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We model a quantum walk of identical particles that can change their exchange statistics by
hopping across a domain wall in a 1D lattice. Such a “statistical boundary” is transparent to single
particles and affects the dynamics only by swapping multiple particles arriving together. We find
that the two-particle interference is dramatically altered by reflections of these bunched waves at
the interface, producing strong measurable asymmetries. Depending on the phases on the two sides,
a bunched wavepacket can get completely reflected or split into a superposition of a reflected wave
and an antibunched wave. This leads to striking dynamics with two domain walls, where bunched
waves can get trapped in between or fragment into multiple correlated single-particle wavepackets.
These findings can be realized with density-dependent hopping in present-day atomic setups and
open up a new paradigm of intrinsically many-body phenomena at statistical boundaries.

Introduction.—The behavior of identical quantum par-
ticles is dictated by their exchange statistics, i.e., the
phase (θ) acquired by the wavefunction when two parti-
cles are exchanged [1]. Bosons, with θ = 0, lead to black-
body radiation and Bose-Einstein condensates, whereas
fermions, with θ = π, form neutron stars and the periodic
table of elements. More exotic particles, with 0 < θ < π,
can exist only in low dimensions [2–4]. These “anyons”
are found as surface excitations on a fractional quantum
Hall state [5] or spin liquids [6] and have been observed
in recent experiments [7, 8], but they can also arise in one
dimension (1D) [9]. Their fractional statistics has fueled
intense research [10–12] and is the basis for topological
quantum computing protocols [13, 14].

The rise of controllable atomic and photonic platforms
has meant one can engineer particle statistics in experi-
ments [15, 16]. In particular, Keilmann et al. [17] have
shown anyons on a 1D lattice are equivalent to bosons
with density-dependent hopping which has been realized
in atomic setups [18–22]. Subsequently, Greschner and
Santos [23] showed the statistics of these anyons is fully
tunable by a Raman laser. Motivated by such possibili-
ties, theories have found rich ground states [24–26] and
dynamics [27–29]. In these studies, the exchange phase,
set by complex hopping amplitudes, is spatially uniform.
Yet, the protocol in Ref. [23] can be extended to nonuni-
form phases, which produces an intriguing scenario where
anyons change their statistics by simply hopping across a
domain wall. Here we explore new physics resulting from
such a “statistical boundary” by modeling two-particle
walks that can be monitored in experiments.

Two-body walks give a clean signature of the under-
lying statistics through the interference of multiple two-
particle pathways, which produces bunching of bosons
and antibunching of fermions, exemplified by the Hong-
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Ou-Mandel [30, 31] effect. Such walks have been realized
in atom traps [32–34] and photonic circuits [35–37], and
have key applications in quantum computing [38, 39].
Two-body interference of anyons with a given statistics
has also been examined [28, 36, 37, 40]. In 1D mod-
els [17], the anyons can have double occupancies even at
θ = π to allow for exchange, so in this limit they behave
as “pseudofermions” that retain some bunching behavior
[28].

We consider a statistical boundary where the exchange
phase is α on one side and β on the other side. On either
side, the propagation occurs in the form of bunched and
antibunched waves. Antibunched waves are unaffected by
the interface since the two particles move separately. On
the other hand, bunched waves are strongly transformed:
For a boson-pseudofermion (0-π) interface, we show that
a bunched wave incident from the fermionic side is com-
pletely reflected, whereas one from the bosonic side is
coherently split into a reflected bunched wave and an an-
tibunched wave (Fig. 4). Hence, the long-time dynamics
are very sensitive to initial conditions, changing dramat-
ically as one crosses the boundary. We fully characterize
this physics by global number asymmetries that can be
measured, e.g., with a quantum gas microscope [34]. We
predict striking consequences, including a statistical well
that can trap or successively fragment bunched particles
(Fig. 6). These features are most prominent at weak on-
site interactions and large phase jumps at the boundary,
which can both be tuned by Raman lasers [23].

Model.—Anyons on a 1D lattice with a given exchange
phase θ are defined by the commutation relations âiâj =
eiθâj âi and âiâ

†
j = e−iθâ†j âi for all i < j, where â†i creates

an anyon at site i. There is some freedom in choosing the
on-site statistics (i = j) [41]. We follow the convention in
Refs. [17, 42, 43] where this is bosonic; i.e., [âi, â

†
i ] = 1, so

multiple anyons can occupy the same site and exchange
positions. This choice is further motivated by a Jordan-
Wigner transform that maps such anyons to interacting
bosons which can be studied experimentally [17].

ar
X

iv
:2

01
2.

03
97

7v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

0 
D

ec
 2

02
1

mailto:liam.lh.lau@physics.rutgers.edu
mailto:sdutta@pks.mpg.de


2

FIG. 1. Schematic of density-dependent tunneling in Eq. (4).

We introduce anyons with a spatially varying exchange
phase through a modified Jordan-Wigner (JW) map,

âj := ei
∑

k<j θkn̂k b̂j , (1)

where b̂j are the boson operators and n̂k := b̂†k b̂k = â†kâk
is the occupation at site k. Using the relations [b̂i, b̂j ] = 0
and [b̂i, b̂

†
j ] = δij , we find the anyonic commutations

âiâj = eiθi âj âi and âiâ
†
j = e−iθi â†j âi (2)

for i < j; i.e., the exchange phase is set by the “left” site.
This loss of reflection symmetry arises from Eq. (1) and
is characteristic of anyons [10]. We are interested in cases
where all exchanges are local and θk varies sharply across
a domain wall, so particles on either side of the wall have
well-defined and distinct statistics. Such an interface is
“invisible” to single particles and affects the physics only
by exchanging anyons between the two sides.

To probe the resulting dynamics, we adopt the Anyon-
Hubbard Hamiltonian [17]

Ĥ = −J
∑

j

(
â†j âj+1 +H.c.

)
+U

∑
j
n̂j(n̂j−1)/2 , (3)

where J is the nearest-neighbor tunneling and U is an on-
site interaction. Crucially, this Hamiltonian maps onto a
Hubbard model for bosons via Eq. (1),

Ĥ = −J
∑
j

(
b̂†j b̂j+1e

iθj n̂j +H.c.
)
+
U

2

∑
j

n̂j(n̂j−1) . (4)

Here θj gives an occupation-dependent Peierls phase; i.e.,
a hop from site j + 1 to j yields an additional phase de-
pending on the occupation of site j, as shown in Fig. 1.
Such phases have been realized in shaken optical lattices
[19–22] in a quest to simulate dynamical gauge fields [44].
Furthermore, theoretical studies have shown that Peierls
phases of the specific form in Eq. (4) can be engineered
by Raman-assisted tunneling [17, 23] and lattice shaking
[45]. Of these, the protocol in Ref. [23] is particularly
flexible and readily generalized to nonuniform θj by spa-
tially modulating a Raman laser. Note that θj mediates
an effective interaction between the bosons, which is dis-
tinct from the onsite interaction U . This is a consequence
of the fractional anyonic statistics.

At any time t, the two-particle state can be expressed
in terms of the boson operators as

|Ψ(t)〉 =
∑

j
dj(t) b̂

†2
j |0〉/

√
2 +

∑
i<j

ci,j(t) b̂
†
i b̂
†
j |0〉 , (5)

FIG. 2. Motion of two anyons with exchange phase θj = 0.6π
and onsite interaction U = 0, starting from sites j = 0, 1. (A)
Density-density correlations Γi,j at Jt = 40 and (B) density
nj(t), showing fast antibunched and slow bunched waves.

where |0〉 is the vacuum and
∑
j |dj |2 +

∑
i<j |ci,j |2 = 1

for normalization. Bunching or antibunching of the par-
ticles shows up in the density-density correlations Γi,j :=
〈n̂in̂j〉−δijni = 2|dj |2δij+|ci,j |2(1−δij), and can be mea-
sured experimentally [33–37]. Here ni := 〈n̂i〉 =

∑
j Γi,j .

We focus on neighboring initial states where the anyons
most strongly influence one another. We find the coeffi-
cients dj and ci,j by exact diagonalization, using a large
grid to avoid reflection from edges.
Uniform case.—Before considering a domain wall, we

discuss the physics in the uniform case [28], θj = φ, after
the particles are released from adjacent sites. For φ = 0
and U = 0, one has pure bosons that spread out in both
directions as bunched waves with speed 2J (in units of
lattice spacing, with ~ = 1). For φ 6= 0, one instead finds
a superposition of bunched and antibunched propagation,
as shown in Fig. 2. This can be seen either as a result of
the anyonic statistics [Eq. (2)] or that of the occupation-
dependent hopping of the JW bosons [Eq. (4)]. The an-
tibunched wave describes the two particles moving in op-
posite directions at speed 2J , while the bunched wave is
significantly slower. As φ is increased, the antibunching
becomes more prominent and the bunched waves slow
down further. However, even in the pseudofermion limit,
φ = π, the latter carry almost half the total weight at
a speed vslow ≈ J/5 (see Supplement [46]). One obtains
stronger antibunching by increasing U . For U/J → ∞,
Eq. (4) reduces to hard-core bosons that behave like free
fermions [34] regardless of φ. So the exchange phase is
more relevant at smaller U .

The slow bunched wave can be explained qualitatively
for φ . 1 by calculating the scattering length [23], which
mimics an effective repulsion

Ueff = 4J tan2(φ/2) (6)

at U = 0, leading to slow bound pairs [34]. However, this
picture breaks down for large angles [47]. In particular, at
φ = π, Ueff →∞, which predicts free-fermionic behavior
and does not support bunching.

Statistical boundary.—We consider a sharp domain
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FIG. 3. Strongly asymmetric quantum walk two anyons with
U = 0 in the presence of a boson-pseudofermion interface:
θj = 0 for j ≤ 0 and θj = π for j > 0, after they are released
from sites j = 0, 1. (A) Two-body correlations at Jt = 35
and (B) density profile as a function of time, showing a pro-
nounced bunched wavefront in the bosonic side and a weak,
slow bunched wave in the pseudofermion side.

wall such that θj = α for j ≤ 0 and β for j > 0. We
focus on a boson-pseudofermion interface, i.e., α = 0 and
β = π, which produces the most striking departures. In a
later section, we discuss how these effects fade gradually
as one reduces the phase jump, increases U , or makes
the interface less sharp. Recall that U and θj are fully
tunable by the protocol in Ref. [23].

Figure 3 shows what happens if the two particles are
released from sites j = 0, 1, straddling the interface. An
extremely skewed evolution ensues in which most of the
weight flies off into the bosonic region as a bunched wave
moving at speed 2J . This is accompanied by some rem-
nant antibunching. The remainder is barely visible as a
weak bunched wave moving into the pseudofermion side
at speed vslow, carrying less than 3% of the total weight.
This is in stark contrast to the symmetric walk in Fig. 2.
Here the initial state can be considered “bosonic,” as the
first hop does not yield any Peierls phase (see Fig. 1), so
we expect a bunched wave in the boson side. One might
also anticipate less transmission to the pseudofermion re-
gion due to the effective repulsion [Eq. (6)]. However, as
we pointed out before, this is only a qualitative picture.
Below we show the strong asymmetry originates from a
characteristic reflection of the bunched waves off the do-
main wall.

To deconstruct this effect of the interface, we consider
initial states farther away from it, so that the incident
waves are clearly discernible. Figure 4A shows an exam-
ple where the anyons are released well inside the bosonic
region at j = −6,−5. As in the uniform case, they start
spreading out as bunched waves in both directions. When
the right-moving front arrives at the interface, we find it
is coherently split into two parts. One of these is reflected
as a bunched wave and the other turns into antibunched
motion, where one particle enters the pseudofermion side
and the other goes back to the boson side. This process
is sketched in Fig. 4B. Note that no bunched waves pass

FIG. 4. Reflection of bunched waves off a 0-π statistical in-
terface after two anyons with U = 0 are released from (A, B)
the boson side, j = −6,−5, and (C, D, E) the pseudofermion
side, j = 5, 6. (A) Two-body correlations Γi,j at Jt = 5.9,
showing a bunched wave being split into a reflected bunched
wave and an antibunched wave. (C) Γi,j at Jt = 4, showing
fast antibunched waves passing through the boundary and
a slow bunched wave arriving at the interface. (D) Γi,j at
Jt = 47.3, showing the bunched wave is completely reflected.
(B, E) Sketch of the dynamics: double (single) arrows show
bunched waves (single particles).

through the interface, which gives rise to the asymmetry
in Fig. 3. The dynamics are even more striking when the
anyons are released in the pseudofermion side. Here one
has two different timescales as in Fig. 2. There is a fast
outward spreading where the anyons travel in opposite
directions. Being solo, the left-moving anyon cannot see
the interface and passes straight through, as in Fig. 4C.
Much later, the slow bunched wave arrives and gets com-
pletely reflected, as shown in Figs. 4D and 4E.

The reflection of bunched waves incident from the bo-
son side can be approximated by using effective hard-
core interactions for j > 0, in accordance with Eq. (6).
However, this recipe fails to capture the dynamics for
pseudofermionic initial states (see Supplement [46]). The
lack of transmission of the bunched waves is consistent
with a large difference in group velocity between the two
sides. However, we emphasize this is not single-particle
physics, but a result of destructive interference between
two-particle paths.

The dynamics are characterized by the weights in the
bunched and antibunched waves, which can be extracted
from the long-time distribution. In particular, since anti-
bunched waves contain only one particle on each side, the
weight in the bunched waves moving left (right) approxi-
mately equals the probability of finding both particles in
the bosonic (fermionic) side, P

b(f)
•• . These are also related

to the imbalance I := (nb − nf )/(nb + nf ) = P b•• − P
f
••,
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FIG. 5. Long-time asymmetries (Jt = 100) after the anyons
are released from sites j, j+1, with the interface in Fig. 3. (A)
Probability of finding both particles in left (orange) and right
(green) halves. Dotted lines show probabilities for uniform θj :
P

b(f)
•• (0) ≈ 0.35 and P

b(f)
•• (π) ≈ 0.28. (B) Relative number

imbalance between the two halves. The sudden drop at j = 0
signal very different physics on the two sides (see Fig. 4).

where nb(f) is the average number of particles on the bo-
son (pseudofermion) side. As the initial positions cross
the boundary, the physics changes drastically, producing
sharp variations in P

b(f)
•• and I, as shown in Fig. 5. The

asymmetry falls if the release sites are far inside the boson
region since the bunching is not perfect and the particles
have more time to delocalize. However, we do not see this
behavior on the pseudofermion side where the bunched
motion is strongly bound. Similarly, I falls off with the
initial separation of the particles (see Supplement [46]).
Note that P

b(f)
•• and I are directly measurable in a quan-

tum gas microscope [34].
Statistical well.—The reflections sketched in Figs. 4B

and 4E lead to striking dynamics when multiple domain
walls coexist. Figure 6A shows a π-0-π interface, where a
bosonic region is sandwiched between two pseudofermion
regions, forming a “statistical well.” Here, upon release
in the middle, the particles repeatedly bounce back-and-
forth as bunched waves, as per Fig. 4B. At each bounce,

FIG. 6. Back-and-forth reflection of bunched waves inside a
statistical well, after release of two anyons at j = 0, 1 with
U = 0. (A) π-0-π interface: θj = 0 for −2 ≤ j ≤ 3. Reflec-
tions are lossy, as in Fig. 4B, producing fragmented single-
particle waves. (B) 0-π-0 interface: θj = π for −4 ≤ j ≤ 5.
Slow bunched waves undergo lossless reflections, and a fast
antibunched wavefront flies off at short times, as in Fig. 4E.
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FIG. 7. (A) Long-time number imbalance between two sides
of a 0-φ boundary, θj = 0 for j ≤ 0 and φ for j > 0, with on-
site interactions U , after two anyons are released from j = 0, 1.
(B) Imbalance for a boundary of finite width d, over which θj
varies from 0 to π, for the same initial state and U = 0.

nearly half the incoming flux leaks out into antibunched
motion, giving rise to multiple correlated single-particle
waves. The reflections are more prominent for a narrow
boson region which reduces delocalization. On the other
hand, for a 0-π-0 interface, shown in Fig. 6B, the loss
and delocalization are both suppressed (as in Fig. 4E),
but reflections occur on a longer timescale set by vslow.
In both cases, the width of the surrounding region is
irrelevant as the bunched waves are confined inside the
well; this is confirmed by numerics (see Supplement [46]).

Experimental considerations.—So far, we have consid-
ered zero on-site interactions and maximum phase jump
across a sharp interface. In Fig. 7, we show these condi-
tions are by no means necessary for observing the physics.
Figure 7A shows the imbalance I between two sides of a
sharp 0-φ interface with U 6= 0, when the particles are
released at the boundary (as in Fig. 3). As expected, I
falls monotonically as φ is decreased or U/J is increased.
However, the change is gradual and I remains large even
for U/J ∼ 1. In Fig. 7B, we consider an interface of finite
width d, where θj varies linearly from 0 to π over d sites.
Here, I decreases slowly and reaches a plateau at large
d, so the physics is also not sensitive to d.

As we stated earlier, of the several protocols for engi-
neering Anyon-Hubbard models [12, 17, 23, 45, 48], the
one in Ref. [23] is most suited for our purpose. Here, one
uses a set of Raman lasers to control the tunneling of
atoms with two internal states on a tilted optical lattice,
such that U is fully tunable by a detuning. The exchange
statistics is set by the relative phase of one of the lasers,
which can be varied spatially to form a domain wall.

Summary and outlook.—We have investigated a novel
scenario where multiple anyonic regions are separated by
domain walls in the same physical system, and particles
change their statistics by hopping across a wall. One can
engineer this setting via occupation- and site-dependent
hopping in realistic atomic setups. We have studied two-
body walks in the vicinity of such a wall and showed that
the dynamics are marked by a characteristic reflection of
bunched waves at the interface that is strongly asymmet-
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ric and sensitive to initial conditions, leading to striking
phenomena. These reflections leave experimentally mea-
surable signatures in the long-time distribution.

A distinguishing feature of such a statistical interface
is that it is, by definition, transparent to single particles
and affects the physics only by exchanging multiple parti-
cles arriving simultaneously. Thus, our findings strongly
encourage future studies of this intrinsically many-body
operation. For example, Refs. [17, 23–25, 48] have found
insulating and superfluid phases of anyons as a function
of their statistics, which can be combined to explore cor-
related transport through statistical junctions. Our work
also highlights new phenomena that open up by density-
dependent gauge fields and motivate further experimen-
tal developments at this exciting frontier [19–22, 44].

We thank Nigel Cooper for valuable feedback. This
work was supported by the Engineering and Physical Sci-
ences Research Council Grant No. EP/P009565/1.
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D.-S. Lühmann, Observation of density-induced tunnel-
ing, Phys. Rev. Lett. 113, 193003 (2014).

[19] F. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-
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SI. Characterization of the slow bunched wave

In this section we investigate the effect of the exchange statistics on the speed and relative weight of the slow

bunched waves discussed in Fig. 2 of the main article. As before, we consider anyons on a 1D lattice with exchange

phase θj that map onto bosons with occupation- and site- dependent Peierls phase, described by the Hamiltonian

Ĥ = −J
∑
j

(
b̂†j b̂j+1e

iθj n̂j + H.c.
)

+
U

2

∑
j

n̂j(n̂j − 1) , (S1)

where J is the tunneling, U is the interaction, b̂†j and b̂j are boson creation and annihilation operators, and n̂j := b̂†j b̂j .

We consider anyons with U = 0 in the uniform case θj = φ, where nonzero φ leads to a separation of timescales in

the evolution: As shown in Fig. S1, when two particles are released from neighboring sites, the dynamics split into

a fast antibunched wave, where the two anyons travel in opposite directions at speed 2J , and a slow bunched wave,

where the anyons are strongly bound and propagate more slowly.

FIG. S1. Superposition of fast antibunched and slow bunched propagation with exchange phase θj = π at Jt = 65 after two

anyons with U = 0 are released from sites j = 0, 1. (A) Density profile showing a slow bunched mode, with sharp leading edges

(dashed line), and a fast antibunched mode, peaked at j = ±2Jt (dotted line). (B) Density-density correlations showing a clear

separation between the antibunched wavefront and strongly bound bunched waves within the green square.
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We use the leading edge of the bunched wave in the density profile (Fig. S1A) to characterize its speed as a function

of the statistical phase φ. As shown in Fig. S2A, this speed falls off linearly from vslow = 2J at φ = 0 to vslow ≈ J/5 at

φ = π. We calculate the relative weight in the bunched mode from the two-body correlations Γi,j := 〈n̂in̂j〉 − δij〈n̂j〉
as fslow =

∑
� Γi,j/2, where � encloses the bunched waves (see Fig. S1B; note that

∑
i,j Γi,j = 2). Figure S2B shows

that fslow decreases monotonically with φ, saturating around 0.5. For comparison, we also plot the speed and weight

using an effective repulsion instead of nonzero φ [S1], as discussed in the main text and elaborated in the next section.
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FIG. S2. (A) Propagation speed and (B) relative weight of the slow bunched waves as a function of θj = φ for the exact model

(solid lines) and using the effective repulsion in Eq. (S4) (dashed lines). For the latter, the bunched waves are indistinguishable

from background at φ > 0.8π. Note the strong mismatch between the two curves at large φ. In particular, at φ = π, the effective

repulsion describes hard-core bosons or free fermions, so double occupancy is prohibited and bunching is not supported.

SII. Effective repulsion

Here we provide quantitative comparisons between the exact dynamics and that generated by an effective interaction

derived from the scattering length. As detailed in Ref. [S1], the low-energy collisions between two anyons with exchange

phase φ is characterized by the scattering length (in units of the lattice spacing)

as =
− (1 + cosφ)

4 (1− cosφ) + 2U/J
, (S2)

which can be interpreted as originating from an effective interaction strength

Ueff =
4J (1− cosφ) + 2U

(1 + cosφ)
. (S3)

Note that Ueff|φ→0 = U . In the limit U → 0, we obtain an effective repulsion as a function of the exchange phase,

Ueff = 4J tan2(φ/2) , (S4)

which can lead to slow-moving repulsively bound pairs [S2] through the effective Hamiltonian

Heff = −J
∑
j

(
b̂†j b̂j+1 + H.c.

)
+
Ueff

2

∑
j

n̂j(n̂j − 1) . (S5)

However, the comparisons in Fig. S2 show this effective repulsion does not capture the full dynamics when the anyons

are released from adjacent sites. In particular, for angles close to π, Ueff diverges and does not support any bunched
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propagation, which is a crucial feature of the model in Eq. (S1). This breakdown is not surprising since the scattering

length in Eq. (S2) becomes less than the lattice spacing (in magnitude) for φ & 1, changing its interpretation [S3].

FIG. S3. Evolution of the density profile in the presence of a 0-π statistical interface (θj = π for j > 0), following the release

of two particles from sites j = 3, 4 with U = 0. (A) Exact model [Eq. (S1)], showing a complete reflection of the slow bunched

waves. (B) Using effective repulsion [Eq. (S4)], showing a fully antibunched symmetric walk that is not affected by the interface.

The above discrepancy leads to very different dynamics in the vicinity of a 0-π statistical interface when the particles

are released from the pseudofermionic (θj = π) side, as shown in Fig. S3. For the exact model, nearly half the initial

weight goes into the slow bunched mode, which is completely reflected at the boundary, as explained in the main text.

On the other hand, with the effective repulsion, the particles are fully antibunched like free fermions: they travel

separately in opposite directions and are not affected by the statistical boundary.
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FIG. S4. Long-time asymmetries (Jt = 100) after the anyons are released from sites j, j+1 with the 0-π interface in Fig. S3 for

the exact model (solid) and with corresponding effective interactions (dashed). (A) Probability of finding both particles in the

left (orange) and right (green) halves. (B) Relative number imbalance between the two halves. The effective repulsion captures

the qualitative features for bosonic initial states (j ≤ 0) but produces little asymmetry for pseudofermionic initial states.

In Fig. S4, we show how the long-time asymmetries in the distribution are modified in the effective-repulsion picture

for different initial positions (j, j+1) around a 0-π interface. As in the main text, we consider the metrics P
b(f)
•• and I,
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where P
b(f)
•• is the probability of finding both particles in the bosonic (fermionic) side and I := (nb − nf )/(nb + nf ) is

the relative number imbalance between the two sides. Note the exact dynamics always produce stronger asymmetries.

The agreement between the two is better when the particles are released from the bosonic side (j ≤ 0) as the effective

repulsion can approximately reproduce the reflection of the bunched waves. For j > 0, these are absent as in Fig. S3B,

hence the imbalance I is very close to zero for the effective repulsion. Note the same-side probabilities P
b(f)
•• are still

nonzero since the antibunching is not perfect and the particles are delocalized.

SIII. Symmetric initial states with larger separation

Here we show how the effect of a statistical boundary is reduced for larger initial distance between the two particles.

As before, we focus on a 0-π interface at j = 0. Since it alters the dynamics only by swapping the particles, we consider

symmetric initial states, where two particles are released from sites −j + 1, j, to ensure they arrive at the boundary

simultaneously from the left and the right. Figure S5A shows that the interface produces an asymmetry by sending

some of this incident weight as bunched waves toward the bosonic region. As the initial separation is increased, the

asymmetry falls off as shown in Figs. S5B and S5C. This is because the particles have more time to delocalize before

arriving at the boundary, so less weight arrives as bunched. For large separation, the particles evolve independently

and the exchange phase is redundant, so P
b(f)
•• → (1/2)2. Note the separation is an odd number for the symmetric

states, but we find a similar behavior when the particles are initially separated by an even number of sites.
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FIG. S5. Time evolution and long-time asymmetries after the anyons are released from sites −j + 1, j on opposite sides of a

0-π interface, with U = 0. (A) Density profile, showing how the interface gives rise to an asymmetry by sending bunched waves

preferentially into the bosonic region. (B) Same-side probabilities P
b(f)
•• and (C) relative number imbalance I, showing how the

asymmetry falls off with larger initial separation. For j →∞, the particles move independently, so P
b(f)
•• → 1/4 (dotted line).

SIV. Reflections off a statistical region of finite width

Consider a junction of statistical regions α-β-γ with exchange phases (I) φα = 0, φβ = π, φγ 6= π or (II) φα = π,

φβ = 0, φγ 6= 0, and suppose the particles are released in region α. Here we show the dynamics are insensitive to the

width of region β. This is expected since no bunched waves are transmitted through the α-β interface, as sketched

in Fig. 4 of the main text, which makes the β-γ interface redundant. This is numerically confirmed in Fig. S6 which

shows that the long-time asymmetry quickly saturates as a function of the width of region β for both (I) with φγ = 0

and (II) with φγ = π.
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FIG. S6. Insensitivity of the dynamics of two anyons with U = 0 released from one side of a statistical junction to the width

of the middle region. (A) 0-π-0 interface; anyons released from j = 0, 1, and (C) π-0-π interface; anyons released from j = 2, 3.

(B) and (D) show the corresponding number imbalance at long times (Jt = 100) between the regions j ≤ 0 and j > 0. The

imbalance saturates to a nonzero value as soon as the middle region spans two or more sites.
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