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Entanglement transitions in quantum dynamics present a novel class of phase transitions in non-
equilibrium systems. When a many-body quantum system undergoes unitary evolution interspersed
with monitored random measurements, the steady-state can exhibit a phase transition between volume-
and area-law entanglement. There is a correspondence between measurement-induced transitions
in non-unitary quantum circuits in d spatial dimensions and classical statistical mechanical models
in d+ 1 dimensions. In certain limits these models map to percolation, but there is analytical and
numerical evidence to suggest that away from these limits the universality class should generically
be distinct from percolation. Intriguingly, despite these arguments, numerics on 1+1D qubit circuits
give bulk exponents which are nonetheless close to those of 2D percolation, with some possible
differences in surface behavior. In the first part of this work we explore the critical properties of 2+1D
Clifford circuits. In the bulk, we find many properties suggested by the percolation picture, including
several matching bulk exponents, and an inverse power-law for the critical entanglement growth,
S(t, L) ∼ L(1− a/t), which saturates to an area-law. We then utilize a graph-state based algorithm
to analyze in 1+1D and 2+1D the critical properties of entanglement clusters in the steady state.
We show that in a model with a simple geometric map to percolation — the projective transverse
field Ising model — these entanglement clusters are governed by percolation surface exponents.
However, in the Clifford models we find large deviations in the cluster exponents from those of
surface percolation, highlighting the breakdown of any possible geometric map to percolation. Given
the evidence for deviations from the percolation universality class, our results raise the question of
why nonetheless many bulk properties behave similarly to those of percolation.

I. INTRODUCTION

Recent years have seen the exciting discovery of novel
non-equilibrium phases of matter in many-body quan-
tum systems. Quantum entanglement provides a natural
framework for the taxonomy of these non-equilibrium
phases. A prominent example of a non-equilibrium phase
transition is the many-body localization (MBL) transi-
tion [1–6], in which the energy eigenstates switch from
area-law entanglement in the MBL phase to volume-law
in the chaotic phase. This singular change in the en-
tanglement scaling means that the MBL transition is an
example of an entanglement transition.

For systems without energy conservation, random uni-
tary circuits have served as effective toy models of many-
body quantum chaos [7–10]. With the advent of noisy
intermediate scale quantum (NISQ) devices [11], the dy-
namics of pseudo-random unitary circuits can now be real-
ized in experimental platforms, including superconducting
qubits [12] and trapped ions [13]. A many-body quantum
system undergoing chaotic unitary time evolution will
typically thermalize, leading to volume-law entanglement
in the steady state [14]. However, this thermalization
and the concomitant volume law can be destroyed if the
time evolution becomes non-unitary due to randomly in-
terspersed measurements. The steady state conditioned
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on the measurement outcomes can then exhibit a phase
transition between volume- and area-law entanglement as
a function of the measurement rate, leading to the notion
of measurement-induced transitions [15–60].

These measurement-induced transitions occur in a
wide variety of models, including random circuits [15–
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FIG. 1. (a) Phase diagram for the measurement-induced tran-
sition in 2+1D local random Clifford circuits. For measure-
ment probabilities p < pc the steady state exhibits volume-law
entanglement, while for p ≥ pc the steady state is area-law
entangled. The entanglement transition and the purification
transition coincide. (b) The critical point of a d-dimensional
circuit appears to be described by bulk exponents from the
(d+1)D percolation. However, entanglement cluster exponents
do not match the percolation surface exponents.
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35], Hamiltonian systems [36–44], and measurement-only
models [28, 45, 46, 57], and exhibit universal behavior.
However, the determination of the relevant universality
classes has proved to be a subtle issue. In certain 1+1D
systems there is a ‘dimensional correspondence’, where
the measurement-induced transition in the 1+1D quan-
tum system corresponds to an ordering transition in a
2+0D statistical mechanical model. Through these mod-
els, it has become clear that there is an important link
between measurement-induced transitions and classical
percolation, but the precise nature of this relationship is
still unclear. For example, for 1+1D Haar-random cir-
cuits there are two distinct mappings to 2D percolation:
one for the (n = 0)-Rényi entropy (Hartley entropy) [17]
which employs the minimal cut formalism [61], and an-
other for the (n ≥ 1)-Rényi entropies [24, 25] which uses
the replica-trick to map the problem to 2D percolation in
the limit of large local Hilbert space dimension q →∞.

However, there is both analytical [25] and numerical
evidence [21, 26, 62] to suggest that away from this limit
the universality class should be distinct from percolation.
Puzzlingly, despite this evidence, numerics on 1+1D Haar-
random and Clifford circuits give many bulk exponents
which are close to those of percolation. It has been sug-
gested [25] that this could be an indication that the finite
q fixed point is close to the percolation fixed point in the
RG phase diagram.

Despite the results in 1+1D, it was not previously clear
whether this proximity to percolation holds in higher di-
mensions. To address this, in the first part of our work we
study the critical properties of the measurement-induced
transition in 2+1D Clifford circuits. First, we precisely
locate the critical point using the tripartite information
I3 (see Section III), which has been argued to be scale-
invariant at criticality, thereby providing a good estimator
of the critical probability pc. Having fixed pc, we then
find an inverse power-law for the critical entanglement
dynamics, S(t, L) ∼ L(1 − a/t), which saturates to an
area-law (see Fig. 1a). We provide a heuristic justification
for this scaling based on the ‘minimal cut’ prescription,
which assumes a percolation-like picture. The steady-
state area-law scaling is consistent with the behavior of
conformal field theories in dimensions d > 2 [63, 64].

We note that the accurate determination of the critical
point using I3 was important to correctly determine the
critical scaling, since even small deviations can result in
scaling which looks like S ∼ O(L logL) (c.f. Ref. [33] and
the discussion in Appendix B).

Next we analyze the connection between this
measurement-induced entanglement transition and quan-
tum error-correction through the lens of the purification
transition [22–24, 34, 53], which is characterized by a tran-
sition in the purification time of an initially maximally-
mixed state—in the ‘mixed phase’ the state purifies in a
time exponential in system size L, whereas in the ‘pure
phase’ it purifies in a time polynomial in L. This pu-
rification transition can be viewed as a transition in the
quantum channel capacity density of the hybrid quantum
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FIG. 2. We employ a graph-state based simulation algorithm
[65], where the data encoding the state consists of a graph G
and a list {Ci}L

d

i=1 of one-qubit Cliffords. The entanglement
structure is completely fixed by G. Entanglement clusters
can be found by a breadth-first search on G, and are here
highlighted in different colors. In general the action of a
Clifford gate corresponds to updating G and the list of one-
qubit Cliffords. Here we illustrate the simple case of a CZ gate
acting on two qubits whose one-qubit Cliffords commute with
CZ; in this case the CZ gate simply toggles an edge between
the qubits.

circuit, which governs whether the circuit can be used to
generate a finite-rate quantum error-correcting code—the
code rate is finite in the mixed phase, and goes to zero
as one approaches the pure phase. In other words, these
hybrid quantum circuits can form emergent quantum
error-correcting codes which protect against errors given
precisely by the measurements involved in the circuit.

It is not a priori obvious that these two measurement-
induced transitions should coincide: the entanglement
transition concerns spatial correlations in a quantum state
at a fixed time, whereas the purification transition con-
cerns correlations between quantum states at different
times [23]. Their coincidence in 1+1D was explained by
the fact that the 2+0D statistical mechanical model gov-
erning the purification transition is the same as that of
the entanglement transition, just with different boundary
conditions [24, 26]. In these models, the time coordinate
of the physical circuit plays the role of imaginary time
in the stat-mech model, giving an emergent symmetry
between space and time [26]. In higher dimensions, how-
ever, the symmetry between space and time can be broken
quite naturally. Our precise handle on the critical point
allows us to demonstrate that the purification transition
in 2+1D Clifford circuits continues to coincide with the
entanglement transition, suggesting this phenomenon may
be generic in all dimensions.

The coincidence of these two transitions then allows us
to utilize the entangling and purifying dynamics of en-
tangled ancilla qubits to extract various bulk and surface
critical exponents of the transition in 2+1D Clifford cir-
cuits, and to provide evidence of conformal symmetry at
the critical point (see Section IV). The bulk exponents ex-
tracted in this way are within error-bars of 3D percolation
(see Table I). Interestingly, we do observe small devia-
tions from percolation in certain surface critical exponents
(see Section IV). This is similar to the behavior observed
numerically in 1+1D circuits with qubits [21, 26, 34].
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Quantum circuits Classical percolation
Exponent

1+1D C 2+1D C 1D P 2D P 3D P
ν 1.24(7) 0.85(9) 1 4/3 = 1.333 0.8774
η 0.22(1) −0.01(5) 1 5/24 = 0.208 −0.047
η‖ 0.63(1) 0.85(4) 1 2/3 = 0.667 0.95
η⊥ 0.43(2) 0.46(8) 1 7/16 = 0.438 0.45
β 0.14(1) 0.40(1) 0 5/36 = 0.139 0.43
βs 0.39(2) 0.74(2) 0 4/9 = 0.444 0.85
z 1.06(4) 1.07(4)

Entanglement clusters
βec/ν −0.009(2) 0.00(2)
βs/ν 0 1/3 = 0.333 0.975
β/ν 0 5/48 = 0.104 0.49
γec/ν 0.95(1) 1.84(2)
γ1,1/ν 0 1/3 = 0.333 0.049
γ/ν 1 43/24 = 1.792 2.09
τ 2.04 1.98(1) 2 187/91 = 2.055 2.19

TABLE I. Critical exponents of the measurement-induced
transition in hybrid 1+1D and 2+1D random Clifford circuits,
compared with those of 1D, 2D and 3D percolation (1D P, 2D
P, and 3D P respectively). Exponents which appear to differ
from percolation are highlighted in red. Those exponents which
describe the scaling of entanglement clusters are labelled by
the subscript ec, and are compared with the bulk and surface
exponents for percolation. The exponents for 1+1D Clifford
circuits, excluding those describing entanglement clusters, are
taken from Ref. [21].

We perform our simulations using a graph-state based
algorithm (see Fig. 2) [65], which provides easy access to
geometric information about the entanglement structure—
the entanglement is completely fixed by the underyling
graph. This allows us to employ graph-theoretic clustering
tools to analyze entanglement clusters in the steady-state
(see Section V). If we naively assume that the critical
point has a simple geometric map to percolation, then the
critical properties of these entanglement clusters should
be governed by the surface exponents of percolation, given
that the clusters exist on the final timeslice of the (d+ 1)-
dimensional bulk. To confirm this naive expectation,
we first analyze entanglement clusters in the projective
transverse field Ising model, which is a measurement-only
Clifford model known to have a simple geometric map to
percolation [41]. There we indeed find critical scaling of
the entanglement clusters consist with surface percolation
exponents.

However, moving on to the Clifford circuits, we find
that, both in 1+1D and 2+1D, the entanglement clusters
are governed by exponents significantly different from
those of surface percolation (see Fig. 1b). We interpret
this as further evidence that the measurement-induced
transition in qubit Clifford circuits is in a different uni-
versality class to percolation. Lessons from Haar-random
circuits also tell us that, even when a map to percola-
tion does exist, it may be highly non-trivial in nature,
occurring for example only in a replica limit [24, 25]. The
deviation from surface percolation exponents in the Clif-
ford models indicates that, even if a map to percolation
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FIG. 3. (a) The sublattice index determines which sublattice

of qubits, denoted by or , are used as the ‘controls’ for
the Clifford gates in that time step. (b) Given a choice of
sublattice index, the clock index determines in which direction
each Clifford gate acts relative to the control. (c) The geome-
try used to calculate the tripartite information I3(A : B : C).
(d) One period of the gate sequence on a 2 × 2 lattice with
periodic boundary conditions, and time moving in the vertical
direction. Different colors label different values of the clock in-
dex. (e) Unit cell of the underlying lattice structure, obtained
by contracting each Clifford gate into a point.

does exist in certain limits, it may not have such a simple
geometric interpretation as do the analogous maps for
the projective transverse field Ising model [41] and the
Hartley entropy in Haar-random circuits [17].

II. METHODS

A. Model

In Sections III and IV we study a 2+1D model of lo-
cal random Clifford dynamics interspersed with random
projective measurements. Each time step consists of a
round of random 2-qubit Clifford gates with disjoint sup-
port applied to nearest-neighbors, followed by a round
of projective measurements in the σz basis, where each
qubit has probability p of being measured. The gates are
drawn uniformly over the whole 2-qubit Clifford group.
The pattern of gates applied at a given time step is deter-
mined by two indices: a ‘sublattice index’, which takes
values in Z2, and a ‘clock index’, which takes values in Z4.
Arranging the qubits in an L×L square lattice with peri-
odic boundary conditions, the sublattice index determines
which sublattice of qubits will act as the ‘controls’ for
the Clifford gates (see Fig. 3a). Given a choice of sublat-
tice, the clock index then determines which direction the
Clifford gates act in relative to the control qubits. The
values 0, 1, 2, and 3 correspond to gates acting up, right,
down, and left from the control qubits respectively (see
Fig. 3b). At the nth time step, the sublattice index has
the value n (mod 2), and the clock index has the value
bn/2c (mod 4), so that the overall gate sequence has pe-
riod 8 (see Fig. 3d). Since the support of the Clifford
gates changes with each time step, certain quantities that
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depend on making a ‘cut’, such as the entanglement en-
tropy of a given region, exhibit a mild periodicity related
to how often the gates cross the cut. To get well-defined
steady-state values, we perform a window-average over
a window matching the period of the oscillations (equal
to 4 time steps in this case)—all quantities in this paper
have been averaged in this way.

It is worth noting that this choice of gate protocol is by
no means unique. On grounds of universality, we expect
the main effect of a different choice of local quantum cir-
cuit is to change the critical measurement probability pc,
with the critical exponents unaffected. One alternative
was explored in Ref. [33], which used 4-local gates instead
of our 2-local gates. For rank-1 measurements, they ob-
serve a critical probability of pc ≈ 0.54, which is roughly
the square root of our estimated value of pc ≈ 0.312(2).
They do observe a different correlation length exponent
ν, on which we comment in Section III.

In Section V, as well as studying the 2+1D Clifford
model we have just outlined, we also study a 1+1D Clifford
model. This is identical to that studied in many previous
works studying the 1+1D problem, and can be thought of
as being controlled by a single ‘sublattice index’, resulting
in a ‘brick-wall’ structure of alternating layers of Clifford
gates interspersed with random projective measurements.

B. Simulation method

To simulate the hybrid Clifford dynamics, we used
a graph-state based algorithm [65]. This makes use of
the remarkable fact that every stabilizer state can be
represented as a graph state, up to the action of some
1-qubit Cliffords [66]. Simulation of stabilizer states then
takes the form of updating the underlying graph structure
and the list of 1-qubit Cliffords, which can be done in
polynomial time.

In more detail, graph states are a class of pure quan-
tum states whose structure is determined entirely by an
underlying graph G = (V,E). Each graph vertex v ∈ V
corresponds to a qubit, and the graph edges E determine
the preparation procedure for the state. To prepare the
graph state |G〉, we start from the initial product state

|ψ0〉 = [(|0〉 + |1〉)/
√

2]⊗N , where N is the number of
qubits, and then apply a CZ gate to each pair of qubits
which are connected by an edge in the graph G.

Stabilizer states are the states which can be prepared
from the initial product state |0〉⊗N by acting with gates
from the N -qubit Clifford group CN . The set of stabilizer
states is larger than that of graph states, but not by
much: all stabilizer states can be written as a graph state,
up to the action of some gates from the 1-qubit Clifford
group C1 [which contains only 24 gates, up to phase].
Single qubit gates are then trivial to perform, taking Θ(1)
time. Two-qubit Cliffords take time O(d2), where d is
the maximum vertex degree of the qubits involved in the
gate, and single-qubit Z-basis measurements take time
O(d). This makes graphs with low connectivity, which

can roughly be identified with low entangled states, easier
to simulate.

To wit, the graph structure completely determines the
entanglement of the corresponding quantum state. Given
a bipartition of the system into subsystems A and B,
the (Rényi or von Neumann) entanglement entropy SA is
given by

SA = rank(ΓAB), (1)

where ΓAB is the submatrix of the adjacency matrix
characterizing edges between subsystems A and B [66].
We note that for stabilizer states all Rényi entropies
(including the von Neumann entropy) are equal [67].

To simulate an initially mixed state ρ, we introduce
an auxiliary system to obtain a purification of ρ. We
then perform time-evolution on the resultant pure state,
with the quantum circuit acting as the identity on the
purifying system. For the maximally-mixed initial state
on N qubits, ρ = 1/2N , this corresponds to the pure state
simulation of N Bell pairs, where the system dynamics
acts only on one half of the Bell pairs. This purification
simulation method does mean that N -qubit mixed states
are harder to simulate than N -qubit pure states, but not
as hard as 2N -qubit pure states, since the purifying qubits
typically have a lower vertex degree than the original
qubits.

C. Transition diagnostics

As well as the entanglement entropy SA, we also study
the tripartite mutual information

I3(A : B : C) = I2(A : B)+ I2(A : C)− I2(A : BC), (2)

where I2(A : B) = SA + SB − SAB is the mutual infor-
mation. It is easy to see that for pure states, given a
partition of the system into 4 subsystems, the tripartite
information of 3 of the subsystems does not depend on
the choice of subsystems, so from now on we will simply
write I3 ≡ I3(A : B : C). We calculate I3 for the parti-
tion shown in Fig. 3c. Notice that a vertical slice of this
geometry gives a circle divided into four equal sections.
In 1+1D this partitioning was successfully employed to
study the entanglement transition because, at least within
the minimal cut picture [61], it cancels out any bound-
ary terms corresponding to the entanglement cost of a
domain wall traversing from the circuit boundary to the
percolating cluster in the bulk of the circuit [21, 23]. This
then suggests that in 1+1D, I3 is extensive in the volume-
law phase, O(1) at criticality, and zero in the area-law
phase. In 2+1D, we argue that, for this particular choice
of geometry, I3 remains O(1) at criticality, with its overall
behavior described by

I3(p, L) =


O(L2), p < pc
O(1), p = pc
0, p > pc

(3)
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FIG. 4. The steady-state I3 as a function of (p − pc)L1/ν ,
where pc ≈ 0.312(2) and ν ≈ 0.85(9). The inset shows the
uncollapsed data. This dataset consists of 5× 104 circuit real-
izations.

This implies that the values of I3(p, L) should coincide
for different system sizes at p = pc, allowing for reliable
location of the critical point. We further discuss our
choice of geometry for I3 in Appendix B.

III. ENTANGLEMENT TRANSITION

To accurately estimate the location of the critical point,
it is necessary to determine the correct scaling of I3. To
that end, we must rule out plausible scalings which are
different from the one proposed in Eq. (3). We have also
investigated the possibility that I3 ∝ L at the critical
point, which would suggest that the values of I3(p, L)/L
should coincide at p = pc. We detail evidence against this
scaling form in Appendix A.

The steady-state values of I3(p, L) are plotted in Fig. 4.
Given the scaling in Eq. (3), the curves should coincide
at the critical point. To determine the critical point and
the correlation length exponent ν we make the finite-size
scaling ansatz

I3(p, L) ∼ F
[
(p− pc)L1/ν

]
, (4)

where F [·] is a single-parameter scaling function. We
determine the optimal parameters by minimizing a cost
function ε(pc, ν) which measures deviations of a point
from a linear interpolation between its neighbors [21,
68] (see Appendix B for details). The resulting data
collapse is of excellent quality, with pc ≈ 0.312(2) and
ν ≈ 0.85(9), where the error bars correspond to the
range of values for which the cost function is less than
2 times its minimum value. We note that this value
of ν is reasonably close to the 3D percolation value of
νperc ≈ 0.877 [69], suggesting that the close relationship
between exponents of the entanglement transition and
percolation, even at low local Hilbert space dimension,

continues to hold in 2+1D. We also note that our value
of ν is significantly larger than that reported in Ref. [33]
(ν ≈ 0.67); we attribute this to the fact that we extract ν
by a data collapse not of the half-plane entanglement but
of the tripartite information, which coincides for different
system sizes at the critical point and so provides a much
more accurate estimator of the critical point. A similar
scenario occurs in 1+1D [21]. We discuss this further in
Appendix B.

Let us briefly comment on the value of pc ≈ 0.312
obtained for the critical measurement probability. This
value coincides with the threshold for site percolation
on the simple cubic lattice [70], but as far as we are
aware this is a coincidence; in fact our gate model maps
to the lattice shown in Fig. 3e, which exhibits a bond
percolation transition at pc = 0.3759(2). We expect other
gate models to give different values of pc (see Ref. [33])
but the same critical exponents. It is also interesting to
compare our value of pc to the upper bound derived in
Ref. [22], which modeled the volume-law phase as forming
a dynamically-generated non-degenerate quantum error-
correcting code, allowing them to apply the quantum
Hamming bound. The bound on pc depends only on
the local Hilbert space dimension q (not on the spatial
dimension), and for q = 2 gives pc . 0.1893. While this
bound was satisfied by 1+1D Haar-random and Clifford
circuits (pc ≈ 0.17 [21]), here we see that it is strongly
violated in 2+1D Clifford circuits. A similar violation has
also been observed in all-to-all models [23], where it was
pointed out that if these hybrid dynamics which violate
this upper bound are to generate quantum error-correcting
codes, these codes must be degenerate. Finally, we note
that the value of I3 at criticality, I2+1D

3 (pc) = −0.47(8),
is within error-bars of the value for 1+1D Clifford circuits,
I1+1D
3 (pc) = −0.56(9) [21], suggesting the possibility that

at criticality I3 could reach an O(1) constant which is
independent of dimension.

Having established the location of the critical point via
finite-size scaling of I3, we study the scaling properties
of the entanglement entropy in the different phases. We
propose the following scaling for the 2+1D circuit:

S(p, L) ∼


L(1− a

ξ ) +AL2

ξ2 , p < pc,

L, p = pc,

L(1− a
ξ ), p > pc,

(5)

where ξ = |p − pc|−ν is the correlation length and a,A
are unknown constants. Such scaling implies the data
collapse of the entropy is possible using a similar ansatz
as in the 1+1D circuit [17, 19],

S(p, L)− S(pc, L) = F [(p− pc)L1/ν ], (6)

where F [·] is a single-parameter scaling function, depend-
ing only on L/ξ.

In order to see the origin of this proposed scaling form,
we draw from the similarity to the 1+1D case, where
the behavior of entropy can be intuitively understood by
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FIG. 5. ‘Nodes and links’ picture of percolation. (a) An ex-
ample of percolation in the bulk of a 2D system. Percolating
bonds cluster within nodes (black dots) connected by links
(thick black lines), forming a ‘wire frame’. Average distance
between nodes is the correlation length ξ. There are also
smaller structures on the links (dark red), dead ends (red) and
structures unconnected to the frame (orange). Minimal-cut
path (blue dotted line) can be deformed to only cut through
the links (cuts indicated by transparent blue circles), causing
an O(1) contribution to the entropy. (b) The same exam-
ple, but in the presence of the final-time boundary. Every
structure touching the edge is promoted to be part of the
frame. Minimal-cut path generically starts within a smaller
structure of size O(1), having now to traverse through larger
and larger chambers in order to reach structures of size ξ.
(c) Percolation in the bulk of a 3D system (showing only
nodes and links for simplicity). Minimal-cut membrane can be
deformed, contributing O(1) to the entropy per one cell of the
frame. (d) Flattened minimal-cut membrane, showing all the
necessary cuts. Near the edge, the membrane traverses layers
of structures of increasingly larger sizes (with approximate
common ratio r).

considering the Hartley entropy S0. For Haar random
circuits S0 can be mapped exactly to classical percolation
in 2D [17]: each projective measurement cuts a bond of
the underlying lattice and prevents percolation; Hartley
entropy of a region is then calculated as the minimal num-
ber of cuts needed to separate said region at the final-time
boundary from the rest of the circuit. This mapping ex-
tends naturally to d+1D circuits, where S0 corresponds to
a minimal-cut d-dimensional membrane. Near criticality,
the ‘nodes-and-links’ picture of percolation [71, 72] gives
an insight into the scaling properties of S0 (see Fig. 5)
and shows two important contributions: from the bulk,
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FIG. 6. Dynamics and steady-state behavior of the half-plane
entanglement S(L/2× L) in the volume-law (p < pc), critical
(p = pc), and area-law (p > pc) phases. The left column
shows the dynamics for L = 32, with St ∼ Lt for p < pc,
St ∼ L(1− a/t) for p = pc, and St saturating in O(1) time for
p > pc. The right column shows the steady-state scaling, with
S∞(L) ∼ O(L2) for p < pc, and S∞(L) ∼ O(L) for p ≥ pc.
We use p = 0.1, p = 0.312, and p = 0.4 for the volume-law,
critical, and area-law plots respectively.

and from the edge.

For p < pc, percolation in the bulk of the circuit is
possible due to unbroken bonds forming a ‘wire frame’
consisting of dense clusters of bonds (nodes) connected
by long chains of unbroken bonds (links). Each cell in
the frame is of the size of the correlation length ξ and, if
traversed by the minimal-cut membrane, gives a contribu-
tion of O(1) to the entropy [see Fig. 5(a) and (c) for 2D
and 3D examples]. Counting the number of cells results
in the bulk of the circuit contributing ∼ (L/ξ)d to S0, the
source of the volume-law scaling.

The second relevant contribution comes from the final-
time boundary of the circuit [see Fig. 5(b)]. This edge
cuts through not only the links and nodes discussed above,
but also through smaller structures, dead ends, and other
structures normally unconnected to the main mesh. This
results in the minimal-cut membrane having to gener-
ically cut through a large number of small mesh cells
right next to the boundary, then through layers of con-
secutively larger cells, until the cell size reaches ξ [see
Fig. 5(d)]. Assuming a geometric progression of cell sizes
with common ratio r > 1 [17], the number of cells in the
ith layer is ∼ (L/ri)d−1, while the total number of layers
is ∼ logr ξ. We then arrive at an important result: the
total contribution from the boundary for 1+1D is ∼ log ξ,
while for higher dimensions is ∼ (1− a/ξd−1)Ld−1. This
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term is in general responsible for the area-law scaling,
but at the critical point p = pc (when ξ → L) it results
in logarithmic scaling in 1+1D, and area-law scaling in
higher dimensions.

We can also use this analysis to predict the time-
dependence of the entanglement entropy at criticality.
For intermediate times 1� t� min(ξ, L), the circuit is
shallow, and the minimal cut membrane will pass from
the final time boundary to the initial time boundary. This
is because at t = 0 the system is in a product state and
the membrane can traverse the initial boundary freely.
Hence, the main contribution to the entropy will be from
summing over progressively larger cells up until the circuit
depth of t, i.e. the number of layers is now only ∼ logr t.

Thus, the geometric sum
∑logr t
i (L/ri)d−1 gives

S(t, L) ∼ Ld−1
(

1− a

td−1

)
(7)

for some O(1) constant a. For the special case of d = 1
the sum reduces to the logarithmic scaling S(t, L) ∼
log t [17], but in higher dimensions the growth takes the
form of an inverse power-law in time, eventually saturating
to an area-law. We can write this as a scaling form
S(t, L)−bLd−1 ∼ f(t/L) with f(x) ∼ −x−(d−1) as x→ 0
and f(x)→ const. as x→∞, consistent with a dynamical
critical exponent of z = 1 (see also Fig. 7b and Fig. C3c).

Fig. 6 presents a summary of our results for the entan-
glement entropy, showing an excellent agreement with the
scaling ansatze in Eqs. (5) and (7). Notably, in the steady
state we observe area-law scaling at the critical point
(consistent with the recent results of Ref. [57]), possibly
with subleading additive logarithmic corrections, but not
with multiplicative logarithmic corrections (L logL), as
implied in Ref. [33]. We note however that if one assumes
a lower transition point (p ≈ 0.29), numerics may seem
like a L logL behavior for small system sizes, suggesting
that correctly locating the critical value pc is crucial to
making any statements on scaling of entropy at critical-
ity. As explained above, data collapse of I3 pinpoints the
precise value of pc, allowing us to determine the correct
critical scaling behavior.

Moreover, at these system sizes we cannot directly ob-
serve the presence of a subleading additive logL term,
but we also cannot rule it out since it may have a small
coefficient. Such a subleading additive logL is predicted
by a calculation from capillary wave theory [50, 73] which
evaluates the free energy cost of inserting an Ising domain
wall membrane in the quantum circuit’s spacetime bulk,
with the boundary condition that at the boundary of the
circuit corresponding to the final time the membrane is
pinned to the region for which one wants to calculate
the entanglement entropy. The subleading logL then
corresponds to an entropic contribution to the free energy
from ‘thermal’ fluctuations of the membrane at finite ‘tem-
perature’ (here corresponding to nonzero measurement
probability). In general, the appearance at criticality of
an area-law with additive log corrections is reminiscent
of the behavior of higher-dimensional conformal field the-

ories [63, 64]. There is also the possibility of a sublinear
power-law correction, analogous to the ∼ L0.38 correction
observed numerically in 1+1D Clifford circuits [50], which
could indicate a more complex entanglement domain wall
structure than the simple Ising structure that predicts
the logarithmic correction.

Finally, regarding the critical entanglement dynamics,
we note that one must be careful to distinguish the inverse
power-law behaviour of Eq. (7) from logarithmic growth.
In Appendix C we provide a plot of the critical entropy
dynamics at L = 92 on a log scale, which demonstrates
that the growth is not logarithmic in time, and provide
further evidence for the inverse power-law scaling.

IV. PURIFICATION TRANSITION

In this section, we investigate the purification transition
and demonstrate that it coincides with the entanglement
transition studied in Section III. To do so we study the
entanglement entropy density S/L2 of a maximally-mixed
initial state after being time-evolved for time t = 4L. In
the ‘pure phase’, the state purifies in time linear in system
size L, implying S/L2 → 0 for t ∝ L but sufficiently
large (t = 4L suffices), while in the ‘mixed phase’ the
purification time is exponential in L, so that after the
time t = 4L we expect the entropy density to remain
finite. Fig. 7 shows the entanglement entropy density as
a function of measurement probability p. The entropy
density vanishes close to the critical point pc ≈ 0.312 of
the entanglement transition. For these system sizes, there
still exists some appreciable finite-size drift, but it appears
to be such that the entropy density vanishes increasingly
close to pc ≈ 0.312 as the system size increases. The
black dashed curve shows the function A(pc − p)2ν , with
A a constant and pc and ν fixed from the entanglement
transition. The exponent 2ν is motivated by the scaling
of the entanglement entropy in Eq. (5), where the O(L2)
term controlling the entropy density appears with the
coefficient ξ−2 ∼ (pc − p)2ν . The convergence of the
entropy density to the scaling form A(pc − p)2ν therefore
provides strong evidence that the purification transition
indeed coincides with the entanglement transition and
that the estimation of ν in the previous section is correct.

Having established the coincidence of these two tran-
sitions, we now extract further critical exponents of the
transition using the local order parameter proposed in
Ref. [34] of the entanglement entropy of an ancilla qubit
entangled with the system but not directly acted on by
the circuit dynamics. First, we extract the anomalous
scaling exponents η, η‖, and η⊥ controlling the power-law
decay of bulk-bulk, surface-surface, and surface-bulk two-
point correlation functions at criticality. In percolation,
these quantities control the probabilities that two distant
sites, living either in the bulk or on the surface, belong to
the same cluster. To determine these exponents we study
the dynamics at p = pc of the mutual information be-
tween two ancilla qubits separated by a distance L/2 [21],
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FIG. 7. (a) The entropy density of an initially maximally-
mixed state after evolving for a time t = 4L. The black
dashed line shows the function A(pc − p)2ν with A ≈ 11.7,
and pc and ν determined from finite-size scaling of I3. At
these system sizes there is still some finite-size drift in the
data, but it seems to be approaching the curve described by
A(pc − p)2ν . (b) Purification dynamics at p = pc. The data
collapse onto a single curve when plotted in terms of t/L,
indicating a dynamical critical exponent of z ≈ 1 [the optimal
fitted value is z = 1.07(4)]. Non-universal early-time dynamics
are excluded from the fit.

which provides an upper bound on connected correlation
functions [74]. The ancilla qubits are entangled with the
system at a time t0. We use different values of t0 and
different boundary conditions to extract the different ex-
ponents: {t0 = 2L, periodic} for η, {t0 = 0, periodic} for
η‖, and {t0 = 2L, open} for η⊥. Conformal symmetry
z = 1 at the critical point (see Fig. 7b) implies that in
D spacetime dimensions the mutual information between
two qubits separated by a distance r should assume the
scaling form

I2(t, r) ∼ 1

rD−2+η
G

[
t− t0
r

]
, (8)

where G[·] is a single-parameter scaling function, and
the exponent depends on the choice of t0 and boundary
conditions, as outlined above. Thus in this 2+1D space-
time circuit, we can extract the exponents by performing
data collapses of L1+ηI2[(t − t0)/L,L/2], as shown in
Fig. 8. For the bulk-bulk exponent η and the surface-
bulk exponent η⊥, we obtain the values η ≈ −0.01(5)
and η⊥ ≈ 0.46(8), which are within error-bars of the 3D
percolation values ηperc = −0.047 and η⊥,perc = 0.45 [75].
We note in passing that the data collapse for η⊥ is not
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FIG. 8. Extraction of the anomalous scaling exponents η ≈
−0.01(5), η‖ ≈ 0.85(4), and η⊥ ≈ 0.46(8), shown in (a),
(b), and (c) respectively, via data collapse at p = pc of the
mutual information I2 between two ancilla qubits which are
entangled at time t0 with two system qubits a distance L/2
apart. The different exponents are extracted using different
boundary conditions and different values of t0 [see main text].
The insets show the uncollapsed data. The η dataset consists
of 2.5× 105 circuit realizations, while the η‖ and η⊥ datasets

each consist of 106 circuit realizations.

as good quality as that for η, resulting in larger error
bars using the methodology described in Appendix B.
However, there does not appear to be a systematic drift
with increasing system size. We attempted to improve the
collapse quality by using a large number of circuit realiza-
tions (106 for η⊥), but some discrepancy is still evident.
This could possibly be a result of η⊥ being particularly
sensitive to any miscalibration of the critical point pc,
despite the precision to which we have pinpointed pc in
this work.

Moving on to the surface-surface exponent η‖, we obtain
the value η‖ ≈ 0.85(4). This is not within error-bars
of the 3D percolation value η‖,perc = 0.95, indicating a
possible difference in surface behavior. The error-bars on
our exponent estimates capture only the statistical error,
so it is possible that there are still significant finite-size
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FIG. 9. Extracting the exponents β and βs using the entropy
Sancilla of an ancilla qubit which is maximally entangled with
a bulk qubit at a time t0, and then further evolved for a time
t = 2L. (a) The bulk exponent β is extracted using t0 = 2L.
The black dashed curve shows the function B(pc − p)β where
B ≈ 3.2 and β ≈ 0.40(1). (b) The surface exponent βs is
extracted using t0 = 0. There the black dashed curve shows
the function C(pc − p)βs where C ≈ 4.6 and βs ≈ 0.74(2). In
both cases, pc ≈ 0.312 is fixed by finite-size scaling of I3. This
dataset consists of 104 circuit realizations.

corrections. However, we note that a similar deviation
in η‖ (and in η⊥), was observed in 1+1D Haar-random
circuits (though not in Clifford circuits) [21]. In this case,
a deviation only in η‖ would not be consistent with the
scaling relation 2η⊥ = η + η‖, but the error-bars on our
estimates are large enough that there could also be small
deviations in η⊥ that provide the necessary contribution
to restore the scaling relation.

Next, we extract the exponents β and βs controlling
the behavior of the order parameter as a function of p. In
percolation, β controls the probability P (p) ∼ |p− pc|β
that a site in the bulk will belong to the infinite percolating
cluster, while βs does the same but for a site on the surface.
To extract these exponents we study the entanglement
entropy of an ancilla qubit, entangled with the system
at time t0 = 2L for β and time t0 = 0 for βs, and
subsequently time-evolved for a further time t = 2L.
Fig. 9 shows the ancilla entropy Sancilla as a function of
measurement probability p for the cases relevant to β and
βs. For the bulk exponent β, the data are well described
by the function B(p− pc)β with B a constant, pc ≈ 0.312
fixed by the entanglement transition, and β ≈ 0.40(1).
This is close to the 3D percolation value of βperc ≈ 0.43.

However, for the surface exponent βs, the data are well
described by the function C(pc−p)βs , where βs ≈ 0.74(2).
This is somewhat different from the 3D percolation value
of βs,perc ≈ 0.85. The value of βs is quite sensitive to
the value of pc; we estimate that to obtain βs ≈ 0.85
one would have to have pc ≈ 0.318, which does not seem
tenable given the clear crossing point in I3 (see inset
of Fig. 4). There are also some small deviations from
the scaling around p ≈ pc, but these seem to decrease
with system size. We therefore tentatively conclude that
the surface critical exponent βs may also differ from 3D
percolation. The fact that we observe both the surface
exponents βs and η‖ to be smaller than the corresponding
values from percolation is consistent with the scaling
relation 2βs = ν(D− 2 + η‖), where D = 3 is the number
of spacetime dimensions.

V. ENTANGLEMENT CLUSTERS

Finally, with the aim of further exploring connections
with percolation, we investigate entanglement clusters in
the steady state. Working within the graph-state frame-
work for simulating stabilizer states, we define an entan-
glement cluster in the graph-theoretic sense: two spins are
in the same cluster if there is a connected path between
them (see Fig. 2 for an example). We will mainly study
the size s of the clusters, defined for a given cluster as
the number of spins it contains. This is clearly quite
a coarse-grained notion of entanglement, since different
spins in the same cluster can be entangled by different
amounts. Nonetheless, it provides some insight into how
multipartite is the steady-state entanglement.

If we assume that there is a percolation-like statisti-
cal mechanical model controlling the critical point, then
naively one would expect the scaling of the entanglement
clusters to be controlled by surface exponents of (d+ 1)-
dimensional percolation. We will focus on two quantities,
the largest entanglement cluster size smax, and the mean
entanglement cluster size s. Within the percolation lan-
guage, these correspond to the ‘surface area’ of the infinite
percolating cluster (assuming the largest surface cluster
coincides with the largest bulk cluster), and the mean
‘surface area’ of clusters with at least one site on the
surface, where by ‘surface area’ we mean the number of
sites in the cluster that lie on the surface. In a (d+ 1)-
dimensional percolation model with finite linear extent L,
these should scale as smax/L

d ∼ L−βs/ν and s ∼ Lγ1,1/ν
respectively.

To check this naive expectation, we first analyzed the
scaling of entanglement clusters within the projective
transverse field Ising model (PTFIM), as discussed in
more detail in Appendix D. This is a measurement-only
model exhibiting an entanglement transition which is
known to be in the percolation universality class [41].
Conveniently, it also only involves Clifford operations,
so can be simulated using the graph-state framework,
and therefore provides a useful testbed for the scaling
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FIG. 10. The average size s of all entanglement clusters in
the steady-state for (a) 1+1D and (b) 2+1D Clifford circuits.
The insets show log-log plots of this quantity at p = pc, with
the behaviour well described by the power law s ∼ Lγec/ν ,
where γec/ν = 0.95(1) for 1+1D and γec/ν = 1.84(2) for 2+1D
(power-law fits shown in solid red).

properties of the entanglement clusters. The results are
summarized in Fig. D4, where we show data for the mean
cluster size and largest cluster size for the PTFIM in both
1+1D and 2+1D. In 1+1D, these quantities both scale as
power-laws with exponents closely matching the expected
values from surface 2D percolation. In 2+1D, the largest
cluster size also follows a power-law closely matching
the expectation from surface 3D percolation. The mean
cluster size appears to have a slightly larger exponent
than expected, but it is possible that this discrepancy
is due to significant finite-size effects, as we discuss in
more detail in Appendix D. Nonetheless, taken as a whole
we believe these results provide reasonable evidence to
suggest that if the critical circuit dynamics has a simple
geometric map to percolation, as in the PTFIM, then we
should expect the scaling of the entanglement clusters to
be controlled by surface exponents of (d+ 1)-dimensional
percolation.

In fact, we will see that the critical properties of the
entanglement clusters in the steady-state of the random
Clifford circuits scale with exponents quite distinct from
those of surface (d+ 1)-dimensional percolation. Several
of them are controlled by exponents close to those of bulk
d-dimensional percolation, but it is possible this could

be a coincidence. We offer two possible interpretations
of these results. First, this could be further evidence
that the measurement-induced transition in random Clif-
ford circuits on qubits is in a distinct universality class
to percolation, which is the conclusion of several recent
studies [21, 26, 62]. Second, lessons from Haar-random
circuits [25] suggest that, even if a map to percolation
does exist in certain limits, it may be highly non-trivial,
and in particular may not have a simple geometric inter-
pretation as for the PTFIM and the Hartley entropy in
Haar circuits [17]. As a consequence it is less obvious
that the critical properties of the entanglement clusters
in random Clifford circuits should be controlled by the
surface exponents βs and γ1,1 that are relevant for models
that do have a simple geometric map to percolation.

Before we go into more detail, we make a brief comment
about notation. As we just discussed, in the absence of a
simple geometric map to percolation, it is not obvious that
the mean and largest cluster sizes should be controlled
by the surface exponents γ1,1 and βs as they are in the
PTFIM. For this reason we will label exponents for the
entanglement clusters with the subscript ec, and do not
claim that they should necessarily match the exponents
γ1,1 and βs in all models.

To find the entanglement clusters, we employ a breadth-
first search on the graph storing the steady state [76].
Fig. 10 shows the behavior of the average cluster size
s =

∑
s nss

2/
∑
s′ ns′s

′, where the cluster number ns
is the number of clusters of size s normalized by the
system volume Ld. Note that this quantity measures
the average cluster size if sites are randomly selected
with equal probability—if instead clusters are randomly
selected with equal probability then the corresponding
average is

∑
s nss/

∑
s′ ns′ . Assuming critical scaling

of the form s ∼ Lγec/ν , the inset to Fig. 10a shows a
log-log plot of this quantity for 1+1D Clifford circuits,
with a fitted exponent of γec/ν ≈ 0.95(1) shown by the
solid red line, close to the value of γ/ν = 1 for 1D bulk
percolation [72], and far from the value γ1,1/ν = 1/3
for surface 2D percolation [77]. The analogous plot for
2+1D Clifford circuits is shown in the inset to Fig. 10b,
where the fitted exponent γec/ν ≈ 1.84(2) is close to
the value γ/ν = 43/24 ≈ 1.79 for bulk 2D percolation,
and far from the value γ1,1/ν ≈ 0.049 for surface 3D
percolation [77, 78].

Fig. 11 shows the average over circuit realizations of
the size smax of the largest steady-state cluster in each
realization, as a fraction of system size. This is a measure
of the surface fractal dimension df of the infinite cluster

since by definition smax ∼ Ldf ∼ Ld−βs/ν . The inset to
Fig. 11a shows a log-log plot of smax(pc)/L

d ∼ L−βec/ν

for 1+1D Clifford circuits, which is well described by
the fitted exponent βec/ν ≈ −0.009(2). This is close to
the value β/ν = 0 for 1D bulk percolation, and far from
the exponent βs/ν = 1/3 for surface 2D percolation. In
2+1D, we find that there are significant finite-size effects
affecting the scaling of the largest cluster size. For small
system sizes, L / 32, the power-law exponent is close to
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FIG. 11. The average size smax of the largest entanglement
cluster in the steady state for (a) 1+1D and (b) 2+1D Clifford
circuits. The insets show log-log plots of this quantity at
p = pc, with the behavior well described by the power law
smax(pc)/L

d ∼ L−βec/ν , where βec/ν = −0.009(2) for 1+1D
and βec/ν = 0.00(2) for 2+1D (power-law fits shown in solid
red). Note there are strong finite-size effects in 2+1D, so there
the fit is only to sizes L ≥ 40.

the bulk 2D percolation exponent β/ν = 5/48 ≈ 0.10, but
this appears to be a finite-size effect. At larger system
sizes the exponent saturates to approximately zero, with
the fitted value βec/ν ≈ 0.00(2), which is very far from
the surface 3D percolation exponent of βs/ν ≈ 0.97 [78].

Finally, in Fig. 12 we show the distribution ns of all
cluster sizes s, which at p = pc and for 1� s� Ld follows
a power-law ns ∼ s−τ (c0 + c1s

−Ω + · · · ), with the leading-
order correction to scaling controlled by the exponent Ω.
A comment on this scaling form is necessary if we are to
make a comparison with 1D percolation. As noted above,
for 1D percolation the critical probability is pc = 1. This
has the consequence that, strictly at p = pc, there is only
a single cluster which covers the whole system, smax = L,
so for cluster sizes s < smax the cluster number ns =
0. Nonetheless, one can meaningfully define the Fisher
exponent τ by analyzing the behavior of ns for p < pc,
where one finds τ = 2 for 1D percolation. However, a
key difference between the 1+1D hybrid quantum circuits
we study and 1D percolation is that for the quantum
circuits, 1− pc ≈ 0.84 is different from unity, so there is
still randomness at the critical point, and thus we can
observe a full distribution of cluster sizes. This provides
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FIG. 12. Distribution function ns of the entanglement cluster
sizes s in the p = pc steady state for (a) 1+1D and (b) 2+1D
Clifford circuits, with system sizes L = 348 and L2 = 482

respectively. For 1 � s � Ld, the probability distribution
follows a power-law distribution ns ∼ s−τ (c0+c1s

−Ω) with the
leading-order correction to scaling controlled by the exponent
Ω. The dashed and dotted lines show fits using the exponents
from d- and (d+ 1)-dimensional percolation respectively. The
peak at large s corresponds to the percolating cluster of size
O(Ld) present for p ≤ pc.

justification for continuing to use the scaling form ns ∼
s−τ (c0 + c1s

−Ω + · · · ) to describe the cluster distribution
function in 1+1D hybrid circuits.

In this case, it is harder to distinguish the behavior of d-
and (d+ 1)-dimensional percolation, since the exponents
for the leading term, τ1D = 2, τ2D = 187/91 ≈ 2.05 [72]
and τ3D ≈ 2.19 [70], are all quite similar in magnitude.
Indeed both τ1D and τ2D provide a reasonable fit to our
1+1D data (see Fig. 12a), and both τ2D and τ3D provide
a reasonable fit to our 2+1D data (see Fig. 12b). An
independent statistical bootstrap analysis [79] gives the
exponents τ ≈ 2.04 and Ω ≈ 0.15 in 1+1D, and τ ≈ 1.98
and Ω ≈ 1.04 in 2+1D. However, it is hard to call these
values physically meaningful, since allowing for variation
in the scaling correction exponent Ω provides considerable
freedom to optimize the quality of the fit. What is at
least clear is that the Fisher exponent τ is close to values
predicted by percolation theory in low dimensions, since
our fitted values are far from the mean-field value τ = 2.5.

We conclude this section by noting that the entangle-
ment cluster distribution is qualitatively similar to the
stabilizer length distribution (SLD) introduced by Li,
Chen and Fisher in Ref. [19]. Indeed, both have a power-
law tail, and a volume-law peak which disappears upon
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entering the area-law phase. Furthermore, at criticality
the exponent τ of the power-law tail is close to 2 in both
cases. In 1+1D the SLD has the nice property that it can
be used to calculate the entanglement entropy itself—for
example, a power-law exponent of 2 gives rise to a sub-
leading logL contribution to the entanglement entropy.
However, it is not clear how to generalize the SLD to
higher dimensions in a way that preserves this ability to
calculate the entanglement entropy from the analogous
‘stabilizer volume distribution’. From the entanglement
cluster distribution we analyze here, it is possible to calcu-
late the entanglement entropy provided one makes certain
simplifying assumptions about the fractal structure of the
entanglement clusters, but we defer further analysis of
this link to future work.

VI. DISCUSSION

We have provided an extensive study of the critical
properties of the measurement-induced transition in 2+1D
Clifford circuits. Analogously to the situation in 1+1D,
we have found several bulk critical exponents which are
within error-bars of those from 3D percolation, but there
appear to be some differences in surface behavior. We
should note that these critical exponent estimates should
be treated with some amount of caution, especially for
small system sizes, as conformal field theories with zero
central charge (like those appearing in current theories of
the 1+1D transition [25]) can have logarithmic corrections
to scaling [80, 81], which could result in systematic errors.

Nonetheless, focusing on this surface behavior, we stud-
ied the critical scaling of entanglement clusters in the
steady state, and found that — in contrast to models
with a simple geometric map to percolation — Clifford
circuits have entanglement cluster exponents which differ
significantly from those of surface percolation. We take
this as evidence that in 1+1D and 2+1D the measurement-
induced transition in qubit Clifford circuits is in a distinct
universality class from percolation.

Presumably the entanglement clusters are governed
by surface exponents of the as yet unknown (d + 1)-
dimensional statistical mechanical model applicable to
Clifford circuits. It remains a significant question why the
bulk exponents of this model look so much like those of
percolation, even though this system is far from where the
percolation picture should be applicable. There have been
recent developments in the machinery required to average
over random Clifford unitaries [82], which should prove
helpful in developing this statistical mechanical model.
However, the reduced structure relative to Haar-random
unitaries makes it less obvious how to perform the replica
limit required to give the correct critical physics.

We have also shown the coincidence of the purifica-
tion transition and the entanglement transition in 2+1D.

This may at first be surprising, given that the entan-
glement transition concerns spatial correlations between
equal-time wavefunctions, while the purification transition
concerns correlations in time of a non-local quantity. The
results in this paper indicate that these two transitions
may coincide in all dimensions. One possible explanation
for this could be the conjecture of Ref. [26] that the non-
unitary nature of the dynamics results in the real time
coordinate in d spatial dimensions acting as imaginary
time in the corresponding (d+ 1)-dimensional statistical
mechanical model. In this sense space and time may be-
come symmetric, so the coincidence of the entanglement
transition and the purification transition would be less
surprising. The coincidence of these transitions and our
entanglement cluster analysis also suggest a way to inves-
tigate connections with quantum error-correction—the
emergence of the critical entanglement cluster can be seen
as the germination of the quantum error-correcting code
that characterizes the stability of the volume-law phase.

Moving into higher dimensions raises several ques-
tions. One interesting direction is that of ‘measurement-
protected order’ [28, 29], analogous to the ‘localization-
protected order’ afforded by many-body localization
(MBL) [83, 84]. It is tempting to view the area-law side
of the measurement-induced transition as a ‘trivial’ phase,
but recent work has demonstrated that there can be sta-
ble symmetry-protected topological (SPT) order in the
area-law phase, motivated by comparisons with the area-
law ground states of gapped Hamiltonians. However, it
is only in dimensions d ≥ 2 that true topological order
can exist [85], so it would be interesting to see if non-
trivial topological order could be realized in the steady
states of 2+1D hybrid quantum circuits. There is also the
question of which types of order can be stabilized by mea-
surements. There are significant constraints on possible
phases stabilized by MBL: non-Abelian symmetries are
forbidden [86], for example, as well as chiral order [87]. It
is also possible that true MBL does not exist in d > 1 [88].
It is an important topic for future research to determine
which restrictions, if any, are applicable to measurement-
protected order. This may allow for considerably more
freedom in the more general paradigm of understanding
and classifying non-equilibrium phases of matter.
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Gorshkov, Classical Models of Entanglement in Monitored
Random Circuits, arXiv (2020), arXiv:2004.06736.

[28] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[29] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Research 3, 023200 (2021).

[30] M. Szyniszewski, A. Romito, and H. Schomerus, Univer-
sality of entanglement transitions from stroboscopic to
continuous measurements, Phys. Rev. Lett. 125, 210602
(2020).

[31] L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R.
Mucciolo, and A. E. Ruckenstein, Nonuniversal entangle-
ment level statistics in projection-driven quantum circuits,
Phys. Rev. B 101, 235104 (2020).

[32] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum Error
Correction in Scrambling Dynamics and Measurement-
Induced Phase Transition, Phys. Rev. Lett. 125, 030505
(2020).

[33] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-
induced criticality in (2 + 1)-dimensional hybrid quantum
circuits, Phys. Rev. B 102, 014315 (2020).

[34] M. J. Gullans and D. A. Huse, Scalable Probes of
Measurement-Induced Criticality, Phys. Rev. Lett. 125,
070606 (2020).

[35] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measure-
ment and entanglement phase transitions in all-to-all quan-
tum circuits, on quantum trees, and in landau-ginsburg
theory, PRX Quantum 2, 010352 (2021).

[36] X. Cao, A. Tilloy, and A. De Luca, Entanglement in
a fermion chain under continuous monitoring, SciPost
Physics 7, 024 (2019).

[37] Q. Tang and W. Zhu, Measurement-induced phase transi-
tion: A case study in the nonintegrable model by density-
matrix renormalization group calculations, Phys. Rev.
Research 2, 013022 (2020).

[38] S. Goto and I. Danshita, Measurement-induced transitions
of the entanglement scaling law in ultracold gases with
controllable dissipation, Phys. Rev. A 102, 033316 (2020).

https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1088/1361-6633/aac9ed
https://doi.org/10.1088/1361-6633/aac9ed
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.9.021033
https://arxiv.org/abs/2007.03339
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.134306
https://arxiv.org/abs/2001.00021
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.103.174309
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104302
https://arxiv.org/abs/2003.12721
https://arxiv.org/abs/2004.06736
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevLett.125.210602
https://doi.org/10.1103/PhysRevLett.125.210602
https://doi.org/10.1103/PhysRevB.101.235104
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PRXQuantum.2.010352
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevA.102.033316


14

[39] O. Alberton, M. Buchhold, and S. Diehl, Entanglement
transition in a monitored free-fermion chain: From ex-
tended criticality to area law, Phys. Rev. Lett. 126,
170602 (2021).

[40] O. Lunt and A. Pal, Measurement-induced entanglement
transitions in many-body localized systems, Phys. Rev.
Research 2, 043072 (2020).
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FIG. A1. (a) The steady-state values of I3/L as a function of (p− pc)L1/ν , where pc ≈ 0.303 and ν ≈ 1.07. The inset shows
the uncollapsed data. This dataset consists of 50,000 circuit realizations. (b) Analogous to Fig. 8a, except performed at the
alternative critical point pc ≈ 0.303 estimated from the data collapse of I3/L. The main plot shows the ‘optimal’ collapse at
η = −0.57 as determined by minimizing the cost function in Appendix B, but this clearly does not produce a good data collapse.

Appendix A: Alternative scaling forms for I3

In this section we detail some evidence against the hypothesis that I3 ∼ O(L) at p = pc. Finite-size scaling of I3/L
results in the critical point pc ≈ 0.303 with ν ≈ 1.07 (see Fig. A1a). However, if we attempt to use this critical point
to estimate other critical exponents from standard finite-size scaling arguments, we are unable to obtain a good data
collapse, indicating the absence of scaling behavior. For example, to extract the anomalous scaling exponent η, we
follow the procedure detailed in Section IV, where η is chosen to optimize the data collapse of the dynamics of the
mutual information between two ancilla qubits. Whereas this was possible for the critical point pc ≈ 0.312 obtained
from finite-size scaling of I3 (see Fig. 8a), for the purported critical point pc ≈ 0.303 from I3/L scaling, there was not
a value of η for which a good data collapse was possible (see Fig. A1b). Moreover, the data collapse in Fig. A1a is of
visibly worse quality than the excellent collapse in Fig. 4. We also see in Section IV that the purification transition
seems to coincide with the critical point pc ≈ 0.312 from I3 scaling, with a dynamical critical exponent z ≈ 1 indicating
the emergence of conformal symmetry. Given that these facts mirror the situation in 1+1D, this provides further a
posteriori justification for the scaling I3 ∼ O(1) at criticality.

Appendix B: Details of the finite-size scaling

To perform the data collapses, we use a cost function ε(pc, ν) which uses linear interpolation to find the parameters
(pc, ν) which cause the data to best collapse on to a single curve [21, 68]. In more detail, given a set of parameters
(pc, ν), for each value of p and L we create an x-value x := (p − pc)L1/ν , with a corresponding y-value y(p, L) and
error d(p, L). We then sort the triples (xi, yi, di) according to their x-values, and evaluate the cost function

ε(pc, ν) :=
1

n− 2

n−1∑
i=2

w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1), (B1)

where w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1) is defined as

w :=

(
y − ȳ

∆(y − ȳ)

)2

, (B2)

ȳ :=
(xi+1 − xi)yi−1 − (xi−1 − xi)yi+1

xi+1 − xi−1
, (B3)

|∆(y − ȳ)|2 := d2
i +

(
xi+1 − xi
xi+1 − xi−1

)2

d2
i−1 +

(
xi−1 − xi
xi+1 − xi−1

)2

d2
i+1. (B4)

The function w measures the deviation of a point from the line obtained by a linear interpolation of its nearest
neighbours, weighted by the errors in each data point. Values of (pc, ν) for which ε(pc, ν) ≈ 1 are considered optimal.
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FIG. B2. (a) The logarithm of the cost function ε measuring the quality of the data collapse for different values of pc and ν,
compared between two possible indicators of the entanglement transition: the half-plane entanglement entropy S(L/2), and the
tripartite information I3. The black dots show the minimum of the cost function for each indicator. See the appendix for a
definition of the cost function ε. (b) A linear-scale close-up of the cost function for the I3 data collapse around the estimated
critical point, which is indicated by the black dot. The white line indicates the boundary of the region for which the cost
function is less than 2 times its minimum value; this is the region from which the error bars are calculated. At the estimated
critical point the cost function attains the value ε = 1.47, close to the optimal value ε ≈ 1.

As discussed in Section III, our finite-size scaling analysis yields the correlation length exponent ν ≈ 0.85(9), which
is significantly different to that observed in Ref. [33]. We attribute this to the fact that we extract ν by a data collapse
not of the half-plane entanglement, as in Ref. [33], but of the tripartite information, which coincides for different
system sizes at the critical point and so provides a much more accurate estimator of the critical point. To further this
point, we show in Fig. B2a a comparison of the cost function ε(pc, ν) landscape in log scale between the half-plane
entropy S(L/2 × L) and the tripartite information I3. The entropy cost function plot shows a clear ‘ridge’ region
where ε is roughly constant, spanning the whole range of values of pc and with a large variation of ν along the ridge
(see also Fig. 2 in the Erratum of Ref. [33]). On the other hand, the I3 cost function plot is much more localized
around the estimated critical parameters, reaching a smaller value of ε than the entropy plot. This localization is less
obvious viewed in log scale, but the log was necessary for a meaningful visual comparison of the cost function plots for
the two indicators. Fig. B2b shows a linear-scale version of the cost function plot for I3, which allows for a clearer
visualization of the localization of the cost function minimum. The estimated critical point is indicated by the large
black dot, while the surrounding white line gives the boundary of the region where the cost function is less than 2
times its minimum value, from which we calculate the error bars in pc and ν. Notice that at the estimated critical
point, the cost function reaches a value ε = 1.47 close to 1, indicating a good-quality data collapse.

Furthermore, a comment on the used system sizes is necessary. One could argue that the 4 subsystems used to
calculate I3 have the vertical dimension Ly ≤ 8, which may be small enough to exhibit substantial finite-size effects,
hindering our ability to properly locate the critical point. However, I3 in 1+1D circuits shows almost no finite-size
drift at criticality already for systems of size L ≥ 16 [21] (subsystems of size ≥ 4). Using our data from Fig. 4, one can
assess that the crossings of I3 exhibit no statistically significant drift above roughly L ≥ 16, strongly implying little
to no finite-size effects in I3 at criticality for the system sizes considered. We also note that the data collapse is of
exceptional quality, again strongly ruling out any substantial finite-size drifts.

Appendix C: Critical entanglement dynamics

In Fig. C3 we plot the dynamics of the half-plane von Neumann entropy at the 2+1D critical point pc = 0.312.
Because the entanglement is relatively small at the critical point, we are able to simulate a large system with linear
size L = 92. In Fig. C3a the time axis is on a logarithmic scale, and we can see that the data do not appear linear on
this scale, thereby demonstrating that the entanglement growth is not logarithmic in time. Note that we are plotting
here the window-averaged entropy, averaged over a window of 4 timesteps, which is why there is not data at every
timestep. This is to remove a periodicity effect related to how often the Clifford gates cross the cut used to define the
entanglement entropy, as discussed in Section II BA.

As we discuss in Section III, we instead argue that the entanglement growth scales as S(t, L) = bL(1− a/t) in 2+1D,
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FIG. C3. The dynamics of the half-plane von Neumann entropy at the critical point pc = 0.312 of the 2+1D Clifford model. (a)
The data are not linear on a log scale, indicating that the entanglement growth is not logarithmic in time (system size is L = 92).
(b) A plot of S(t, L/2)/L as a function of 1/t, where the linear trend provides support for the scaling S(t, L) ∼ L(1− a/t). (c)
Scaling collapse of S(t)− bL vs t/L, with b = 0.685 producing the best fit.

where a, b are some O(1) constants. Evidence for this is shown in Fig. C3b, where the data appears approximately
linear when plotted as a function of 1/t. Note that the data appears linear on this scale, with the straight lines
showing linear fits. The gradients and y-intercepts of these fits are approximately the same for different system sizes,
supporting the idea that a and b are O(1) constants. Note that we only expect this scaling to hold for intermediate
times, so there are some deviations from this behavior at early times. Finally, in Fig. C3c, we show a data collapse of
S(t)− bL vs t/L with b = 0.685, supporting the scaling ansatz S(t)− bL ∼ f(t/L) consistent with a dynamical critical
exponent of z = 1.

Appendix D: Entanglement clusters in the projective transverse field Ising model

The projective transverse field Ising model (PTFIM) is a measurement-only model exhibiting an entanglement
transition which is known to be in the percolation universality class [41]. Conveniently, it also only involves Clifford
operations, so can be simulated using the graph-state framework, and therefore provides a useful testbed for the scaling
properties of the entanglement clusters we analyze in Section V.

Referring the reader to Ref. [41] for the full details, the PTFIM is defined as follows. We define the model on a
hypercubic lattice for simplicity. Each site of the lattice contains a spin. The model involves two types of measurements:
on-site measurements of σx, and measurements of σzσz for spins connected by an edge. The system is initialized in
the product state |+〉⊗N , where |+〉 = (|0〉+ |1〉)/

√
2. Then, at each timestep, for each site i assign the variable xi = 1

with probability p and xi = 0 otherwise, and for each edge e connecting spins i and j, assign the variable ze = 1 with
probability 1− p and ze = 0 otherwise. These variables determine the sites and edges on which the observables σxi and
σzi σ

z
j are measured. The edge observables are measured first, followed by the site observables. On a d-dimensional

hypercubic lattice, this process maps on to bond percolation on a (d+ 1)-dimensional hypercubic lattice.
As previously, we focus on two properties of the surface clusters: the largest cluster size smax, and the mean cluster

size s. In a system with d spatial dimensions and linear size L, these should scale as smax/L
d ∼ L−βs/ν and s ∼ Lγ1,1/ν

respectively. Our results for the PTFIM in 1+1D and 2+1D are shown in the left and right columns of Fig. D4, where
we perform simulations up to L = 800 and L = 128 respectively. In 1+1D, the resulting exponents for the entanglement
clusters are γec/ν = 0.33(1) for the mean cluster size and βec/ν = 0.332(2) for the largest cluster size. These are very
close to the corresponding surface exponents for 2D percolation, γ1,1/ν = 1/3 and βs/ν = 1/3. In 2+1D, the extracted
exponent for the largest cluster size is βec/ν = 0.973(3), which is very close to the exponent βs/ν ≈ 0.9754(4) for
3D percolation [78]. For the mean cluster size in 2+1D, the situation is less clear. We extract an exponent for the
entanglement clusters of γec/ν = 0.14(2). The exponent γ1,1 does not appear to be well documented for 3D percolation,
however, from the scaling relation γ1,1/ν = d− 1− 2βs/ν [77, 89] we estimate the value γ1,1/ν = 0.0492(8), which is
not compatible within error bars of the exponent γec/ν. Nonetheless, it is very likely that there are large finite size
effects for this exponent — we have performed percolation simulations (see Fig. D5) to reproduce the quoted value for
γ1,1/ν, and found that we had to be very careful with the subleading corrections to scaling in order to get the correct
exponent, even up to surprisingly large system sizes (L ≤ 640). Without accounting for the corrections, we obtain a
larger exponent, γ1,1/ν ∼ 0.206(2), while including a constant correction gives γ1,1/ν ∼ 0.049(10), a value close to the
expectation from the scaling relation. For the 2+1D Clifford circuit we have simulated up to L = 128 at criticality, but
it is possible that there are still significant finite size corrections to γec/ν that are not captured by the statistical error
bars we quote here. It, however, needs to be noted that there are relatively large error bars on s for PTFIM in 2+1D
which could conceal finite size effects, while the corresponding results for Clifford circuit have smaller error bars and
seem to exhibit small finite size effects.
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FIG. D4. The mean cluster size s and largest cluster size smax/L
d for the projective transverse field Ising model in 1+1D

(left column) and 2+1D (right column). These should scale as s ∼ Lγ1,1/ν and smax/L
d ∼ L−βs/ν respectively. The critical

exponents are all close to the corresponding surface critical exponents of percolation in (d+ 1)-dimensions, with the exception of
the mean cluster size in 2+1D, as we discuss in the main text.
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