographic regime with a power-law
scaling φk ∼ k−1/3 occurs at intermediate k values, re-
flecting the behavior at the lengthscales where transport
is governed by collinear collisions. Importantly, the new
regime extends to abnormally large distances r � `ee and
starts at ultrashort sub-ballistic distances r � `ee. This
is a signature of particle-hole compensation due to hole
retroreflection that tends to screen the current-induced
potential all the way back to the source.

To demystify the origin of the extremely short screen-
ing length we note that the backreflection of the hole is
misaligned from the direction of the outgoing electron
by a small angle δθ ∼ m−1

∗ ∼ (T/εF )1/2 ∼ (γ′/γ)1/4 [24].
After a collision, the hole will return on average to a point

in space offset by the distance ξb ≈ `eeδθ ∼ `ee(γ′/γ)1/4

from the electron source. This is illustrated in the middle
panel of Fig.1(a): the holes flow outside the circle r ≈ ξb.
This estimate coincides with the ballistic-tomographic
crossover length ξb found below, Eq. (11).

To gain insight into the scaling regimes pictured in
Fig.1, we develop an analytic approach which yields a
closed-form result for φk and establishes the exact value
of the scaling exponent. This will be done through ana-
lyzing the behavior of continued fractions Γ(k) vs. k.

First, having in mind that k values and distances are
related as r ∼ 1/k, we expand Eq.(2) in small k. This
gives Γ(k) = γ2 +k2v2

F /4γ3 +O(k4). Eq.(3) then predicts

potential decaying at large r as φ(r) ∼ r−1/2e−r/ξh with

ξh =
vF

2
√
γ2γ3

∝ εF
T
`ee (9)

a lengthscale that can be identified with the onset of
Navier-Stokes hydrodynamics. As discussed above, the
abnormally large value ξh reflects proliferation of the to-
mographic regime to large distances.

At large k, in contrast, one has to analyze the whole
continued fraction, taking the limit γm � |z|. Despite
this being a subtle limit to take, the end result is easy to
understand from the selfconsistent relation

Γ(k) = lim
γm�z

(
γ2 +

|z|2

γ3 + |z|2
γ4+···

)
=
|z|2

Γ(k)
(10)

This relation predicts Γ(k) = |z| = kvF
2 . Eq.(3) then

yields the potential that matches our expectation for a
ballistic flow near the source:

φ(r) =
I

2πνe2vF r
, r < ξb = 3

vF
γ

(
γ′

γ

) 1
4

� `ee. (11)

A surprising finding here is the ultrashort range of dis-
tances where the ballistic flow occurs. While a super-
ficial inspection of Eq.(10) might suggest that the scale
ξb coincides with `ee = vF /γ, a correct estimate which
accounts for a large number of terms in the continued
fraction predicts abnormally short values ξb � `ee. As
discussed above, this indicates that the ballistic behavior
is largely overridden by the tomographic effects.

To derive the scaling behavior in the tomographic
regime, we start with the following observation. In gen-
eral, γm in Eq.(13) depends on m, with large differences
between successive even and odd m. To capture this be-
havior in a simplified model, we set γm = γe for all even
m and γo for all odd m, ignoring the m dependence of γe

and γo. In this case, Γ(k) can be evaluated exactly:

Γ(k) =
1

2

√
γe

γo

(
√
γoγe +

√
γoγe + k2v2

F

)
(12)

This motivates introducing “level-m” partial continued
fractions, defined as

Γm(k) = γm +
|z|2

γm+1 + |z|2
γm+2+···

. (13)
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These quantities can be evaluated similarly, giving

Γm(k) =
bm
2

(
√
γoγe +

√
γoγe + k2v2

F

)
(14)

where bm =
√
γe/γo for even m and bm =

√
γo/γe

for odd m. When the even/odd parity separation of
γm is significant, γe � γo, the quantities Γm are much
larger for even m than for odd m. However, despite this
even/odd beating effect, Γm remains nearly constant for
each individual parity of m.

Based on these observations, we expect that for a real-
istic low-temperature model with γe(m) and γo(m) slowly
varying with m, Γm for each individual parity will also be
slowly varying with m. It is then natural to analyze the
dependence Γm vs. m for a fixed parity. The quantity
Γ(k) will then be found by taking m = 2.

We therefore proceed to construct a recursion relation
that connects Γm and Γm+2. Taking a difference and
using Eq.13 yields

Γm − Γm+2 = γm −
γm+1Γ2

m+2

γm+1Γm+2 + |z|2
(15)

It turns out, perhaps surprisingly, that this nonlinear re-
lation is greatly simplified after the substitution

Γm =
|z|2

γm−1

(
um
um+2

− 1

)
, (16)

which transforms it into a linear relation

|z|2

γm+1
um+4 +

|z|2

γm−1
um =

(
γm +

|z|2

γm−1
+
|z|2

γm+1

)
um+2.

By regrouping the terms, the relation above can be cast
into the form resembling a discretized second-order ODE:

1

2

(
|z|2

γm−1
+
|z|2

γm+1

)
(um+4 − 2um+2 + um) (17)

− 1

2

(
|z|2

γm−1
− |z|2

γm+1

)
(um+4 − um) = γmum+2.

We emphasize that these relations are totally general. In-
deed, our starting point is a tridiagonal system of equa-
tions for the amplitudes of different harmonics[32]. In
this case there is a natural bipartite structure (the off-
diagonal couplings are between harmonics of different
parity). Eliminating variables of one parity yields a tridi-
agonal problem describing the other parity. Hereafter we
take m values to be even.

Since Γm and γm, when restricted to a fixed parity, are
both slowly varying with m, we take Eq.(17) to continu-
ous domain by replacing the differences with derivatives

4
|z|2

γo

d2u

dm2
− 4|z|2 dγ

−1
o

dm

du

dm
= γeu.

where γe(m) = γm and γo(m) = γm+1. This simplifies to

u′′ − γ′o
γo
u′ − γoγe

4|z|2
u = 0. (18)

In the continuous domain, Eq.(16) now reads

Γ(m) = −2|z|2

γou

du

dm
. (19)

We assume that γo and γe both converge to a constant
value γ for high harmonics, m & m?, then the values
Γm for m & m? are given by the solution of the one-rate

model 1
2

(
γ +

√
γ2 + k2v2

F

)
. Therefore, we can write the

boundary condition for Eq.(18) as

−2|z|2

γu

du

dm

∣∣∣∣
m=m?

= Γ(m?) =
γ +

√
γ2 + k2v2

F

2
, (20)

and proceed to solve Eq.(18) on the interval 0 < m < m?

to obtain the value of Γm=2.
From now on we focus on the m4 model, Eq.(8),

wherein γo = γ′m4, γe = γ. Then Eq.(18) becomes

u′′ − 4

m
u′ −

√
γγ′

4|z|2
m4u = 0 (21)

This equation, after introducing a new variable g =√
γγ′

6|z| m
3 and replacing u with w = u/g5/6, is transformed

into the Bessel equation for w(g), yielding a general so-
lution

u = g5/6[C1I5/6(g) + C2I−5/6(g)] (22)

where Iα(g) is the αth-order modified Bessel function of
the first kind.

From Eq.(19), we know that constant prefactor of u
does not affect Γ(m) values. Thus the only quantity that
remains to be determined is the ratio C2/C1. When m
varies from 0 to m? = (γ/γ′)1/4, g varies from 0 to g? =
γ5/4/(6γ′1/4|z|), and the boundary condition for u(g) at
the right end of the interval is given by Eq.(20)

− m?γ

6g?u

du

dg

∣∣∣∣
g=g?

= Γ(m?) > 0 (23)

When k � γ5/4

3vF γ′1/4
≡ ξ−1

b , Eq.(23) requires Γ > 0 for

g? � 1. However, the large-argument asymptotic expan-
sions for Iα(g) are exponentially growing in exactly the
same way for α and −α. This results in a monotonically
increasing u, producing unphysical values Γ(m?) < 0.
The only way to resolve this conflict is to pick C2 ' −C1,
then all terms in the asymptotic expansion cancel out.

We therefore arrive at Eq.(22) with C1 = −C2. The

quantity of interest, Γ(k), corresponds to g|m=2 = 4
3

√
γγ′

|z| .

Since for k � ξ−1
h ∼

√
γγ′

vF
, the latter quantity is small,

g|m=2 � 1, and we can expand u in g � 1[36]:

u = − 2
5
6

Γ( 1
6 )

+
2

5
6

Γ( 11
6 )

(g
2

)5/3

− 1

2
1
6 Γ( 7

6 )

(g
2

)2

+ · · · . (24)

Plugging it in Eq.(19) gives the dependence

Γ(k) =
Γ( 1

6 )

3
2
3 2

4
3 Γ( 5

6 )

γ

(γγ′)
1
6

|z| 13 − 2−
2
3 γ, (25)
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valid provided ξ−1
h � k � ξ−1

b , which is exactly the con-
dition for the tomographic regime. For such k the first
term in Eq.(25) dominates, giving the power-law depen-
dence Γm=2 ∝ k1/3. This dependence, combined with
Eq.(3), yields a r−5/3 scaling for the current-induced po-
tential profile, Eq.(5).

When the separation between the lengthscales ξb and
ξh becomes smaller (i.e., γ′/γ becomes larger), the sec-
ond (subleading) term in Eq.(25) cannot be neglected
anymore, producing a change in the apparent scaling ex-
ponent values, Γ(k) ∝ kα and φ(r) ∝ r−2+α, α > 1/3.

Conveniently, the crossover to the ballistic depen-
dence occurs at abnormally short sub-`ee distances,
where the r−5/3 potential is strong, lending tomographic
behavior amenable to state-of-the-art scanning probe
techniques[20–23]. Besides the short lengthscales, detec-
tion of tomographic transport is facilitated by the unique

temperature dependence. Indeed, the e-e collision rate
responsible for the backflow of holes will grow with tem-
perature and, accordingly, potential in the system will
diminish; the temeprature-induced suppression will oc-
cur over a wide range of length scales, including sub-`ee

length scales. Simultaneously the lengthscale ξb where
the tomographic behavior sets in will become shorter as
temperature grows, providing clear a experimental signa-
ture of superscreening.

We thank E. I. Rashba for insightful discussions of the
Thomas-Fermi screening effects in an out-of-equilibrium
current-carrying state of the Fermi gas[32]. This work
was supported by the Science and Technology Center for
Integrated Quantum Materials, NSF Grant No. DMR-
1231319; Army Research Office Grant W911NF-18-1-
0116; and Bose Foundation Research fellowship.
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Appendix A: Continued fractions formalism for a
point source

1. Transport equation

To model the behavior of space charge in the presence
of quasiparticle scattering, we will assume a weak devi-
ation from equilibrium and use the linearized transport
equation with the collision term Iee describing two-body
scattering:

(∂t + v ·∇r − Iee)δf(p, r) + eE · v∂feq

∂ε
= sp,r. (A1)

The source term sp,r = s0δ(r)(−∂feq/∂ε) represents an
injector, here without loss of generality placed at the ori-
gin. The electric field is due to the space charge induced
by the flow, E(r) = −∇δφ(r), with the space-charge
potential

δφ(r) =

∫
d2r′

eδn(r′)

κ|r − r′|
, δn(r) =

∑
p

δf(p, r), (A2)

where κ is the effective dielectric constant. The solu-
tion of this problem will describe restructuring of the
flow, ballistic near the source and tomographic at larger
distances (Fig.1). It will also account for the non-local
field-charge response, Eq.A2, through the change in E
due to a current-induced deviation in the carrier distri-
bution from equilibrium, as well as the Thomas-Fermi
screening.

It will be convenient to transform our problem to
an auxiliary easier-to-solve problem for a fictitious free-
particle distribution f̃(p, r) obtained by selfconsistently
shifting the local chemical potential by an amount that
depends on the local carrier depletion. The new problem,

described by Eq.(A1) with E = 0, will then be solved in
a closed form in the Fourier representation.

We first rewrite Eq.(A1) by taking the perturbed dis-
tribution and its potential to be a plane wave

δf(p, r) = δfk(p)eikr−iωt, δφ(r) = δφke
ikr−iωt,

(A3)
to obtain

(−iω+ ik ·v− Iee)δfk(p)− ik ·veδφk
∂feq

∂ε
= sp,r (A4)

where eδφk = U(k)δnk are harmonics of the current-

induced space-charge potential, with U(k) = 2πe2

κk the
2D Coulomb potential formfactor.

In the regime of interest, T � EF , the perturbed dis-
tribution δf is concentrated near the Fermi level and
can be represented by angular harmonics describing the
Fermi surface modulation evolving in space and time,

δfk(p) = −∂feq(p)

∂ε

∞∑
m=−∞

δfme
imθ (A5)

where θ is the angle parameter on the Fermi surface. For
conciseness, we will suppress the dependence of the har-
monics δfm on the wavenumber k, Eq.(A3), restoring it
at the end. The factorization into the radial and angular

dependence described by −∂feq(p)
∂ε and the sum of har-

monics δfme
imθ, respectively, is an approximation that

captures the behavior of the low-lying excitations in a
Fermi gas at T � EF .

Because of the cylindrical symmetry, the collision op-
erator is diagonal in the eimθ basis,

Ieee
imθ = −γmeimθ, (A6)

with the eigenvalues γm describing the relaxation rates
for different angular harmonics of the perturbed distribu-
tion. Different values γm account for different scattering
processes in the system. Here we analyze the two-rate
model[26, 27] in which the odd-m rates γm are much
smaller than the even-m rates at small enough m, and
scale as m4. As m grows the odd-m and even-m rates
eventually become equal. The dependence γm vs. m can
be described as

γm even = γ, γm odd =
1

1
γ′m4 + 1

γ

. (A7)

The parameter values of interest at temperatures T � εF
correspond to γ′ ∼ T 4/ε3F much smaller than γ ∼ T 2/εF
and, in addition, γm=0 = γm=±1 = 0 for the zero-mode
harmonics. The crossover value m above which the even-
m and odd-m rates become approximately equal,

m = m? = (γ/γ′)1/4, (A8)

grows as
√
εF /T with temperature decreasing, T � εF .
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2. Computing the response function

A transformation to an auxiliary problem for a ficti-
tious free-particle distribution can now be achieved as
follows. We first note that the field term in Eq.(A4) is a
product of the p harmonic ikv and an angle-independent

function δφk
∂feq
∂ε that depends on the injected current.

This structure can be exploited to absorb the field term
into the streaming term ikvδfk(p) by introducing an

auxiliary distribution function δf̃ for which the m = 0
harmonic is rescaled by the dielectric function

εk = 1 + νU(k) (A9)

with ν the density of states at the Fermi level, whereas
other harmonics remain unchanged:

δf̃m=0 = εkδfm=0, δf̃m6=0 = δfm 6=0. (A10)

The new distribution δf̃ obeys Eq.(A4) with δφk = 0;

the potential of the space charge is given in terms of δf̃
by the relation

φ(r) =
∑
k

eikr
U(k)

εk
νδf̃m=0(k), (A11)

where the density of states arises in the usual manner
by approximating the sum over the states near the Fermi

level as
∑

p−
∂feq(p)
∂ε = ν. The fictitious particle distribu-

tion δf̃ obeys the transport equation, Eq.(A4), in which
the space charge potential is suppressed:

(−iω + ik · v − Iee)δf̃k(p) = −s0
∂feq(p)

∂ε
(A12)

A general solution of Eq.(A12) can be given in terms of
continued fractions. For that we exploit the structure
of the streaming term ivkδf in Eq.(A12) which, in the
angular harmonics basis, represents a nearest-neighbor
“hopping” that couples harmonics m and m ± 1. This
observation allows us to rewrite Eq.(A12) as system of
coupled algebraic equations for the Fourier coefficients
δf̃m as follows:

(γm − iω)δf̃m + izδf̃m+1 + iz̄δf̃m−1 = s0δm,0 (A13)

Here we defined a complex parameter z = v
2 (kx + iky),

and used the identity kv = ze−iθ + z̄eiθ.
The coupled equations in Eq.(A13) can be solved re-

cursively as follows. For m > 0 we define the quantities
αm = iδf̃m+1/δf̃m; in terms of αm the m > 0 equations
read

γm + zαm −
z̄

αm−1
= 0, (A14)

where from now on, for brevity, we suppress iω. These
relations can be transformed to a recursion relation

αm−1 = z̄
γm+zαm

and iterated over m + 1, m + 2, ...,

to obtain

αm−1 =
z̄

γm + |z|2

γm+1+
|z|2

γm+2+...

(A15)

Similarly, for m < 0 we define the quantities βm =
iδf̃m−1/δf̃m; in terms of βm the m < 0 equations read

γm −
z

βm+1
+ z̄βm = 0, (A16)

In this case, expressing βm+1 through βm as βm+1 =
z

γm+z̄βm
and iterating over m− 1, m− 2, ..., yields

βm+1 =
z

γm + |z|2

γm−1+
|z|2

γm−2+...

. (A17)

We can now find the harmonic δf̃0 from the m = 0 equa-
tion in which we set γ0 = 0,

izδf̃1 + iz̄δf̃−1 = s0. (A18)

Writing δf̃1 = −iδf̃0α0 and δf̃−1 = −iδf̃0β0, substitut-
ing the continued fraction representation for α0 and β0

and setting γ1 = γ−1 = 0, yields a relation for the zeroth
harmonic which describes the space charge density:

δf̃0 =
s0

2Γ(k)
, Γ(k) = γ2 +

|z|2

γ3 + |z|2
γ4+...

(A19)

The continued fraction Γ(k) is well behaved at ω = 0,
since the quantities γm are finite and positive at large
m. The ω dependence, which can be obtained by an an-
alytic continuation from small ω values, will be discussed
elsewhere.

Using the relation between the physical and fictitious
m = 0 harmonics, δf0 = 1

εk
δf̃0 = 1

1+νU(k)δf̃0, U(k) =
2πe2

κk , we can write a closed-form expression for the har-
monics of the potential

φ(k) =
νU(k)

1 + νU(k)
δf̃0 (A20)

Combining this relation with the above result for δf̃0 and
linking the source term value to the injected current,

s0 =
I

eν
, (A21)

yields the representation of the current-induced poten-
tial in terms of the continued fraction Γ(k), Eqs.(3),(2),
which is exploited in the main text.

In agreement with the charge neutrality requirement,
this nonlocal relation turns into a local relation at dis-
tances larger than the Thomas-Fermi screening length,
r > λTF = κ/2πe2ν, giving

φ(r) = δf̃m=0(r). (A22)
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This transformation, which replaces the actual distribu-
tion f with a fictitious distribution f̃ obeing the free-
particle problem, provides a general recipe to analyze the
space charge buildup induced by currents in a nonequi-
librium system. Indeed, the net space charge density can
be expressed through the m = 0 harmonic as

δnk = νeδfm=0 =
νe

εk
δf̃m=0. (A23)

This relation between the actual current-induced den-
sity change and the fictitious free-particle density buildup
can be viewed as an extension of the Thomas-Fermi
mean-field screening theory to a non-equilibrium trans-

port problem; as such it is valid at first order in current.

The behavior of the potential is illustrated in Fig. 1(b).
The ratio of γ′/γ that was used is 5 × 10−8 and the
wavenumber is measured in units of `ee. The infinite con-
tinued fraction is computed by setting a large threshold
value of m after which γm odd = γm even = γ and the rest
of the continued fraction is given by the explicit expres-
sion for the one-rate model. A very small value of γ′/γ
was chosen to enlarge the range of lengthscales spanned
by the tomographic regime – more than four decades in
Fig. 1(b) – and exhibit the small deviations from scaling
discussed in the main text.
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