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The phenomenology of quantum phase transitions concerns physics at low temperatures and
energies, and corresponding solid-state experiments often reach millikelvin temperatures. However,
this is a scale where in many solids the influence of nuclear spins and their hyperfine interaction
is no longer negligible. This may limit the observability of electronic quantum critical phenomena.
Here we discuss how continuous magnetic quantum phase transitions get influenced, modified, or
destroyed by the coupling to nuclear spins. We use simple yet paradigmatic spin models for magnetic
quantum criticality and determine modifications to the phase diagram, the excitation spectrum,
and thermodynamics due to the presence of nuclear spins. We estimate crossover scales below
which purely electronic quantum criticality is no longer observable, and discuss the distinct physics
emerging at low temperatures. Our results are relevant for a variety of compounds displaying
magnetic quantum phase transitions and, more generally, highlight the sensitivity of quantum critical
systems to small perturbations.

I. INTRODUCTION

Quantum criticality1–3 in solids continues to be a re-
search field of wide interest for a number of reasons:
Quantum criticality comes with unusual phenomena not
seen in stable phases, for instance, quantum critical-
ity is likely to host the key to the understanding of a
variety of fascinating strange-metal regimes.4,5 Concep-
tually, quantum critical points have proven to be vi-
able starting points for the understanding of complex
phase diagrams. Last but not least, entirely novel phases
may nucleate in the vicinity of quantum phase transi-
tions, most prominently unconventional superconductiv-
ity. On the theory front, recent developments include an
improved understanding of quantum criticality in met-
als and semimetals,6–8 detailed investigations of decon-
fined quantum criticality9,10 and related ideas on field-
theoretic dualities,11 as well as the study of quench dy-
namics across quantum critical points.12–14

In condensed-matter experiments, quantum phase
transitions have been studied in local-moment insulators,
metals, and superconductors. In many of these systems,
microscopic energy scales are of order 10 K or below, such
that reaching the asymptotic critical regime requires tem-
peratures significantly below 1 K. Indeed, state-of-the-art
experiments probing quantum criticality routinely reach
temperatures of 20 mK and below. At such low tem-
peratures, a number of perturbing factors become im-
portant which are often neglected in the standard theo-
retical modelling, for instance small symmetry-breaking
terms or crystalline defects. In magnetic systems, nuclear
spins play a particular role, as they constitute additional
degrees of freedom which can actively couple to the crit-
ical modes of the quantum phase transition. This will
modify the electronic criticality of the host system, and
two questions are pertinent: (i) What is the temperature
or energy scale below which the influence of the nuclear
spins can no longer be neglected? (ii) What happens be-
low this scale, i.e., what is the fate of the quantum critical

point at lowest temperatures? In the existing literature,
only a few concrete cases have been looked at. One is the
transverse-field Ising magnet LiHoF4,15 which combines
a relatively small coupling between electronic spins with
a sizeable hyperfine coupling and large nuclear moments.
Here it has been established that nuclear spins produce a
significant shift of the critical field,15 and their influence
on excitation modes has also been investigated.16 Given
that numerous (potentially) magnetic ions host a sizeable
nuclear moment, for instance Nb, Ho, In, V, Sc, Co and
Pr,17 a more general view concerning both questions (i)
and (ii) is highly desirable.

It is the purpose of this paper to close this gap. Start-
ing from symmetry considerations, we discuss different
scenarios for the fate of magnetic quantum phase tran-
sitions if nuclear spins are coupled to electrons. Field-
driven order–disorder transitions generically continue to
exist, but get shifted by nuclear hyperfine coupling. In
contrast, phase transitions in the absence of an external
magnetic field are more subtle, because the decoupled
nuclear spins constitute a highly degenerate manifold of
states: If an electronic phase preserves time-reversal sym-
metry, this symmetry may be spontaneously broken upon
introducing hyperfine coupling, i.e., weak magnetic order
driven by nuclear spins may occur at low temperatures.
As a result, a pressure-driven electronic order–disorder
transition can disappear entirely, i.e., get smeared. For
both field-driven and pressure-driven cases, we present
model calculations illustrating the modifications and dis-
tinct crossover scales induced by nuclear spins, and we
determine the behavior of thermodynamic observables
and of the excitation spectrum near the (putative) quan-
tum critical point. We also extend the considerations to
frustrated systems and briefly discuss the fate of certain
transitions involving spin-liquid states and of deconfined
quantum critical points under the influence of nuclear
hyperfine coupling. Our predictions for quantum critical
materials with nuclear spins can be verified using spec-
troscopic techniques, such as inelastic neutron scattering,
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as well as thermodynamic measurements, e.g., of the spe-
cific heat.

We note that the appearance of nuclear spin order in
an otherwise disordered phase has been discussed first for
metals in Ref. 18 and more recently for one-dimensional
Luttinger liquids, as realized in carbon nanotubes and
other quantum wires,19–21 as well as for two-dimensional
electron gases.22 The effect of nuclear spins on the excita-
tions of ordered magnets has seen extensive discussions,
with early works in Refs. 23 and 24.

A. Outline

The remainder of the paper is organized as follows:
Sec. II starts with general considerations on symme-
tries and the question how phases may get modified by
the presence of nuclear spins. Sec. III is devoted to
field-driven magnetic transitions, with concrete calcula-
tions for the transverse-field Ising model. Pressure-driven
magnetic transitions are subject of Sec. IV, and we dis-
cuss results for a particular model of coupled dimers.
Our analysis also shows that additional phases and phase
transitions may be introduced by hyperfine coupling, and
we illustrate this in Sec. V. Finally, the influence of hyper-
fine coupling on strongly frustrated systems, such as spin
liquids, and their quantum phase transitions are briefly
discussed in Sec. VI. A discussion of broader implications
of our results closes the paper. Technical details of the
calculations are relegated to the appendices.

II. SYMMETRIES AND STABILITY OF
PHASES

The goal of this paper is to discuss the fate of quantum
phase transitions and their associated quantum critical
regime upon including the coupling to nuclear spins, but
in order to do so, one first needs to discuss the fate of the
stable phases involved. As we argue below, this issue is
far from trivial. Here, we will be exclusively concerned
with phase transitions involving, at the microscopic level,
magnetic degrees of freedom. The arguments will be illus-
trated using local-moment models appropriate for mag-
netic insulators; most considerations will also apply, at
least qualitatively, to metals and their magnetic quantum
phase transitions.

We will assume the local electronic degrees of freedom

to be spins ~S. More generally, one needs to consider
the manifold of the lowest crystal-field states of the ac-
tive ions and their magnetic moments. For non-Kramers
ions the ground-state manifold cannot be described as a
standard angular momentum, which may lead to large
quantitative differences compared to a description with
effective spins. One case in point is Ho, and we will come
back to this in Sec. III F below.

The hyperfine interaction between electronic moments
~S and nuclear moments ~I, a sum of dipolar interaction

and Fermi contact interaction, is local and in general

anisotropic, Hhf = ~SA~I where A is a 3 × 3 matrix,
with the symmetries dictated by the electronic states and
hence the crystalline symmetry. For simplicity, we will
neglect anisotropies of Hhf , and we will therefore replace

it by Hhf = A~S · ~I, with antiferromagnetic A > 0 . In
any case, the hyperfine interaction will not have lower
symmetry than the electronic spin-spin interaction.

To get started, it is useful to consider the hyperfine
interaction as a perturbation to the model of electronic
interacting spins. In the absence of an external magnetic
field, this perturbative treatment expands about free nu-
clear spins, i.e., a highly degenerate many-body state
present at A = 0. The hyperfine coupling A to nuclear
spins can therefore constitute a singular perturbation to
a given electronic state. As we will illustrate below, it
can induce spontaneous magnetic order in an otherwise
quantum paramagnetic state.18–20,22 This is different in
the presence of a magnetic field because then the nuclear
spins are polarized at A = 0 via the nuclear Zeeman cou-
pling, and perturbation theory in A is regular. Finally,
an electronic state with dipolar magnetic order present
at A = 0 will imprint its order on the nuclear spins if a
small hyperfine coupling is switched on.

For magnetic order–disorder quantum phase transi-
tions which are driven by an external magnetic field, we
therefore conclude that the two phases remain qualita-
tively intact in the presence of nuclear spins. However,
hyperfine-induced renormalizations will in general lead
to quantitative modifications and in particular to a shift
of the quantum phase transition point. Detailed consid-
erations for a concrete model are in Sec. III.

In contrast, for order–disorder transitions in the ab-
sence of an external field, e.g., driven by pressure, it is
possible that the disordered phase ceases to exist in the
low-temperature limit due to nuclear-spin-induced order.
Then, the quantum phase transition either disappears
entirely, i.e., is smeared into a crossover as illustrated
in Sec. IV, or it may become a transition between two
different ordered states.

This discussion shows that, in general, the presence
or absence of time reversal symmetry in the nominally
disordered phase determines whether a quantum phase
transition is smeared or shifted upon inclusion of nuclear
spins. An exception are phases with broken time reversal
but no dipolar order, such as chiral spin liquids, which
may display spontaneous nuclear spin order, such that a
transition into an adjacent magnetic state gets smeared.

More complicated situations occur if both involved
electronic phases display symmetry-breaking order or if
one or both of phases are topological in nature; the lat-
ter also concerns the interesting question of the fate of
a quantum spin liquid upon coupling it to nuclear spins.
Finally, one can envision rare cases where nuclear spins
lead to the emergence of new phases near the original
electronic quantum critical point. A qualitative discus-
sion of these ideas is in Sec. V and VI.
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FIG. 1. Transverse-field Ising model with nuclear spins
(schematic): electronic spins (black arrows) are coupled by a
nearest-neighbor Ising interaction J (blue dashed lines). The
hyperfine coupling A (green lines) links them to the nuclear
spins (red arrows). The angles θ(φ) quantify the deviation
from the zero-field state for the electronic (nuclear) spins.
The model can be generalized to any space dimension.

III. SHIFTED TRANSITIONS:
TRANSVERSE-FIELD ISING MAGNET

As explained above, quantum phase transitions where
time-reversal symmetry is broken in both phases can be
expected to survive – and get shifted – upon including
nuclear spins. This applies in particular to transitions
driven by an external magnetic field. As an example
we consider the well-known transverse-field Ising model
augmented by hyperfine coupling to nuclear spins, see
Fig. 1. It is described by the Hamiltonian

HTI = −J
∑
〈ij〉

SizSjz − ~H ·
∑
i

(
ge~Si + gN ~Ii

)
+A

∑
i

~Si · ~Ii (1)

where the summation in the first term runs over pairs

〈ij〉 of nearest-neighbor sites on a regular lattice, and ~Si
(~Ii) are the electronic (nuclear) spins on site i, respec-
tively. The electronic and nuclear g tensors, ge and gN ,
are assumed to be isotropic. Both depend on the material
under consideration; their ratio can be expected to be of
the order of ge/gN ∼ 103, resulting from the mass ratio
of electron and nucleon. In the following, we will absorb

ge in the definition of the external field, ~h = ge ~H and

write the nuclear Zeeman coupling as g̃N~h ·
∑
i
~Ii where

we take g̃N = 10−3 unless noted otherwise. Concrete re-
sults will be shown for a cubic-lattice model, with spin
sizes S = I = 1/2 and J = 1 as unit of energy.

A. General considerations

In the absence of nuclear spins, the electronic sys-
tem can be driven through a phase transition from a
symmetry-breaking easy-axis ferromagnet at small trans-

verse fields ~h = hêx to a field-polarized paramagnetic
state at large h. Both phases are gapped, with the gap
vanishing at the QPT. At the mean-field level the phase
transition occurs at hc = 2dSJ , with 2d = 6 the lattice
coordination number.

In model (1), the nuclear spins are field-polarized near
the transition at A = 0 due to the nuclear Zeeman cou-
pling. Therefore adding a small hyperfine coupling A 6= 0
does not change the phase transition qualitatively. How-
ever, the transition is generically shifted to larger fields,
as the presence of nuclear spins effectively increases the
coordination number of the electronic spins and thus sta-
bilizes symmetry-breaking order.

Given that Eq. (1) features two small energy scales, the
hyperfine coupling A and the nuclear Zeeman term g̃Nh,
both assumed to be much smaller than the exchange cou-
pling J , the discussion of the physics near the quantum
phase transition requires to distinguish three parameter
regimes depending on the relation between A and 2dg̃NJ :

I. A� 2dg̃NJ : In this perturbative limit, the hyper-
fine coupling induces a weak hybridization between
the nuclear mode, which has an energy of order
g̃Nh, and the electronic mode, whose gap closes at
the quantum critical point (QCP). At the QCP, the
gapless mode is therefore mainly electronic in na-
ture and closely resembles the A = 0 case. The
critical field shifts linearly in A due to the addi-
tional contribution A〈Ix〉 to the effective field act-
ing on the electrons. Because of its close similarity
to the well-known A = 0 case, regime I will not be
discussed in detail here.

II. A ≈ 2dg̃NJ : The hyperfine coupling introduces sig-
nificant hybridization between electronic and nu-
clear modes. The gapless mode at the QCP carries
considerable weight in the nuclear sector, making
it meaningful to call it nuclear instead of electronic
quantum criticality. Regime II implies substantial
modifications of the quantum critical phenomenol-
ogy, as illustrated in Fig. 2, and it can be real-
istically found in experiment, requiring hyperfine
couplings of order A/J ≈ 10−3.

III. A > 2dg̃NJ : Larger hyperfine coupling introduces
qualitative differences to the A = 0 case. Most no-
table is an antiferromagnetic instead of ferromag-
netic alignment of the nuclear and electronic spins
in the disordered phase above the QCP. Conse-
quently, the boundary between regimes II and III is
rather well-defined. A detailed discussion of regime
III is relegated to Sec. V.

Where appropriate, the three regimes are marked by dif-
ferent color shading in the subsequent figures.

B. Mean-field theory plus fluctuations

To study the behavior of model (1) quantitatively, we
combine standard mean-field and linear spin-wave theo-
ries. We focus on T = 0 unless otherwise noted. We first
determine the classical reference state by solving the local
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FIG. 2. Schematic temperature–field phase diagram of the
transverse-field Ising model (1): The hyperfine coupling shifts
the QPT from h0

c to hc. While standard electronic quantum
criticality (QC) is observable at elevated temperatures, this is
cut off below a scale Tel by hyperfine effects. A novel regime of
nuclear quantum criticality emerges below a scale Tnu. The
phase diagram applies to regime II with A ≈ 2dg̃NJ . In
contrast, for small A � 2dg̃NJ distinct regimes of electronic
and nuclear criticality do not exist, for details see text.

Hamiltonian

HTI
MF =− 2Jd〈Sz〉Sz − ~h(~S + g̃N ~I)

+A(〈~S〉 · ~I + ~S · 〈~I〉 − 〈~S〉 · 〈~I〉) (2)

which results from a mean-field decoupling of both
the electronic and hyperfine interactions. The solu-
tion can be parameterized by the two angles θ =
arctan(〈Sx〉/〈Sz〉) and φ = arctan(−〈Ix〉/〈Iz〉), such that
θ = φ = 0 in the absence of an external field, see Fig. 1.

Spin-wave theory amounts to an expansion about this
classical state, i.e., a product state of individual spins.
We rotate the local frame of reference such that all
spins point along the (new) z-axis, and then introduce

Holstein-Primakoff bosons âi, b̂i for the electronic and
nuclear spins, respectively, for details see Appendix A.
The resulting bosonic Hamiltonian consists of a constant
piece, a bilinear piece and higher-order terms; the lin-
ear piece vanishes identically provided that θ and φ in-
deed correspond to the mean-field solution which min-
imizes HTI

MF. The bilinear part HTI
2 corresponds to lin-

ear spin-wave theory; higher-order terms represent boson
interactions and will be neglected as they do not lead
to qualitative changes of our conclusions. After Fourier
transformation, HTI

2 can be written in matrix form with

ψ~k =
(
a~k
, b~k

, a†
−~k
, b†
−~k

)T
:

HTI
2 =

1

2

∑
~k

(
ψ~k
)†

c1(~k) c4 c2(~k) c3
c4 c5 c3 0

c2(~k) c3 c1(~k) c4
c3 0 c4 c5

ψ~k (3)

−5 · 10−4 0 5 · 10−4 1 · 10−3

(h− h0
c) / J

0.000

0.005

0.010

M

(a)

A/J = 2.5 · 10−4

A/J = 6.3 · 10−4

A/J = 1 · 10−3

10−5 10−3 10−1

A/J

10−5

10−4

10−3

10−2

(h
c(
A

)
−
h

0 c
)
/
J

(b)

I II III

FIG. 3. (a) Order parameter M as function of the trans-
verse field, measured relative to the position h0

c of the QPT
at A = 0, in the Ising model (1) for different strengths of
the hyperfine coupling A/J . The data follow a power law
M ∝ (h − hc)

β (dashed lines), with β = 1/2 as expected for
mean-field theory. (b) Shift of the critical field hc as function
of hyperfine coupling, being linear for small A. The shading
indicates the three regimes of A/(2dg̃NJ) as described in the
text; the behavior at large A is discussed in Sec. V.

where we have defined the abbreviations

c1(~k) = 2JdS cos2 θ + h sin θ +AαI − 2Jd
S

2
γ~k sin2 θ,

c2(~k) = −2Jd
S

2
γ~k sin2 θ,

c3,4 = A

√
IS

2
(α± 1),

c5 = −g̃Nh sinφ+AαS (4)

with α = cos θ cosφ − sin θ sinφ, for details see Ap-
pendix A. Note that only the electronic contributions c1
and c2 display a momentum dependence, as all terms in-
volving nuclear spins are local in space. Without external
fields we have θ = φ = 0, and the number-conserving cou-
pling between the boson species vanishes, c4 = 0, leaving

only Stot,z-conserving terms (~Stot,i = ~Si+ ~Ii) as dictated
by the Heisenberg form of the hyperfine coupling.

The bilinear Hamiltonian HTI
2 can be diagonalized nu-

merically via a bosonic Bogoliubov transformation. We
have employed the algorithm presented in the Appendix
of Ref. 25. The results of this procedure are described
below.

The semiclassical approach to Eq. (1) is justified as
long as the hyperfine coupling is small enough that singlet
formation between electronic and nuclear spins plays no
role. This is a reasonable approximation for A � J ,
typically realized in solids. We note that a more refined
mean-field theory will be used in Sec. V below to study
regime III.

C. Phase transition and order parameter

The ferromagnetic phase is characterized by the elec-
tronic order parameter M = 〈Siz〉. Its value including
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0.00

0.01

0.02
ε(
~ k

=
0)
/
J

(a)

0 2 · 10−4 4 · 10−4

(h− h0
c) / J

0

1 · 10−3

2 · 10−3

3 · 10−3

ε(
~ k

=
0)
/
J

(b)
A/J = 5 · 10−5

A/J = 8.9 · 10−5

A/J = 1.6 · 10−4

A/J = 2.8 · 10−4

A/J = 5 · 10−4

FIG. 4. Mode gaps in the Ising model (1) as function of
the transverse field, measured relative to the position h0

c of
the QPT at A = 0, for different values of A in regimes I/II.
Panels (a) and (b) show the same data, with (b) zooming into
nuclear energy scales.

fluctuation corrections can be written as

M = cos θ
(
S − 1

N

∑
~k

〈a†~ka~k〉
)

(5)

with N the number of lattice sites. The expectation value
of the Holstein-Primakoff bosons can be evaluated by in-
serting the inverse Bogoliubov transformation. As ex-
pected, the largest fluctuation corrections appear near
the QPT. We also note that cubic terms induce addi-
tional 1/S corrections to the angle θ. Overall the fluctu-
ation corrections are by a factor 10−3 smaller than the
mean-field value and thus negligible. Results for M for
different hyperfine couplings are in Fig. 3.

Upon introducing hyperfine coupling, the field-driven
quantum phase transition between the ferromagnetic and
paramagnetic phases remains continuous, but is shifted
to higher fields, Fig. 3. The shift (hc − h0

c) is initially
– in regime I – linear in A, as expected from the low-
ering of the effective field acting on the electronic spins
heff,x = h−A〈Ix〉 due to the antiferromagnetic hyperfine
coupling. In regime II, the shift grows faster than linear,
while regime III involves qualitative changes, discussed
in more detail in Sec. V.

The hyperfine coupling does not change the universal-
ity class of the transition. In our calculation, we observe
mean-field exponents which apply above the upper crit-
ical dimension, d ≥ d+

c = 3 (up to logarithmic correc-
tions in d = 3): The electronic spontaneous magnetiza-
tion 〈Sz〉 varies as (hc − h)β with β = 1/2, see Fig. 3(a).

10−5 10−4 10−3 10−2

A/J

10−3

10−2

10−1

∆
el
/
J

I II III

FIG. 5. Gap of the upper (electronic) mode at the
QPT, ∆el(hc), as function of hyperfine coupling A/J for the
Ising model (1). The shading indicates the three regimes of
A/(2dg̃NJ) as described in the text.

10−3 101

h / J

10−6

10−5

10−4

10−3

10−2

∆
n
u
/
J

10−3 101

h / J

0.00

0.25

0.50

〈S
z
〉

(a)

A =5 · 10−7

A =5 · 10−5

A =5 · 10−3

−0.50

−0.25

0.00

〈I
z
〉

(b)

FIG. 6. (a) Energy gap of the lower (nuclear) mode as func-
tion of the transverse field h for different hyperfine coupling
A/J in the Ising model (1). (b) Spontaneous electronic and
nuclear magnetizations, 〈Sz〉 and 〈Iz〉, as function of h for
different A. In both panels, a crossover is seen at AS ∼ g̃Nh
arising from the competition between hyperfine coupling and
nuclear Zeeman term.

D. Excitation spectrum

The excitation spectrum consists of two modes: For
A = 0 these are a dispersionless nuclear mode and an
electronic mode which disperses for h 6= 0 and becomes
gapless at h = h0

c . For any non-zero A, both modes are
mixtures of electronic and nuclear excitations. We label
the mode energies ε1,2(~k) with ε1 < ε2, such that the
lower (upper) mode is primarily of nuclear (electronic)
character, except in regime I in the immediate vicinity

of ~k = 0 and h = hc. Both modes have their dispersion

minimum at ~k = 0, and we can define two energy gaps

∆nu = ε1(~k=0) and ∆el = ε2(~k=0).
For non-zero A, the quasiparticle spectrum is gapped

everywhere except at the quantum phase transition
where the lower mode becomes soft, i.e., ∆nu = 0 at
h = hc. This is shown in Fig. 4(b), which also illus-
trates the shift of hc with increasing A. Near the critical
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(0, 0, 0) (π, π, 0) (π, π, π) (0, 0, 0)
~k

−2

−1

0

1

2
(ε

(~ k
)/
J
−
ε 0

)
·1

07

A2

(a)

(0, 0, 0) (π, π, 0) (π, π, π) (0, 0, 0)
~k

0.000

0.001

0.002

ε(
~ k

)
/
J

(b)

∆h =−5 · 10−4

∆h =−2.5 · 10−4

∆h =0

∆h =2.5 · 10−4

∆h =−0.25

−π/32 0 π/32
~k = (x, x, 0)

0.000

0.001

0.002

ε(
~ k

)
/
J

(c)

FIG. 7. Dispersion of the nuclear mode in model (1) at intermediate A/J = 1.5 × 10−3 (regime II) for different field values
∆h = h− hc(A) close to the QPT. Panels (a) and (c) show a zoom of the data in (b) according to the colored boxes (box size
not to scale). (a) The bandwidth away from the QPT scales as A2/J ; the energy offset here is ε0 = 0.00207245. (c) At the
QPT the gap closes linearly, as expected for a transition with a non-conserved order parameter and z = 1, while away from
criticality the band minimum is quadratic.

field we have ∆nu ∝ |h − hc|νz, with ν and z being the
correlation-length and dynamic critical exponents, here
z = 1 and ν = 1/2 at mean-field level. In contrast, the
gap of the upper (electronic) mode, ∆el, is always finite,
with a cusp-like minimum at hc. This incomplete elec-
tronic mode softening, seen in Fig. 4(a), is a key charac-
teristic of hyperfine interactions at QPTs. The gap ∆el is
shown in Fig. 5: In regime I where A� 2dg̃NJ this gap
is determined by the nuclear Zeeman energy and acquires
corrections linear in A with increasing A. In regime II
these contributions dominate and get amplified by the
faster-than-linear-in-A shift of the critical field, Fig. 3.
As a result, ∆el(hc) defines an energy scale kBTel at crit-
icality which is parametrically larger than A and below
which no electronic excitations exist. In regime III the
gap decreases, which is plausible considering the decrease
of the critical field.

The behavior of the nuclear mode in regimes I and II is
further illustrated in Figs. 6 and 7. Fig. 6(a) shows that
the nuclear-mode energy, and thus its gap away from
criticality, is determined by the hyperfine coupling for
g̃Nh� A and by the nuclear Zeeman energy for g̃Nh�
A. Concomitantly, the nuclear spins are antialigned with
the electronic moments for g̃Nh� A, while they are field-
polarized for g̃Nh � A, Fig. 6(b). As a result, nuclear
spins hardly participate in the magnetic quantum phase
transition in regime I, where they are essentially field-
polarized at hc, but do so in regime II, where they stay
ordered up to hc. Away from criticality, the nuclear-mode
dispersion is cosine-like, with a small bandwidth of order
A2/∆el due to the electron-mediated interaction between
nuclear spins, Fig. 7(a). Close to criticality, however,
this interaction gets increasingly long-ranged, such that

an anomalous dispersion shape emerges, where ε1(~k) is

essentially flat except for a small vicinity of ~k = 0 and
the critical-mode velocity at hc (in units of the lattice
constant) is much larger than the bandwidth, Fig. 7(b,c).

The eigenmodes of HTI
2 can be used to calculate the

FIG. 8. Imaginary part of the transverse electronic dy-

namical susceptibility Trχ′′αβ(~k, ω) for the Ising model (1), as

function of ~k and ω and calculated at the QPT with inter-
mediate hyperfine coupling A/J = 5 × 10−4. The color code
shows the mode weight on a logarithmic scale; the linewidth
is artificial. The inset illustrates the mode hybridization at
small energies and wavevectors.

electronic dynamical spin susceptibility, as measured by
inelastic neutron scattering:

χαβ(~k, ω) = −i
∫ ∞
−∞

dt eiωt〈TtSα(~k, t)Sβ(−~k, 0)〉 (6)

with α, β ∈ {x, y, z}. We restrict ourselves to the single-
mode approximation where each spin operator translates
into one Holstein-Primakoff boson. The resulting imagi-

nary part, χ′′(~k, ω), displays sharp peaks at the quasipar-

ticle dispersion ω = ε1,2(~k). Higher-order terms will be
neglected, as they contribute to multi-particle continua
only.

Results are shown in Fig. 8 for the quantum critical
point, h = hc. The intensity distribution nicely illus-
trates the hybridization between electronic and nuclear
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modes. Further, the intensity of the nuclear mode di-
verges at criticality due to the gap closing, technically
due to the properties of the Bogoliubov transformation.
We recall that a sharp critical mode is a feature of mean-
field theory and is only expected at or above the up-
per critical dimension; otherwise a power law of the type

χαβ(~k, ω) ∝ (ε2(k)−ω2)−1+η/2 occurs, with η an anoma-
lous exponent.1

E. Thermodynamics

While the previous results have been restricted to
T = 0, we now use these insights to discuss the finite-
temperature behavior near the QPT, resulting in the
phase diagram shown in Fig. 2. While regime I of small
hyperfine coupling displays little difference to the A = 0
(i.e. purely electronic) QPT scenario, regimes II and III
feature (i) a QPT which is significantly shifted to higher
fields (compared to the A = 0 case), and (ii) distinct
temperature regimes of electronic and nuclear quantum
criticality.

Generically, a quantum critical regime displays power-
law behavior of thermodynamic observables as function
of temperature. For instance, the specific heat follows the
scaling prediction C(T ) ∝ T d/z below the upper critical
dimension d+

c ; for d = d+
c logarithmic corrections to this

power law occur. For the transverse-field Ising QPT we
recall z = 1 and d+

c = 3.
As argued above, sizeable hyperfine coupling opens an

energy window g̃Nh ≡ kBTnu � kBT � kBTel between
the nuclear and electronic modes at criticality – this ap-
plies to parameter regimes II and III. As a result, dis-
tinct and separate electronic and nuclear quantum criti-
cal regimes exist, as shown in Fig. 2. Both quantum crit-
ical regimes will separately display specific-heat power
laws, with the prefactor of the low-T nuclear regime being
significantly larger than that of the electronic regime due
to the smaller nuclear energy scales. From the critical
mode velocities in our mean-field-based calculation (at
d = d+

c ) we may deduce the ratio of specific-heat prefac-
tors, κel,nu = Cel,nu/T

3 and obtain, e.g., κnu/κel ≈ 5×103

at A/J = 1.5× 10−3. In the window Tnu � T � Tel the
specific heat will be small, thus facilitating the crossover
between both critical power laws.

F. LiHoF4

LiHoF4 is considered a prime example for transverse-
field Ising quantum criticality. It features a sizeable hy-
perfine coupling to nuclear spins I = 7/2 of the magnetic
Ho3+ ions. Indeed, the hyperfine coupling has been ar-
gued to be responsible for a significant increase of the
critical field.15,26–28 The incomplete softening of the elec-
tronic mode at the QCP, explained in Sec. III D above,
has been observed via inelastic neutron scattering16 and

microwave spectroscopy29 and also theoretically investi-
gated in Ref. 28.

While the qualitative phenomenology of LiHoF4 agrees
well with our analysis, a direct quantitative comparison
with the calculations presented above is, however, not
straightforward, because the Ho3+ ions are characterized
by a non-Kramers ground-state doublet of the crystalline
electric field. This leads to large variations of the elec-
tronic magnetic moment J = (J2

x + J2
y + J2

z )1/2 as func-

tion of the external field:30 The moment J is larger in
the ordered phase than in the disordered phase close to
the QCP. As a result, the hyperfine coupling amplifies
Ising order more strongly than in the case of Kramers
moments, as employed in the calculation of this section.

IV. SMEARED TRANSITIONS:
COUPLED-DIMER MAGNETS UNDER

PRESSURE

We now turn to quantum transitions which are de-
stroyed, i.e., smeared, by the presence of nuclear spins.
As explained in Sec. II, this happens for order–disorder
transitions where the hyperfine coupling induces weak
magnetic order in the otherwise paramagnetic (and time-
reversal-symmetric) electronic phase. As an example we
consider a coupled-dimer magnet which can be driven
from a singlet dimer phase to an antiferromagnetic phase
by varying the ratio of exchange couplings, experimen-
tally done, e.g., by pressure. The Hamiltonian, aug-
mented by nuclear spins, reads:

HCD = J⊥
∑
i

~Si1 · ~Si2 + J‖
∑
〈ij〉,m

~Sim · ~Sjm

+A
∑
i,m

~Sim · ~Iim (7)

where i, j denote dimer sites, and m ∈ {1, 2} labels the
spins in each dimer. The intradimer (J⊥), interdimer
(J‖), and hyperfine (A) couplings are all assumed to be of
Heisenberg type and antiferromagnetic (≥ 0), such that
the model displays a global SU(2) symmetry of combined
rotations of electronic and nuclear spins. A sketch of the
system is shown in Fig. 9. For concreteness we consider
a cubic lattice of dimers. It is useful to introduce q =
dJ‖/J⊥, with 2d = 6 the lattice coordination number,
as a dimensionless measure of the interdimer coupling
strength. All numerical results in the following will be
presented for S = 1/2 and I = 1/2.

A. General considerations

In the absence of nuclear spins the coupled-dimer mag-
net displays a QPT between a gapped quantum param-
agnetic dimer phase, realized for q < q0

c , and an antiferro-
magnetic (AF) phase for q > q0

c .31–35 For a cubic lattice
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FIG. 9. Coupled-dimer Heisenberg model with nuclear spins
(schematic): electronic spins (black arrows) are pairwise cou-
pled by the intradimer coupling J⊥ (yellow thick lines), which
drives singlet formation (grey ellipses). Spins in neighboring
pairs are coupled by the interdimer coupling J‖ (blue thick
lines). The hyperfine coupling A (green lines) links electronic
and nuclear spins (red arrows).

of dimers the antiferromagnet displays collinear order at

wavevector ~Q = (π, π, π).
Including the nuclear spins adds a manifold of states

which is massively degenerate at A = 0 and whose fate is
thus determined by hyperfine coupling. Treating A per-
turbatively, the nuclear spins align with the mean field
coming from the electronic bulk order in the AF phase.
However, in the dimer phase such a mean-field is absent,
and the leading effect is an indirect interaction between
the nuclear spins mediated by the electronic paramag-
net. This interaction scales as A2/∆0 where ∆0 is the
spin gap of the electronic subsystem in the absence of
nuclear spins. For unfrustrated lattices, this effective in-
teraction oscillates in sign with distance and induces low-
temperature AF order of the nuclear spins at the same

wavevector ~Q where the electronic system tends to or-
der. By proximity, the nuclear-spin order also induces
weak AF order on the electronic spins via a staggered
mean field.

Consequently, the electronic dimer phase at q < q0
c is

unstable: Any small hyperfine coupling turns the system
into a weak SU(2)-breaking antiferromagnet. Therefore
the QPT is smeared into a crossover, as illustrated in the
phase diagram in Fig. 10. Signatures of quantum criti-
cality are observable only above a hyperfine-induced tem-
perature (or energy) scale Tel. As will become clear be-
low, all hyperfine-induced energy and temperature scales
can be related to powers of A, because the dimer model
contains no additional small energy scale, in contrast to
the Ising model in Sec. III with its nuclear Zeeman term.

B. Mean-field theory plus fluctuations

To faithfully describe the behavior of the model (7),
we resort to a combination of bond-operator and spin-
wave theories. Bond-operator theory31 is a method de-
veloped to describe the excitation spectrum of coupled-
dimer magnets and rests on using singlet and triplet

FIG. 10. Schematic phase diagram of the coupled-dimer
model (7): In the presence of a finite hyperfine coupling A
the disordered phase is replaced by a weak antiferromagnet,
turning the quantum phase transition at q0c into a crossover.
The electronic quantum criticality is cut off below a scale Tel

set by the triplon gap. The Néel temperature TN for q ≤ q0c
is determined by A, for details see text.

states as a basis for the local Hilbert space of each dimer,

in our case made up of the spins ~Si1 and ~Si2. The bond-
operator description expands around a dimer product
state and treats its gaussian fluctuations as bosonic par-
ticles. While originally used for the paramagnetic phase
only, with a singlet reference state and triplon excita-
tions, bond-operator theory has later been extended to
magnetically ordered phases by a suitable modification
of the reference state.36,37 Refs. 37 and 38 showed that
bond-operator theory can be understood and controlled
in terms of a 1/d expansion, and we will use it here for
the electronic spins in the model (7).

As argued above, the model Eq. (7) shows weak mag-
netic order even for small q once the hyperfine coupling
is non-zero. This magnetic order is driven and carried
by the nuclear spins. Hence the nuclear spins can be as-
sumed to be reasonable well ordered for any value of q
which justifies the use of spin-wave theory for the nuclear
spins.39,40

1. Product state

The model (7) features four spins per crystallographic
unit cell. Given the presence of magnetic order at low T
for all q, we shall employ a product reference state of the
form

|ψ0〉 =
∏
i

|s̃; ↓, ↑〉i (8)

where |s̃; Iz1 , Iz2 〉i is a state on site i where s̃ refers to an
entangled state of the two electronic spins Sim whereas
Iz1,2 correspond to a classically aligned state of the two
nuclear spins, see Fig. 9. Following Refs. 36, 37, and 41
we choose

|s̃〉i =
|s〉i + λi|tz〉i√

1 + λ2
i

(9)
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FIG. 11. Rotation parameter λ (9) as function of inter-dimer
coupling q for different values of the hyperfine coupling A in
model (7). Finite A smears the transition from the paramag-
netic phase (λ = 0) to the AFM phase (λ 6= 0).

where |s〉 = (| ↑↓〉 − | ↓↑〉)/
√

2 and

|tz〉 = (| ↑↓〉+ | ↓↑〉)/
√

2 are the intra-dimer singlet
and z-triplet states, respectively. The λi parameterize a
rotation in the local SU(4) space of dimer states and are

chosen as λi = ei
~Q~riλ in order to imprint staggered spin

order along the z-direction. The variational parameter
λ enables an interpolation between a singlet paramag-
net of electronic spins (λ = 0) and a fully polarized
antiferromagnet (λ = ±1). We note that the product
state (8) neglects local entanglement between electronic
and nuclear spins, which is justified provided that the
hyperfine coupling A is small, A� J⊥, 2dJ‖.

The optimal value for λ as function of the model pa-
rameters q and A is determined by minimizing the energy
of the product state, Eps = 〈ψ0|HCD|ψ0〉. We obtain

Eps

NJ⊥
= − 2λ

1 + λ2

AI + hst

J⊥
+

(−3 + λ2)

4(1 + λ2)
− 2qλ2

(1 + λ2)2

(10)

where hst represents an additional staggered field along ẑ
applied to the electronic spins, included for later conve-
nience. The expression shows that the hyperfine coupling
acts like a staggered field as well. Minimizing Eps yields
results for λ(q, A) as shown in Fig. 11. Without hyperfine
coupling, A = 0, the rotation parameter vanishes for all
q < q0

c , i.e., in the dimer phase of the electronic model,
while it is finite for q > q0

c , corresponding to AF order.
On this level of approximation, the transition occurs at
q0
c = 1/2. At non-zero hyperfine coupling, A > 0, we find
λ 6= 0 for all values of the intra-dimer coupling. This un-
derlines that any finite hyperfine coupling destroys the
QPT by destabilizing the paramagnetic ground state. In
the low-temperature limit, only a crossover from weak to
strong antiferromagnetism remains.

2. Gaussian fluctuations

Fluctuations on top of the product state (8) can be
captured in a bosonic formalism. For the electronic
spins we define generalized triplon operators36,37,41 t̃iα,
α = x, y, z. These create local excitations on site i,

t̃†iα|s̃〉i = |t̃α〉i, where the excited states are

|t̃x〉i = |tx〉i = (−| ↑↑〉i + | ↓↓〉i)/
√

2,

|t̃y〉i = |ty〉i = i(| ↑↑〉i + | ↓↓〉i)/
√

2,

|t̃z〉i = (−λi|s〉i + |tz〉i)/
√

1 + λ2. (11)

The physical dimer Hilbert space corresponds to the

hard-core condition
∑
α t̃
†
iαt̃iα ≤ 1. Excitations of the

nuclear spins are captured by Holstein-Primakoff bosons,
ai and bi for the two nuclear spins per lattice site, as in
standard spin-wave theory.39,40

Expressing all spin operators in terms of the five
bosons {t̃x, t̃y, t̃z, a, b}, inserting this into the Hamilto-
nian (7), and implementing the triplon hard-core con-
straint via projectors37,38 yields an expression of the form
H0 +H1 +H2 + . . . where Hn contains n bosonic oper-
ators, for details of the calculation see Appendix B. H0

is a constant which equals Eps. The coefficients of the
linear piece H1 vanish identically provided that λ mini-
mizes Eps. In the following, we restrict ourselves to an
analysis of the bilinear piece H2 which describes Gaus-
sian fluctuations. Higher-order terms corresponding to
boson interactions will be neglected for simplicity; as a
result all critical exponents of the electronic problem take
mean-field values.37

For the collinear reference state (8) the excitations
created by {t̃x, t̃y, a, b} correspond to transverse fluctua-
tions, and we observe that in H2 the x (y) triplons couple

only to ci = [ai− bi]/
√

2 (di = ei
~Q~ri [ai+ bi]/

√
2), respec-

tively. In contrast, the excitations created by t̃z corre-
spond to longitudinal fluctuations which do not couple
to the transverse ones in H2. After Fourier transforma-
tion, the degrees of freedom can therefore be grouped as

ψ
(x)
~k

= (t̃~kx, c~k, t̃
†
−~kx

, c†
−~k

)T , ψ
(y)
~k

= (t̃~ky, d~k, t̃
†
−~ky

, d†
−~k

)T

and ψ
(z)
~k

=
(
t̃~kz
, t̃†
−~kz

)T
. The resulting bilinear Hamil-

tonian reads

HCD
2 =

J⊥
2

∑
α∈{x,y,z}

∑
~k

(
ψ

(α)
~k

)†
M (α)(~k)ψ

(α)
~k

(12)

with the Hamiltonian matrices

M (x)(~k) =


c1(~k) c4 c2(~k) c3
c4 c5 c3 0

c2(~k) c3 c1(~k) c4
c3 0 c4 c5

 , (13)

M (y)(~k) =


c1(~k) −ic4 c2(~k) ic3
ic4 c5 ic3 0

c2(~k) −ic3 c1(~k) ic4
−ic3 0 −ic4 c5

 , (14)
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and

M (z)(~k) =

(
c6(~k) c7(~k)

c7(~k) c6(~k)

)
. (15)

The coefficients appearing in the Hamiltonian matrices
are

c1(~k) =
1

1 + λ2

[
−2

AI + hst

J⊥
λ+ 1 + 4

qλ2

1 + λ2

]
+ q

1− λ2

1 + λ2
γ~k,

c2(~k) =qγ~k,

c3,4 =
1

2

√
I√

1 + λ2

A

J⊥
(1± λ),

c5 =
A

J⊥

λ

1 + λ2
. (16)

and

c6(~k) =
1

1 + λ2

[
−4

AI + hst

J⊥
λ+ (1− λ2) + 8

qλ2

1 + λ2

]
+ q

(1− λ2)2

(1 + λ2)2
γ~k

c7(~k) =q
(1− λ2)2

(1 + λ2)2
γ~k (17)

Note that only the triplon-related terms c1,2,6,7 disperse
because the hyperfine coupling is purely local. Further,
for λ = 0, we see that c1 = c6 and c2 = c7, reflect-
ing the threefold degeneracy of the triplon modes in the
SU(2)-symmetric paramagnetic phase realized for A = 0
and q < q0

c . The Hamiltonian (12) can be diagonalized
with three separate bosonic Bogoliubov transformations
for the three components as discussed in the appendix of
Ref. 25. The two transverse sectors, x and y, yield the
same mode energies owing to the residual U(1) symmetry
of the ordered state.

C. Order parameter

An important observable is the electronic staggered
magnetization

Mst =
1

N

∑
i

ei
~Q~Ri(〈Si1,z〉 − 〈Si2,z〉) (18)

being the order parameter of the electronic quantum
phase transition. Expressed in generalized triplon op-
erators it reads

Mst =
2λ

1 + λ2

1− 1

N

∑
~k

∑
α∈{x,y,z}

(1 + δαz)〈t̃†~kαt̃~kα〉

 .

(19)
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FIG. 12. (a) Electronic staggered magnetization Mst (18)
of model (7) as function of the external staggered field hst

for hyperfine coupling A = 0 and A 6= 0. (b) Crossover field
strength h∗st, where the relative difference of Mst for A = 0
and A 6= 0 is larger than 10%, as function of A; the position
of h∗st is also marked by vertical dashed lines in (a).

The leading term is the product-state contribution
〈ψ0|Mst|ψ0〉, while the second represents fluctuation cor-
rections from triplon occupation. In our cubic-lattice cal-
culation, we find the fluctuation corrections to be less
than 10% of the leading value. We also note that cu-
bic and higher-order triplon terms lead to additional
corrections37 entering the rotation parameter λ which
have been neglected here.

Without hyperfine coupling, Mst vanishes for q ≤ q0
c ,

while it varies as Mst ∝ (q − q0
c )β for q & q0

c , with β =
1/2 within our mean-field approximation. At the critical
point, a staggered magnetization can be induced by an

external staggered field according to Mst ∝ h
1/δ
st with

δ = 3 at the mean-field level.
In the presence of a finite hyperfine coupling A, the

staggered magnetization Mst is generically non-zero, i.e.,
the QPT is smeared and the critical power laws are cut
off. For small A this can be deduced by perturbative
arguments. For q ≤ q0

c , the hyperfine couplings sim-
ply acts as a staggered field, resulting in Mst ∝ A for
q < q0

c and Mst ∝ A1/δ for q = q0
c , i.e., at the former

QPT. Consequently, the critical power law Mst ∝ h
1/δ
st

is cut off at a field h∗st ∼ A, below which Mst becomes
field-independent, as illustrated in Fig. 12. Similarly, the
critical power law Mst ∝ (q − q0

c )β is cut-off on a scale
(q − q0

c )∗ ∼ A1/(βδ), here 1/(βδ) = 2/3, as Mst takes its
hyperfine-induced value for (q−q0

c ) smaller than (q−q0
c )∗.

D. Excitation spectrum

The excitation spectrum of the coupled system of elec-
tronic and nuclear spins determines important crossover
scales in the phase diagram shown in Fig. 10. We re-
call that the electronic subsystem, in the absence of hy-
perfine coupling, displays three degenerate and gapped
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FIG. 13. Mode energies of the dimer model (7) at the or-

dering wave vector ~k = ~Q (a) without nuclear spins and (b)
with finite hyperfine coupling to nuclear spins.
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FIG. 14. (a) Gap of the triplon-dominated mode ∆el and
(b) bandwidth Wnu of the nuclear-dominated mode, shown as
function of hyperfine coupling A/J⊥, for different values of q
in model (7). Different behavior is seen for q < q0c = 1/2,
q = q0c , and q > q0c , for details see main text.

triplon modes in the dimer phase, q < q0
c , and two trans-

verse gapless Goldstone modes and a gapped longitudi-
nal (Higgs) mode in the AF phase, q > q0

c . The triplon
and Higgs gaps vanish upon approaching the QPT at
q = q0

c according to ∆ ∝ |q− q0
c |νz where ν and z are the

correlation-length and dynamic exponents, respectively,
with z = 1 and ν = 1/2 at the mean-field level. This is
shown in Fig. 13(a).

Including nuclear spins with a small hyperfine coupling
A yields two additional nuclear modes. In the weak an-
tiferromagnet realized for q < q0

c , these are the Gold-
stone modes of the emergent ordered state. Via second-
order perturbation theory, their bandwidth is given by
Wnu ∼ A2/∆0 with ∆0 being the triplon gap of the
A = 0 paramagnet. The triplon modes remain gapped,
but their degeneracy is lifted due to the coupling to the
nuclear modes, reflecting the broken SU(2) symmetry, see
Fig. 13(b).

For q > q0
c where AF order is realized also without nu-

clear spins, the nuclear and electronic modes hybridize

strongly for momenta near ~k = ~Q where both types

(0, 0, 0) (π, π, 0) (π, π, π) (0, 0, 0)
~k

0.0

0.3

0.6

0.9

ε n
u
(~ k
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q = 0.400
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FIG. 15. Dispersion of the nuclear-dominated mode, nor-
malized to its bandwidth, for different q in the coupled-dimer
model (7) at fixed hyperfine coupling A/J⊥ = 10−2. As q
increases, the long-ranged effective interaction between the
nuclear spins leads to an increasingly anomalous dispersion.

of modes are soft for A = 0. As a result of this hy-
bridization, the lower (nuclear-dominated) modes remain
gapless Goldstone modes while the triplon-dominated
modes open a gap, the latter scaling as ∆el ∼ A1/2,
with the power 1/2 arising from the structure of the Bo-
goliubov transformation. Formally, the gap arises from
the correction term ∼ A1 in the coefficient c1, which
gives as a lowest order correction to the electronic energy
∆el ∼

√
c21 − c22 ∼

√
A. The bandwidth of the nuclear

mode Wnu scales as A since it is set by the energy cost
of a single nuclear spin flip, given by AMst. As a result,
a distinct gap of excitations arises in the energy range
A < ω <

√
J⊥A, further discussed below.

Finally, at the electronic critical point q = q0
c the

triplon-dominated modes (which are critical at A = 0)
develop a gap according to ∆el ∼ A1/δ, defining a
crossover temperature kBTel. The A dependence of the
gap can be understood as above by noting that, while in
the AF phase the correction term to c1 is linear in A,
at the QPT it is ∼ λ2 ∼ A2/δ. The nuclear band width
grows as Wnu ∼ A(δ+1)/δ, again for the reason that a
single spin flip costs an energy AMst.

The above behavior is well borne out by our explicit
calculations, as illustrated in Fig. 14, which shows the
behavior of the electronic-mode gap and the nuclear-
mode bandwidth as function of A. These results also
nicely illustrate the crossover occurring near q0

c : For
A < |q − q0

c |δνz the above perturbative power laws de-
rived for q < q0

c and q > q0
c hold, whereas A > |q− q0

c |δνz
corresponds to “quantum critical” behavior.

Our calculation also shows that the dispersion shape
of the nuclear-dominated mode changes across the phase
diagram, see Fig. 15. As in Sec. III the reason is that
the interaction between the nuclear spins is mediated
by the electronic subsystem. Therefore it is dominated
by nearest-neighbor terms if the electronic bandwidth is
small compared to the electronic gap, i.e., for q � q0

c ,
whereas the interaction becomes increasingly long-ranged
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FIG. 16. Imaginary part of the electronic dynamical sus-

ceptibility, Trχ′′αβ(~k, ω), of the coupled-dimer model (7) as

function of ~k and ω in the odd channel at A/J⊥ = 0.01 and
two values of the intradimer coupling q. The color code shows
the mode weight on a logarithmic scale; the linewidth is arti-
ficial. The hyperfine coupling leads to a finite electronic gap
both (a) at the former critical point q0c = 0.5 and (b) in the
former AF phase q > q0c . The degeneracy of the electronic
modes, present for q ≤ q0c and A = 0, is lifted for finite A,
see also Fig. 13. The weight of the nuclear mode is significant
only very close to the ordering wave vector, comparable to
the inset of Fig. 8.

with increasing q. This gives rise an anomalous disper-
sion shape for q & q0

c where again the Goldstone-mode
velocity (in units of the lattice constant) is much larger
than the bandwidth, see Fig. 15.

From the quasiparticle spectrum we calculate the dy-
namical susceptibility of the electronic spins as in Eq. (6).
For the coupled-dimer model it is useful to distinguish
even and odd channels, where Se,α = Si1,α + Si2,α and
So,α = Si1,α − Si2,α, respectively. As before, we restrict

ourselves to the single-mode contributions to χ′′(~k, ω).
Sample results for the trace of the susceptibility ten-
sor, as measurable in unpolarized neutron scattering,
are shown in Fig. 16. For realistic values of the hyper-
fine coupling the nuclear-dominated mode lies at very
low energies, which likely makes it difficult to resolve in
neutron-scattering experiments. It carries considerable

weight only close to the ordering vector ~Q, while at other
wavevectors the hybridization between the electronic and
nuclear modes is very weak. The triplon gap is signifi-
cant even at small A – recall that this scales as A1/2

for q > q0
c and A1/δ for q = q0

c – such that incomplete
electronic mode softening is an accessible indicator of hy-
perfine effects, as already noted above. However, distin-
guishing smeared and shifted phase transition invariably
requires measurements at nuclear-spin energy scales and
temperatures.

E. Thermodynamics

Our results allow to deduce the finite-temperature
phase diagram of the Heisenberg model (7) in the pres-

ence of small hyperfine coupling A, shown in Fig. 10.
In d > 2 space dimensions the antiferromagnetic order
persists at finite temperature, with the Néel temperature
TN scaling with the electronic coupling J for q � q0

c . In
contrast, for q ≤ q0

c the order is hyperfine-induced, and
TN can be estimated from the bandwidth of the nuclear-
dominated excitation modes. Hence, TN ∝ A2/∆0 for
q � q0

c , while TN ∝ A(δ+1)/δ at q = q0
c . For small A, this

implies a strong enhancement of the hyperfine-induced
TN near the electronic quantum critical point compared
to the paramagnetic phase.

Near q0
c , electronic quantum criticality is visible at

elevated temperatures only, while it is cut off for T
smaller than Tel corresponding to the hyperfine-induced
gap which scales as A1/δ. This implies, for instance, that
the specific heat C(T ) will follow its critical power law
C(T ) ∝ T d/z (valid at and below d+

c ) for T > Tel, while
C(T ) drops when cooling below Tel, with nuclear contri-
butions only appearing near (and below) the Néel tem-
perature TN ∝ A(δ+1)/δ.

V. HYPERFINE-INDUCED ADDITIONAL
PHASES

So far the discussion focused on the regime of small
hyperfine coupling and on unfrustrated systems. If the
hyperfine coupling becomes comparable to other energy
scales in the system, then new phenomena can occur –
this is the subject of this section. Specifics of frustrated
systems will be discussed in Sec. VI below.

Given that hyperfine couplings are generically smaller
than electronic couplings, the most obvious small en-
ergy scale the hyperfine coupling can compete with is
the nuclear Zeeman energy. To illustrate this, we will
return to the transverse-field Ising model in Eq. (1) of
Sec. III. Here, we will focus mostly on regime III where
A & 2dg̃NJ , i.e., the hyperfine coupling is comparable
to or larger than the nuclear Zeeman energy near the
transition.

At small applied field a large (antiferromagnetic) hy-
perfine coupling enforces antiparallel electronic and nu-
clear spins; in regime III this continues to be true across
the transition. In contrast, in the asymptotic high-field
limit, both spin species are forced to align with the ex-
ternal field, such that they are parallel. This requires
at least one additional quantum phase transition with
increasing applied field.

For a detailed modelling, we solve Eq. (1) in a modi-
fied mean-field approximation, where the hyperfine cou-
pling is treated exactly for S = I = 1/2, i.e., we resort
to a product reference state of the form |ψ0〉 =

∏
i |s̃〉i,

where |s̃〉i is an arbitrary state from the four-dimensional
Hilbert space formed by Si and Ii which also includes the
possibility of singlet formation between electronic and
nuclear spins. Minimizing Eps = 〈ψ0|HTI|ψ0〉 is equiva-
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FIG. 17. Results for the transverse-field Ising model illustrating the distinct behavior in regimes II and III, here for g̃N = 0.05.
(a,b) Phase diagram as function of transverse field h and hyperfine coupling A, with the color codes corresponding to (a) the
z-component 〈Sz〉 of the electronic spin and (b) the x-component 〈Ix〉 of the nuclear spin. Dotted lines are phase boundaries;
the horizontal dashed line corresponds to A = 2dg̃NJ separating regimes II and III. At low fields, the electronic spins exhibit
ferromagnetic order (FM). At high fields, two field-polarized phases with nuclear spins parallel (PFP) or antiparallel (AFP)
to the electronic spins occur. AFP and PFP are separated by a corridor of FM order mainly carried by nuclear spins at
AS ≈ g̃Nhx. (c) 〈Sz〉 (full) and 〈Iz〉 (dotted) as function of field for different fixed A/J .

lent to solving the mean-field Hamiltonian

HTI
MF =− 2dJ〈Sz〉Sz − ~h(~S + g̃N ~I) +A~S · ~I (20)

at zero temperature.
Sample results are shown Fig. 17, where we have cho-

sen a large g̃N = 0.05 for illustration purposes. We find
that, remarkably, the field-driven change from antiparal-
lel (AFP) to parallel (PFP) field-polarized electronic and
nuclear spins proceeds via two QPTs (instead of a sin-
gle one), with an intermediate ordered phase occurring
(!). This can be rationalized as follows: For AS ≈ g̃Nh
the mean field acting on the nuclear spins becomes small,
such that their behavior is determined by their indirect
interaction via the electronic subsystem. As a result,
weak ferromagnetic order carried primarily by the nu-
clear spins occurs in a narrow field window whose width
decreases with increasing A.

Interestingly, such behavior is expected in the paradig-
matic transverse-field Ising material LiHoF4, Sec. III F,
which turns out to be located in regime III. Quantitative
modelling30 shows that the nuclear spins are antiparallel
to the field near the quantum phase transition at 5.1 T,
and the double transition to field-aligned nuclear spins is
expected at a field of roughly 300 T.

VI. FRUSTRATION AND EXOTIC
TRANSITIONS

In this section, we provide a perspective on the effects
of nuclear spins on quantum criticality beyond conven-
tional order-disorder transitions. As before, we restrict

ourselves to local-moment Mott insulators where frustra-
tion can induce both non-trivial phases such as fraction-
alized spin liquids and transitions beyond the Landau-
Ginzburg-Wilson paradigm.

A. Spin liquids and hyperfine coupling

We start our qualitative considerations by discussing
the fate of spin-liquid states upon inclusion of nuclear
spin degrees of freedom. Given that time-reversal sym-
metry is unbroken in a spin liquid, the mechanism of
nuclear spin order discussed in Sec. IV can modify or
destabilize a given spin liquid.

For the honeycomb-lattice Kitaev model,42 the
hyperfine-induced effective interaction between the nu-
clear spins is also of Kitaev type, with only nearest-
neighbor terms, and therefore the Z2 spin liquid can be
expected to be stable in the presence of nuclear spins.
This is possibly different for the nearest-neighbor Heisen-
berg model on the kagome lattice43,44 which is a candi-
date for a Z2 spin liquid – either gapped or gapless – as
well. The effect of nuclear spins in this model has been
discussed before45, with the conclusion that nuclear spin
order is not stable. However, this analysis was based on
a low-order estimate of the electronic spin susceptibil-
ity which was considered to be momentum-independent.
It is likely that the full electronic susceptibility displays
momentum dependence, arising, e.g., from the presence
of Dirac cones in the spectrum, such that a stable nu-
clear spin order is induced at low temperatures which in
turn induces weak order of the electron spins. Similar
considerations apply to the quantum spin liquid realized
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in the J1-J2 triangular lattice.46,47 Consequently, elec-
tronic quantum criticality arising from transitions out of
such spin liquids is likely to be cut off by the ordering
scale arising from nuclear spins, not unlike the situation
in Sec. IV.

For classical spin liquids, such as spin ice, the Heisen-
berg coupling to nuclear spins induces quantum dynam-
ics which eventually quenches the finite entropy accom-
panying the degenerate classical manifold. In a realistic
setting such as Ho2Ti2O7 the hyperfine-induced quan-
tum dynamics competes or cooperates with the (weak)
intrinsic quantum dynamics of the electronic spin system.
Parenthetically, we note that highly interesting behavior
arising from nuclear spins has also been detected in the
kagome ice material Ho3Mg2Sb3O14.48 Here, the peculiar
form of the crystalline electric field leads to a weakly split
non-Kramers doublet, and this intrinsic splitting com-
petes with dipolar and exchange couplings as well as with
hyperfine interactions.

B. Deconfined criticality of VBS-Néel type and
hyperfine coupling

As a representative for exotic transitions, we consider
deconfined quantum criticality. Deconfined criticality
refers to Landau-forbidden continuous quantum transi-
tions between two symmetry breaking states where the
critical point features fractionalized excitations.49–51 A
paradigmatic example is the transition between a Néel
antiferromagnet and a valence-bond solid as realized, e.g.,
in the so-called J-Q model on the square lattice.52

Upon adding hyperfine-coupled nuclear spins, the
valence-bond solid will become a weak antiferromagnet,
as the nuclear spins experience an interaction favoring
Néel-type order. This weak spin order coexists with spon-
taneous dimerization. As a result, the former deconfined
QPT will be replaced by a QPT involving the onset of
dimerization only, as both phases display the same type
of magnetic order. Hence, the physics of the deconfined
QCP is cut off at low energies and temperatures where
it is replaced by that of a more conventional Z4 QCP.

VII. CONCLUSIONS AND OUTLOOK

In the context of magnetic quantum phase transitions
in solids, we have discussed the fate of electronic quan-
tum criticality under the influence of nuclear spins. Their
hyperfine coupling to the electrons can modify or even
destroy the criticality of the electronic system. If time-
reversal symmetry is broken in both electronic phases,
e.g., by an applied magnetic field, the hyperfine coupling
is a regular perturbation and the quantum phase transi-
tion is shifted. At low temperature, a regime of nuclear-
spin quantum criticality may emerge. If instead the dis-
ordered electronic phase is time-reversal symmetric, it
may be unstable to weak magnetic order at low temper-

atures, carried by nuclear spins, and the quantum phase
transition is turned into a crossover. We have consid-
ered explicit examples for both cases and evaluated the
relevant crossover scales below which electronic quantum
criticality gets modified. We have also discussed situa-
tions with hyperfine-induced additional transitions.

Systems with magnetic 4f electrons are particularly
suitable to detect the phenomena discussed in this pa-
per, as they feature small exchange interactions in the
Kelvin range and potentially significant hyperfine cou-
pling. Both thermodynamic measurements and inelastic
neutron scattering are suitable to detect the crossover
scales predicted here. This has partially been done for
LiHoF4, and our work prompts for more detailed exper-
imental studies.

In terms of an outlook, it is worth mentioning a num-
ber of related experimental findings which point a partic-
ular role of nuclear spins in regimes with strong quantum
fluctuations. One case in point is CeRu2Si2 where very
unusual thermodynamic behavior has been reported53 at
temperatures below 50 mK which has been attributed
to an additional quantum critical point. Given that
both 99Ru and 101Ru isotopes have a large nuclear spin,
nuclear magnetism is a plausible candidate, but a de-
tailed modelling is lacking. Signatures of the particu-
larly effective coupling of nuclear and electronic spins
have also been seen54 in calorimetric measurements on
Cr(diethylenetriamine)(O2)2·H2O which contains a large
number of hydrogen nuclear spins.
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Appendix A: Derivation of the excitation spectrum
of the Ising model

The classical reference state is defined by the angles
θ and φ specifying the directions of the electronic and
nuclear spins as shown in Fig. (1). To apply spin-wave
theory, we formally rotate the spins to a new frame of

reference ~Si = Uel
~̃Si and ~Ii = Unu

~̃Ii in which they are
aligned with the z-axis. For the electronic spins the site-
independent rotation matrix reads

Uel =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (A1)
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and the rotation for nuclear spins is obtained by replacing
θ → −φ. For generality we take a possible longitudinal

field into account, ~h = (hx, 0, hz)
T , and consider arbi-

trary spin sizes S and I.
These representations of the spins in a rotated frame

of reference can be inserted into the model Hamiltonian

Eq. (1) and with the abbreviations α = cos θ cosφ− sin θ sinφ, β = cos θ sinφ+ sin θ cosφ one obtains

HTI =− J
∑
〈ij〉

[
sin2 θ S̃ixS̃jx + cos2 θ S̃izS̃jz − sin θ cos θ(S̃ixS̃jz + S̃izS̃jx)

]
−
∑
i

[
(hx cos θ − hz sin θ) S̃ix + (hx sin θ + hz cos θ) S̃iz

]
− g̃N

∑
i

[
(hx cosφ+ hz sinφ) Ĩix + (−hx sinφ+ hz cosφ) Ĩiz

]
+A

∑
i

[
αS̃ixĨix − βS̃ixĨiz + βS̃iz Ĩix + αS̃iz Ĩiz + S̃iy Ĩiy

]
(A2)

We now represent the spin operators using the standard Holstein-Primakoff representation39,40, S̃iz = S − a†iai,

S̃i+ = (2S − a†iai)1/2ai and Ĩiz = −I + b†i bi, Ĩi− = (2I − b†i bi)1/2bi.

Insertion gives a constant energy contribution and a linear term, whose coefficient vanishes if the angles θ and φ of
the reference state are chosen correctly, see main text. We neglect interaction effects, so that only the quadratic term
remains. To solve it, we first go to momentum space

µi =
1√
N

∑
~k

ei
~k~riµ~k (A3)

where µ stands for the two types of Holstein-Primakoff bosons a, b. We introduce the sum over nearest neighbors

γ~k =
1

2d

∑
j∈NNi

ei
~k(~rj−~ri), (A4)

which e.g. for the cubic lattice is γ~k = (cos kx + cos ky + cos kz)/3. Then the Hamiltonian can be written as

HTI
2 =− JdS

2
sin2 θ

∑
~k

[
γ~k(a

−~k
a~k

+ a†~k
a~k

) + γ∗~k(a~k
a†~k

+ a†
−~k
a†~k

)
]

+
[
2JdS cos2 θ + hx sin θ + hz cos θ +AαI

]∑
~k

a†~k
a~k + [g̃Nhx sinφ− g̃Nhz cosφ+AαS]

∑
~k

b†~k
b~k

+A

√
IS

2

∑
~k

[
(α− 1)a~k

b†~k
+ (α+ 1)a

−~k
b~k

+ (α+ 1)a†
−~k
b†~k

+ (α− 1)a†~k
b~k

]
(A5)

This quadratic Hamiltonian can be diagonalized with a Bogoliubov transformation. The results for hx = h and
hz = 0 are discussed in the main text.

Appendix B: Derivation of the excitation spectrum of the coupled-dimer model

To derive the Hamiltonian describing coupled electronic and nuclear excitations, we start with triplon excitations.
We follow the procedure of Sec. II A in Ref. 37 to rewrite the spin operators of the full Hamiltonian in Eq. (7) in
terms of triplon operators. The triplon expressions corresponding to the electronic coupling terms J⊥ and J‖ are
given by the corresponding terms in Eqs. (24-26) in Ref. 37, but to describe the hyperfine coupling we need to include
a general magnetic field instead of only the staggered field hst considered in the reference. This general Zeeman term
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can be rewritten with triplon operators as

−
∑
i

(~hi1 · ~Si1 + ~hi2 · ~Si2)

=− λ

1 + λ2

∑
i

ei
~Q~ri(hi1,z − hi2,z)−

1

2

∑
i

{(
hi1,x − hi2,x√

1 + λ2
+
−iλi(hi1,y + hi2,y)√

1 + λ2

)
t̃ix

+

(
+iλi(hi1,x + hi2,x)√

1 + λ2
+
hi1,y − hi2,y√

1 + λ2

)
t̃iy +

1− λ2

1 + λ2
(hi1,z − hi2,z)t̃iz + h.c.

}
+

λ

1 + λ2

∑
i

3∑
β=1

ei
~Q~ri(hi1,z − hi2,z)(1 + δβz)t̃

†
iβ t̃iβ −

1

2

∑
i

{
− (hi1,z + hi2,z) t̃

†
ixt̃iy

+

(
λi(−hi1,x + hi2,x)√

1 + λ2
+
−i(hi1,y + hi2,y)√

1 + λ2

)
t̃†ixt̃iz +

(
i(hi1,x + hi2,x)√

1 + λ2
+
λi(−hi1,y + hi2,y)√

1 + λ2

)
t̃†iy t̃iz + h.c.

}
+ terms with ≥ 3 triplon operators (B1)

We are only interested in terms with 2 or less triplon operators because we will later employ a non-interacting
(harmonic) approximation.

To describe the coupling to the nuclear spins in lowest-order spin-wave theory, we first go to a local reference frame

(Ix, Iy, Iz)→ (Ĩx, e
i ~Qri Ĩy, e

i ~Qri Ĩz). In the reference state, the rotated spins ~̃Iim within each layer all point in the same

direction, ~̃Ii1 = (0, 0,−I) and ~̃Ii2 = (0, 0, I) for all sites i. In this way, we can use a unit cell of one dimer and two
nuclear spins instead of the doubled unit cell of the ordered state, which simplifies the calculation.

Fluctuations around this state can be parameterized by Holstein-Primakoff bosons39,40 for each constituent 1 and 2

of the dimer as Ĩi1,z = −I + a†iai, Ĩi1,− = (2I − a†iai)1/2ai and Ĩi2,z = I − b†i bi, Ĩi2,+ = (2I − b†i bi)1/2bi. We only keep

the lowest non-constant order. Thus we need to formally replace the field ~him = −A~Iim − (−1)mei
~Q~rihst~ez which

couples to the triplons by

~hi1 =

(
A

√
2I

2
(a†i + ai),−iAei ~Qri

√
2I

2
(a†i − ai), ei

~Qri(−AI +Aa†iai − hst)

)

~hi2 =

(
A

√
2I

2
(bi + b†i ),−iAei

~Qri

√
2I

2
(bi − b†i ), ei

~Qri(AI −Ab†i bi + hst)

)
(B2)

Note the sign factors ei
~Qri in the y and z components which come from reversing the transformation ~I → ~̃I.

Inserting Eq. (B2) into Eq. (B1), we can include the purely electronic terms as in Ref. 37. In the resulting
Hamiltonian, the constant term represents the product-state energy, and terms linear in boson operators are absent
because the product state corresponds an energy minimum for a properly chosen rotation parameter λ(q, A). We then
focus on bilinear boson terms, while higher-order contributions reflecting boson interactions, are neglected. We note

that only the combinations ci = (ai − bi)/
√

2 and di = ei
~Q~ri(ai + bi)/

√
2 of the nuclear bosons appear, so we change

to this basis of the nuclear Hilbert bosons.
The Hamiltonian can be simplified by applying a Fourier transform as defined in Eq. (A3) where µ now stands for

the five boson species c, d, t̃x, t̃y, t̃z. This yields

HCD
2 = +A

λ

1 + λ2

∑
~k

(c†~k
c~k + d†~k

d~k)

+
1

4

√
2IA√

1 + λ2

∑
~k

{[
(1 + λ)c−~k + (1− λ)c†~k

]
t̃~kx − i

[
(1 + λ)d−~k − (1− λ)d†~k

]
t̃~ky + h.c.

}

+
1

1 + λ2

3∑
β=1

[
−2λ (AI + hst) (1 + δβz) + J⊥

(
1− λ2δβz

)
+ 4J‖z

λ2

1 + λ2
(1 + δβz)

]∑
~k

t̃†~kβ
t̃~kβ

+ J‖z
1− λ2

1 + λ2

3∑
β=1

[
1− 2λ2

1 + λ2
δβz

]∑
~k

γ~k t̃
†
~kβ
t̃~kβ +

J‖z

2

3∑
β=1

[
1− 4λ2

(1 + λ2)2
δβz

]∑
~k

(
γ∗~k t̃

†
~kβ
t̃†
−~kβ

+ h.c.
)

(B3)

with the sum over nearest neighbors γ~k defined in Eq. (A4).
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The Hamiltonian is quadratic, so it can be diagonalized
with a bosonic Bogoliubov transformation. It couples
only t̃~kx with c~k and t̃~ky with d~k, while t̃~kz remains sepa-

rate, so the block-diagonal form of the Hamiltonian can
be used to separate the system of 5 coupled boson species
into a simpler system of (2 + 2 + 1) coupled bosons. The
results of the diagonalization are discussed in the main
text.
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