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1Lehrstuhl für Theoretische Physik I, Technische Universität Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
2Department of Physics and Center for Applied Photonics, University of Konstanz, Konstanz, Germany

3Lehrstuhl für Theoretische Physik II, Technische Universität Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
(Dated: February 3, 2022)

A substantial energy gap of charge excitations induced by strong correlations is the characteristic feature
of Mott insulators. We study how the Mott gap is affected by long-range antiferromagnetic order. Our key
finding is that the Mott gap is increased by the magnetic ordering: a magnetic blue-shift (MBS) occurs. Thus,
the effect is proportional to the exchange coupling in the leading order in the Hubbard model. In systems with
additional localized spins the double-exchange mechanism induces an additional contribution to the MBS which
is proportional to the hopping in the leading order. The coupling between spin and charge degrees of freedom
bears the potential to enable spin-to-charge conversion in Mott systems on extreme time-scales determined by
hopping and exchange only, since a spin-orbit mediated transfer of angular momentum is not involved in the
process. In view of spintronic and magnonic applications, it is highly promising to observe that several entire
classes of compounds show exchange and double-exchange effects. Exemplarily, we show that the magnetic
contribution to the band-gap blue-shift observed in the optical conductivity of α-MnTe is correctly interpreted
as the MBS of a Mott gap.

I. INTRODUCTION

The discovery of insulating behavior in transition metal
oxides [1] and its explanation in terms of strong electron-
electron interaction [2] were the origin of the very active re-
search field of strongly correlated systems [3–6]. The low-
energy physics of Mott insulators is governed by spin exci-
tations [7]. A common and successful strategy to treat them
consists in disentangling spin and charge degrees of freedom
[8–11]. However, following this approach, it is difficult to
track the coupling between charge and spin dynamics, which
is expected to play a pivotal role in the recent massive surge
of interest in antiferromagnetic (AF) spintronics [12–17]. The
grand goal of this impressive research effort consists in estab-
lishing the ability to convert spin signals into charge responses
on the shortest possible timescale and minimizing as much as
possible the energy dissipations.

So far, the typical route to spintronics relies on spin-orbit
based transport effects [12] requiring a heavy metal layer on
top of the antiferromagnet to read out the electric system. The
vision of a spintronic information technology based solely on
antiferromagnetism thus completely relies on the strength of
the spin-orbit coupling, which defines both the spin-charge
conversion efficiency and the operational frequency of a de-
vice. Generically, exchange couplings are larger than spin-
orbit couplings by at least one order of magnitude. This makes
it desirable to use effects of purely exchange origin implying
shorter characterstic time scales and hence higher operational
frequencies.

Evidence has been reported that the charge gap in a Mott in-
sulator, the Mott gap, depends on the magnetic ordering [18–
20]. In particular, a magnetic shift of the band gap propor-

∗ mohsen.hafez@tu-dortmund.de
† davide.bossini@uni-konstanz.de
‡ frithjof.anders@tu-dortmund.de
§ goetz.uhrig@tu-dortmund.de

tional to the square of the sublattice magnetization could en-
able a coherent modulation of the band gap energy itself. Co-
herent dynamics of the order parameter in AF insulators has
been photo-induced and manipulated [21–23] where frequen-
cies of 22 THz [24–26] were found. This framework would
enable a coherent manipulation of the transport properties at
the unprecedented 20 THz working frequency.

Local electronic interactions are essential for the formation
of magnetic moments. Thus, there are two possible dichoto-
mous scenarios for the influence of the magnetic ordering on
the charge gap: (i) the charge gap is a band gap of s- and p-
electrons which are different from the electrons forming the
magnetic degrees of freedom. Then, the influence of the lo-
calized spins is only indirect via superexchange with the itin-
erant electrons. (ii) The charge gap is a Mott gap so that the
electrons forming the localized spins are also the ones form-
ing the charge gap. A charge-transfer insulator also belongs to
scenario (ii) because one of the bands relevant for the optical
gap is a strongly correlated one.

So far, the observed magnetic shifts have been discussed in
terms of scenario (i) [27–29]. The obtained results and even
the overall sign of the effect, red- or blue-shift, depend on
many details of the system. Only very recently, the observed
magnetic shift of the band gap in hexagonal MnTe (α-MnTe)
[30, 31] has been linked to strong local interactions in a local
static mean-field model [30]. In this article, we investigate the
temperature dependence of the Mott gap across the transition
from a paramagnetic to an AF insulator. The transition to the
ordered phase is accompanied by a noticeable increase of the
Mott gap, i.e., a magnetic blue-shift (MBS) of the Mott gap
occurs.

We address the fundamental nature of this MBS. By study-
ing models with increasing complexity within the dynamical
mean field theory (DMFT) [3] we are able to pinpoint the
subtle differences and clarify the influence of the charge hop-
ping and the magnetic exchange interaction. We apply our ap-
proach to a real material, α-MnTe, and demonstrate the very
good agreement with the available experimental data.
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First, we study the MBS in two fundamental models, the
Hubbard model and the Hubbard-Kondo model, and unfold
some generic features. In the Hubbard model, we show that in
the leading order the MBS is proportional to the magnetic ex-
change appearing by mapping the half-filled Hubbard model
to a Heisenberg model or to a t-J model (at finite doping).
It results from the Slater mechanism: as a static alternating
field induced by the magnetic order opens an energy gap in a
metal, such a field also increases the existing charge gap in a
Mott insulator.

In the Hubbard-Kondo model an additional local spin S is
included at each lattice site to account for non-itinerant mag-
netic degrees of freedom. Due to Hund’s rules the itinerant
and the local spin are coupled locally by a ferromagnetic cou-
pling JH > 0. In this model, we find an additional contribu-
tion to the MBS which is proportional to the hopping matrix
element. This hopping contribution is the dominant contribu-
tion in systems with a large Hubbard interaction which implies
a small magnetic exchange. We reveal that this contribution is
induced by the double-exchange mechanism due to a reduced
effective hopping upon transition from the paramagnetic to the
AF insulator.

Second, we verify our approach by analyzing an exem-
plary system promising for applications, hexagonal MnTe (α-
MnTe), which has been experimentally investigated [30, 31].
We extend the S = 5/2 spin model explaining the inelastic
neutron scattering data [32, 33] to a Hubbard-Kondo model
allowing for the coupling of the spin and charge degrees of
freedom. We compute the MBS of the Mott gap of the half-
filled 3d-shell of Mn ions. Using only generic parameters es-
tablished for α-MnTe in literature and without any fine-tuning
we achieve an overall excellent description of the MBS mea-
sured in the optical conductivity. We unveil the origin of the
MBS in α-MnTe data and find a magnetic exchange contribu-
tion of 36% and a hopping contribution of 64%. Our findings
set the stage to study coupled spin and charge dynamics in
strongly correlated systems, including the specific case of α-
MnTe.

The article is organized as follows. After this Introduction,
results for the Hubbard model are shown and interpreted. Sub-
sequently, the results for the Hubbard-Kondo model are pre-
sented and discussed, in particular the additional contribution
to the MBS stemming from the double-exchange mechanism.
Section IV deals with the particular case of α-MnTe as a can-
didate for significant spin-charge coupling based on the MBS.
In Section V the results are summarized and a brief outlook is
given.

II. THE THREE-DIMENSIONAL HUBBARD MODEL

The Hubbard model [34] at half-filling comprises hopping
between nearest-neighbor (NN) sites controlled by the param-
eter t and an interaction U between electrons at the same site
with opposite spins

HH = −t
∑
<i,j>

∑
σ=↑,↓

(
c†j,σci,σ + H.c.

)
+U

∑
i

ni,↓ni,↑. (1)

This well studied model shows a particle-hole symmetry at
half-filling with respect to the energy µ = U/2 defining the
chemical potential µ used throughout this paper. The phase di-
agram at finite temperatures on the cubic lattice is well known
at half-filling [35–39]. At T = 0, the ground state is a Néel
antiferromagnet for any finite U/t [40]. The Néel temperature
TN separating the paramagnetic and the AF phases increases
from 0 upon increasing U [37], reaches a maximum and de-
creases as TN ∝ t2/U in the strong coupling limit U � t
where the model can be mapped onto a spin-1/2 Heisenberg
model. At high temperatures, the phase is a metal for small
U/t and a paramagnetic Mott insulator for large U/t sepa-
rated from the metallic phase by a crossover region. At large
U/t, the Mott gap is proportional to U as a charge excitation
leads to the creation of a double occupancy which requires the
energy U .

We define the bare charge gap ∆ as the value of the charge
gap in the absence of the hopping, t = 0. Although in
the Hubbard model the bare charge gap just equals the Hub-
bard interaction U , it remains the relevant quantity also in the
Hubbard-Kondo model defining the magnetic exchange inter-
action J = 4t2/∆. We use the bare charge gap ∆ in cases
we aim to compare our results for the Hubbard model and the
Hubbard-Kondo model.

We employ the DMFT [3] with exact diagonalization (ED)
[41] as impurity solver. This approach is well established
for strong local interactions where subtle effects such as an
emerging exponentially low-energy scale associated with the
formation of a narrow band at the chemical potential in the
metallic phase cannot occur. For more details on the method
we refer to Appendix A. We compute the averaged local spec-
tral function A(ω) = (AAσ (ω) + ABσ (ω))/2 from the imagi-
nary part of the local Green function of sublattice A and B.
We point out that the spectral function A(ω) does not depend
on spin even in the AF phase because we average over both
sublattices.

We plot the local spectral function A(ω) of the Hubbard
model for different temperatures in the magnetic insulator
(MI) phase in Fig. 1(a) and in the paramagnetic insulator (PI)
phase in Fig. 1(b) for U = 20t. The spectral functions for the
different parameters are shifted vertically for clarity. Note that
the peak structure in A(ω) is caused by the discretized repre-
sentation of the conduction band in the ED impurity solver
with the number of bath sites nb = 6. Lowering the tem-
perature T in the PI hardly changes A(ω). But in the MI, a
shift of the electron and hole contributions to higher excita-
tion energies is clearly observed. Below the Néel temperature
TN ≈ 0.3t, the stable phase is the MI, but the metastable PI
solution can be computed as well and was added to Fig. 1(b)
for comparison.

The Mott gap is obtained from the energy difference be-
tween the two excitation energies of the spectrum that are
closest to the chemical potential µ, see the indicated arrows
in Fig. 1. While this gap is apparently a constant in the PI
phase as can be seen in Fig. 1(b), it shows a strong tempera-
ture dependency in the MI phase in Fig. 1(a). Upon reducing
T , the electron and hole peaks at ±5.5t shift apart to ±7t due
to the magnetic ordering. This leads to a MBS of the Mott gap
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FIG. 1. Spectral function A(ω) vs. ω in the range [−8t,+8t] at
various temperatures T in the magnetic insulator (MI) (a) and in the
paramagnetic insulator (PI) (b) for U = 20t and nb = 6 bath sites in
the impurity problem. The Néel temperature is given by TN ≈ 0.3t.

ΓMG(T ) of about 3t as T → 0.
We depict the Mott gap as well as the local spin polariza-

tion m in units of ~ vs. the temperature T for U = 15t in
Fig. 2(a) and for U = 20t in Fig. 2(b). The results are dis-
played for two bath sizes, nb = 6 and nb = 8 to illustrate the
accuracy of the approach. For U = 15t, the gap in the PI de-
creases slowly upon lowering the temperature. For U = 20t
it remains almost constant. However, in both cases there is a
rapid increase of the gap upon entering the MI phase which
illustrates the MBS.

At the continuous transition from the PI to the MI the gaps
have to be equal. This is not quite the case, most likely be-
cause of inaccuracies in extracting the gap from the ED data
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FIG. 2. The Mott gap in the magnetic insulator (MI) and in the para-
magnetic insulator (PI) as function of temperature for U = 15t (a)
and U = 20t (b). The grey lines show the local spin polarization m
(right axes). The results for nb = 6 and nb = 8 are compared.
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FIG. 3. The lower band of the spectral function in the Hubbard model
for various values of the bare charge gap ∆ = U in the MI close to
T = 0 and in the PI close to T = TN. The Fermi energy is located
at ω = µ = U/2. We have used the bare charge gap ∆ as the label
since we aim to compare the results with the results of the Hubbard-
Kondo model. Clearly, the spectral functions in the PI and in the
MI phase approach each other upon increasing ∆. The results are
obtained for nb = 6 bath sites in the impurity solver. The MBS of
the Mott gap ΓMG(0) is twice the indicated arrows.

at finite bath sites. For U = 15t, the gap value is about 5.5t
close to the transition temperature and rises to about 9.4t for
T → 0. Comparing Figs. 2(a) and 2(b) a decrease of the MBS
upon increasing U from 15t to 20t is observed. Such a de-
crease of the MBS in the Mott regime has also been observed
in Ref. [20].

To analyze the MBS ΓMG(T ) near T = 0 further, we de-
pict the spectral function as function of ω for various values
of the bare charge gap ∆ = U in the MI close to T = 0 and
in the PI close to T = TN in Fig. 3. We have used the bare
charge gap ∆ as the label since we aim to compare the results
with the results of the Hubbard-Kondo model in the next sec-
tion. Only the lower Hubbard band is shown in Fig. 3 because
the upper Hubbard band is its mirror image with respect to
ω = µ = U/2 due to electron-hole symmetry, which is per-
fectly realized in our numerical data. We indicated the shift of
the excitation peak closest to the chemical potential by an ar-
row defining half of the MBS, ΓMG(0)/2. The results are for
nb = 6 bath sites in the impurity solver. Fig. 3 reveals that the
spectral functions in the MI and in the PI approach each other
more and more upon increasing the bare charge gap ∆ = U .
Consequently, the MBS ΓMG(0) decreases as t/∆→ 0.

The MBS in the Hubbard model has already been observed
in previous work [18, 19] but not systematically studied. Re-
cently, its monotonic decrease in the Mott regime for U →∞
was noted in Ref. [20]. But so far neither a functional de-
pendence nor a physical interpretation has been given. The
microscopic understanding of this highly promising effect for
application in AF spintronics is thus still lacking.

In order to provide a quantitative description of the influ-
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FIG. 4. The magnetic blue-shift of the Mott gap ΓMG(T ) in units
of the hopping t at T = 0 is plotted vs. t/∆, where ∆ is the bare
charge gap. The results are obtained for nb = 6 bath sites in the
impurity problem. In the Hubbard-Kondo model we set the local
spin to S = 2 and the Hund coupling to JH = 0.15U .

ence of the hopping t and the bare charge gap ∆ onto the
MBS we plot ΓMG(0)/t vs. t/∆ in Fig. 4 for various combi-
nations of t and ∆. This demonstrates clearly that the MBS
in the Mott regime is proportional to the exchange coupling
J = 4t2/∆. Since the figure renders ΓMG(0) in units of t the
proportionality ΓMG(0) ∝ J implies a straight line as depicted
in red. It fits very well to the blue data for small values of t/∆
with a slope of 57.8 which is equivalent to ΓMG(0) ≈ 14.4J
underlining its magnetic origin. Thus, this effect is quite siz-
able and sets the scale for further contributions.

The MBS can also be linked to the decrease of the free en-
ergy when the system enters the MI phase. If such a decrease
did not occur the system would not display the phase transi-
tion to the ordered phase. The free-energy change below TN is
mainly due to the reduction of the internal energy, which can
be determined solely from the single-particle spectral func-
tion. Upon transition from the PI to the MI a redistribution of
the weight within the spectral function occurs which leads to
a large increase in the internal energy if it were not compen-
sated by a MBS. This is exemplarily illustrated in App. B and
corroborates that the MBS is a generic feature upon entering
an antiferromagnetically ordered phase.

III. HUBBARD-KONDO MODEL

We extend the analysis presented so far for the Hubbard
model to a model which includes localized spins so that it also
bears features of a Kondo system. Specifically, we consider
the Hubbard-Kondo model [42–44] given by

HHK = HH +HK (2a)

HK = −2JH

∑
i

~si · ~Si , (2b)

where HH is the Hubbard model Eq. (1). The Kondo term
HK couples the spin of the electron ~si ferromagnetically to the
local spin ~Si originating from a Hund’s coupling. We choose
the local spin quantum number to be S = 2 and the Hund
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FIG. 5. The same as Fig. 3, but for the Hubbard-Kondo model with
the local spin S = 2 and the Hund coupling JH = 0.15U . The
bare charge gap is given by ∆ = U + 4JH = 1.6U . The spectral
functions do not approach each other upon increasing U .

coupling to be JH = 0.15U . The bare charge gap is no longer
given by U alone but acquires a contribution from the Hund’s
coupling, ∆ = U + 4JH.

Fig. 5 depicts the local spectral functions as in Fig. 3 but
for the Hubbard-Kondo model. In contrast to data from the
Hubbard model, Fig. 5 shows that the spectral functions in the
PI and in the MI remain distinctly different even for large ∆
resulting in an enhanced MBS of the Mott gap ΓMG(0), see
the indicated arrows. This can clearly be associated to the
noticeably smaller bandwidth in the MI phase compared to
the PI phase, which is the fingerprint of the double-exchange
mechanism [45–48].

(a) antiferromagnetic

(b) ferromagnetic

FIG. 6. Illustration of the reduction of the effective hopping due to
the double-exchange mechanism. Due to the strong Hund coupling
only electrons with spin aligned with the local spin can occur. This
allows unrestricted hopping between sites with parallel spin orienta-
tion, see panel (b). But for antiparallel spin orientation no hopping is
possible, see panel (a).
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The double-exchange mechanism is well known for en-
hancing the mobility of an electron in a ferromagnetic state
since the 1950s, and it is responsible for ferromagnetism in
perovskite manganites. In an AF state, however, the double-
exchange mechanism strongly suppresses the effective hop-
ping between sites with antiparallel spin ordering.

The basic idea of the mechanism is illustrated in Fig. 6. A
hole added to the half-filled system propagates with an effec-
tive hopping which determines the bandwidth of the single-
particle spectral function. In the limit of large JH it is natural
to restrict the local Hilbert space such that the electron spin
s = 1/2 and the local spin S always form the maximum total
spin S + 1/2. This allows to derive the following relation for
the effective hopping between sites i and j [49]

teff
i,j

t
=
STi,j + 1/2

2S + 1
(−1)2S−ST

i,j+1/2 , (3)

where STi,j is the total bond spin construced from the spin at
site i and the spin at site j, i.e., from S+ 1/2 and S [50]. One
notes that there is always a hole either at site i or at site j. The
total bond spin takes the values STi,j = 1/2, 3/2, · · · , 2S +
1/2. For parallel spin ordering between sites i and j we have
STi,j = 2S + 1/2 which results in the effective hopping teff

i,j =
t. The PI phase is described by singlet bonds, i.e., bonds with
the total spin 0. Adding a hole to a singlet bond creates a bond
with the total spin STi,j = 1/2, which can be realized from the
commutation relation[

~S T
i,j · ~S T

i,j , cj,α

]
=

3

4
cj,α −

∑
β

cj,β~σα,β · ~S
T
i,j , (4)

where ~S T
i,j = ~si+ ~Si+~sj + ~Sj is the total bond spin operator,

and ~σ is a vector made of Pauli matrices. Such a hole prop-
agates with the effective hopping teff

i,j = t(−1)2S/(2S + 1)
according to Eq. (3). In the case of antiparallel spin ordering
between sites i and j, a pure hopping can never take place,
i.e., the hopping of the hole is always accompanied by the re-
duction of the local magnetic numbers from the absolute max-
imum values [49].

The above discussion explains the narrower bandwidth we
observe for the Hubbard-Kondo model in Fig. 5 in contrast to
the results for the Hubbard model in Fig. 3. One notes that
the effective hopping in the Hubbard model for both MI and
PI phases is the bare hopping t. More importantly, the above
discussion explains the narrower bandwidth we observe in the
MI phase in contrast to the PI phase in Fig. 5, which is the
origin of the enhanced MBS in the Hubbard-Kondo model.

The results for the MBS in the Hubbard-Kondo model at
T = 0 in units of t are included in Fig. 4. The qualitative be-
havior of the MBS in the Hubbard-Kondo model significantly
differs from those of the Hubbard model. A substantial offset
in the limit t/∆→ 0 is observed in the quantity ΓMG(0)/t. A
linear fit given by the gray line

ΓMG(0)

t
= C1 + 4C2

t

∆
(5)

with the constants C1 = 2.7 and C2 = 6.3 nicely agrees
with our data. Note that the exchange coupling is given by

J = 4t2/∆ such that we end with the fit

ΓMG(0) = C1t+ C2J . (6)

By plotting ΓMG(0)/t vs. t/∆ in Fig. 4 we can separate the
two different contributions to the MBS more clearly: one pro-
portional to the hopping t which appears as a constant term
and one proportional to the magnetic exchange J which ap-
pears as a linear term. The first contribution results from
changes in the effective hopping and we refer to it as the hop-
ping or the double-exchange contribution. The second con-
tribution results from the alternating magnetic field as in the
Hubbard model and we refer to it as the exchange contribu-
tion.

Our findings unfold the essential role that the double-
exchange mechanism can play in the future development of
AF spintronic: It induces a coupling between the magnetic
order and the charge gap as large as the hopping. The rela-
tion Eq. (6) is highly promising since there are several en-
tire classes of compounds which show the exchange and the
double-exchange effects. We leave a more detailed investi-
gation of the hopping and the exchange contributions of the
MBS to future research, and instead apply our approach to a
real material for the rest of this paper.

IV. APPLICATION TO α-MnTe

Now we apply the acquired understanding of the MBS in
the Hubbard-Kondo model to a real compound: α-MnTe. This
AF semiconductor displays a noticeable additional increase
of the optical gap below its Néel temperature TN ≈ 310 K.
To separate the MBS from other temperature dependent con-
tributions, which are continuous, the experimental band gap
is fitted in the paramagnetic regime T > TN by the empiri-
cal Varshni function [51] which allows one to extrapolate the
temperature dependence of the band gap in a paramagnetic
semiconductor down to zero temperature. The difference of
the actually measured gap to the extrapolated value quantifies
the MBS [30, 31]. Similar analyses were performed also for
other magnetic semiconductors [27–29, 52].

The magnetic order in α-MnTe consists of planes of Mn2+

ions forming triangular lattices in which spins are parallelly
ordered. These planes are stacked and the spins are oriented
antiparallel in adjacent planes generating AF order. Accord-
ing to Hund’s rule the total spin at the Mn2+ ions is S = 5/2
due to the half-filled d-shell. The dispersion of the collec-
tive magnons is well understood [32, 33, 53]. In contrast, the
knowledge of the electronic excitations is significantly less de-
veloped, and the understanding of its coupling to the magnetic
system is still in its infancy. Density-functional calculations
(DFT) [33, 54, 55] indicate that the conduction band in α-
MnTe is dominated by Mn 3d-contributions although the Mn
4s-orbital is also involved. Assuming scenario (ii) we neglect
the 4s-admixture and treat α-MnTe as a charge-transfer insu-
lator [16] where the optical gap g arises from promoting an
electron from the filled p-band of Te2− to the empty upper
Hubbard band d+ at Mn2+; cf. the panel for T1 in Fig. 7.
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FIG. 7. Sketch of the bands in α-MnTe comprising the p-bands at
Te2−and the lower (d−) and upper (d+) Hubbard bands of the 3d-
electrons at Mn2+ at three temperatures T1 > T2 > TN > T3, where
TN is the Néel temperature. The energy difference between the d−

and the d+ Hubbard bands defines the Mott gap and the energy dif-
ference between the p- and the d+-band defines the charge-transfer
gap g. The optical gap equals the charge-transfer gap. The Mott
gap experiences the magnetic blue-shift ΓMG(T3) = ∆d+ + ∆d−

while the charge-transfer gap experiences the magnetic blue-shift
ΓCTG(T3) = ∆d+, see main text.

Fig. 7 schematically depicts the relative change of bands
upon lowering the temperature T1 → T2 → T3. As the
temperature is decreased from T1 to T2 > TN the p- and the
d+-bands shift apart with the Mott gap remaining unchanged.
This increase of the charge-transfer gap g is induced by slight
structural changes and minute temperature effects in the para-
magnetic phase. This fraction of the change of the gap is con-
tinuous through the magnetic transition and thus captured by
the extrapolation with the Varshni function. For T3 < TN
an additional contribution ∆d+ to the gap arises due to the
MBS of the upper Hubbard band d+. In principle, the mag-
netic ordering could affect also the p-band, but this would be
an indirect effect and we thus assume it to be less relevant.
Consequently, to address the MBS in α-MnTe we focus on an
effective Hamiltonian describing the electrons in the 3d-shell
of the Mn2+ ions.

For a quantitative description, the established Heisenberg
model for the spins of the Mn2+ ions [32, 33] needs to be ex-
tended by the charge degrees of freedom. The full extension
would require to consider at least five d-bands from the Mn2+

ions plus three p-bands from the Te2− ions. This is by far
too complex for an explicit numerical treatment of the strong
interactions present at the Mn-sites. For this reason, we fol-
low the idea proposed in Ref. [30] and describe the itineracy
of each of the five d electrons in a one-band Hubbard model
while treating the other four d-electrons as localized forming
a spin S = 2. We stress that the itinerant electron is a repre-
sentative for all five electrons. We do not claim that the five
orbitals are different, but that for each electron in one of them
the other four act like a localized spin. In other words, we
make the approximation that the local Fock space of the Mn+2

3d-orbitals is restricted to the charge configurations N = 4,
5, and 6, so that we only need to take into account the charge
fluctuation in one effective local orbital which is degenerate
with respect to spin. This is well justified since we are in-
terested in the low-energy charge excitations, specifically, the
charge gap.

Hence, we consider a Hubbard-Kondo lattice model on

FIG. 8. (a) Illustration of the Hubbard-Kondo model (7) for the half-
filled 3d-shell of Mn2+-ions at two sites i and j. (b) Stacked trian-
gular layers with 1st, 2nd, 3rd, and 4th neighbor specified so that we
distinguish t1, t2, t3, t4 and J1, J2, J3, J4.

stacked triangular lattices, cf. Fig. 8,

H = −
∑
i,j

∑
σ=↑,↓

ti,j(c
†
j,σci,σ + H.c.) + U

∑
i

ni,↓ni,↑

−2JH

∑
i

~Si · ~si +
∑
i,j

Ji,j(~Si · ~sj + ~Sj · ~si + ~Si · ~Sj) (7)

where the ti,j are the hopping elements and the Ji,j the mag-
netic couplings, see Fig. 8(a). These effective magnetic cou-
plings Ji,j result from virtual excitations of the four d-orbitals,
that are treated as local, to the neighboring Mn sites.

The intersite couplings are limited to the four nearest neigh-
bors specified in Fig. 8(b). We denote the hopping and the
magnetic coupling of nth neighbor by tn and Jn. The mag-
netic couplings are taken from the measured magnon disper-
sion [33] to be J1 = 3.072 meV, J2 = 0.0272 meV, J3 = 0.4
meV, and J4 = 0.16 meV, matching also the observed Néel
temperature. The Hubbard interaction U ranges between ≈ 5
eV to ≈ 7 eV and the Hund coupling between ≈ 0.7 eV to
≈ 1.0 eV, based on estimates from atomic physics [30] and
the DFT [33, 54] calculations. We investigate the effect of U
and JH on the MBS in this parameter regime. The hopping
elements tn are determined such that they are consistent with
the intersite exchange couplings, i.e., Jn = 4t2n/∆ where ∆
is the bare charge gap U + 4JH. This is to guarantee that
the low-energy spin excitations of the Hamiltonian Eq. (7) is
described by the S = 5/2 Heisenberg model already estab-
lished for α-MnTe by inelastic neutron scattering measure-
ments [33]. The explicit values of the parameters are given in
App. C. It must be noted that the larger, dominant hoppings
t1 and t3 link sites with AF ordering. Hence we expect a no-
ticeable hopping contribution to the MBS to occur, stemming
from the double-exchange mechanism described in Sec. III.

The DMFT accurately accounts for the local interactions U
and JH. In the limit of infinite coordination number justifying
DMFT, the intersite interactions Jn are consistently treated by
static mean-fields [56]. Thus, the intersite magnetic interac-
tions are represented by

HMF = −
∑
i

(hloc
i Szi + hiti

i s
z
i ) (8)
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FIG. 9. (a) Theoretical results for the Mott gap and the local spin polarization m vs. T . (b) Theoretical and experimental [30, 31] results for
the MBS in α-MnTe as function of temperature. (c) MBS vs. the squared spin polarization m2 combining the theoretical results from (a) and
(b) for various values of U and JH for nb = 5.

where the effective magnetic fields

hloc
i = 2(J1 − 3J2 + 6J3 − J4)〈Szi + szi 〉 (9a)

hiti
i = 2(J1 − 3J2 + 6J3 − J4)〈Szi 〉 (9b)

act on the localized spin (hloc
i ) and on the itinerant spin (hiti

i ),
respectively. They need to be determined self-consistently.
For simplicity, we take the magnetization in z-direction al-
though a weak spin-orbit coupling orients it in x-direction
[33, 55]. But for the spin-isotropic model studied here this
does not matter.

The resulting Hamiltonian is solved using DMFT starting
from an initial guess for the self-energy and the local mag-
netizations 〈Szi 〉 and 〈szi 〉. These quantities are updated in
each DMFT loop until convergence is reached within some
tolerance, see App. A 2. This approach is well justified and
goes far beyond the previous two-site calculation [30] because
it properly treats the extended lattice, the dynamics of sin-
gle charges, and it allows us to study the temperature depen-
dence. Of course, more sophisticated calculations are con-
ceivable in the future to fix numerical values to higher accu-
racy [20, 57, 58], but our aim here is to elucidate the funda-
mental physics.

In Fig. 9(a) we plot the temperature dependence of the Mott
gap as obtained with nb = 5 and nb = 7 bath sites for
U = 5.5 eV and JH = 0.8 eV. The agreement of both data
sets underlines that the results do not depend significantly on
the number of bath sites. In addition, the local spin polar-
ization m = |〈Szi + szi 〉| is shown, coinciding for nb = 5
and nb = 7 and indicating a Néel temperature TN ≈ 380 K.
This value represents a classical estimate since the DMFT ap-
proach does not capture intersite fluctuations which are shown
[33] to reduce TN to ≈ 310 K in accordance with experiment
[53, 59, 60]. Hence, the effect of the neglected intersite fluc-
tuations on the gap appears to be about 6 meV (≈ 70 K).

The Mott gap remains almost independent on temperature
in the paramagnetic phase T ≥ 380 K in line with our findings
in the Hubbard model. This result supports the assumption in

Fig. 7 that for T > TN the Mott gap remains unchanged and
the increase of the charge-transfer gap g is essentially due to
a smooth relative shift of the p-band captured by the Varshni
fit. The antiferromagnetic ordering induces a MBS of the Mott
gap ΓMG(T ) of approximately 250 meV as T → 0. This is the
shift between the lower d− and the upper d+ Hubbard bands
in Fig. 7, i.e., ∆d+ + ∆d−. The MBS of the charge-transfer
gap ΓCTG(T ), which is the MBS measured in the experiment,
is given by ∆d+. Since we cannot calculate the individual
contributions ∆d± separately, we assume that they are shifted
symmetrically, i.e., ∆d+ = ∆d− typical for a half-filled Mott
insulator. This implies that the theoretical MBS of the charge-
transfer gap ΓCTG(T ) = ΓMG(T )/2 is about 120 meV at its
maximum.

Fig. 9(b) shows ΓCTG as function of T/TN. For all four
pairs of U and JH we find the same Néel temperature TN ≈
380 K which is to be expected since TN is determined from
the low-energy Heisenberg model defined by the intersite ex-
change couplings Jn which we kept fixed; for tables of the ex-
plicit parameters used, see App. C. But the Mott gap changes
significantly from ≈ 7 eV for U = 4.0 eV and JH = 0.8
eV to ≈ 11 eV for U = 7.0 eV and JH = 1.0 eV. Remark-
ably, there is hardly any change in the MBS despite this large
change in the Mott gap. This corroborates that the essential
parameters for the MBS are the exchange couplings and the
hopping elements as indicated by Eq. (6) above.

We also added the experimental results for the MBS to
Fig. 9(b) . The theoretical data agree nicely with the data of
Bossini et al. [30] for T ' 0.5TN. It is mentioned by Ferrer-
Roca et al. [31] that their data probably underestimates the
MBS between T ≈ 0.45TN and T ≈ 0.65TN. The results
of Bossini et al. deviate from theory below T ≈ 0.5TN where
the experimental data turn down in contrast to expectation and
the data set from Ref. [31]. The deviating downturn is likely
due to experimental reasons, e.g., sample quality and/or sta-
bility of the experimental conditions. In fact, due to the satu-
ration of the spin polarization at low temperatures we expect
the MBS also to saturate as is found by Ferrer-Roca et al. for
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T < 0.4TN. We emphasize that the very good agreement
between experiment and theory in Fig. 9(b) is achieved us-
ing generic parameters from literature for the Hubbard-Kondo
model without any fine-tuning in contrast to the approach in
Ref. [29]. This provides strong evidence that the observed
blue-shift upon ordering is the generic MBS of the advocated
Hubbard-Kondo lattice model.

Finally, Fig. 9(c) combines the calculated ΓCTG(T ) and the
local spin polarizationm(T ) eliminating the temperature. The
value of the gap at TN is fixed such that the MBS vanishes for
m2 → 0. The figure clearly shows that there is an almost lin-
ear relation between the squared local spin polarization m2

and the MBS, ΓCTG(T ) ∝ m2(T ), for various parameter
combinations of the local interactions U and JH. This be-
havior is in line with previous experimental findings [31] and
underlines that the MBS is a robust effect not depending on
details. Ref. [29] also finds a MBS ∝ m2, but the computa-
tion strongly depends on the chosen parameters since it orig-
inates from scenario (i), in which the magnetic order affects
the itinerant electrons only indirectly.

The MBS in Hubbard-Kondo models is governed by a con-
tribution from the hopping and a contribution from the inter-
site exchange interaction, see Eq. (6). We investigate this
point for α-MnTe as well by means of a plot analogous to
Fig. 4. In view of the numerous parameters relevant for α-
MnTe (four hopping elements, four exchange couplings, the
Hubbard interaction and the Hund coupling) a variation of in-
dividual parameters appears to be not practical. Hence, we
resort to a uniform scaling by a parameter λ according to

tn → tn(λ) = λtn (10a)

⇒ Jn → Jn(λ) = λ2Jn (10b)

leaving the local interactions U and JH unchanged. The plot

ΓCTG(T = 0)/λ vs. λ for U = 5.5 eV and JH = 0.8 eV
in Fig. 10 recreates the same kind of analytical dependence
as Fig. 4. Note that for λ < 2 we have λtn/∆ < 0.02 which
corresponds to the deep Mott regime. As expected, we find the
same qualitative behavior as in Fig. 4 described very well by a
linear fit. The offset at λ = 0 is the contribution proportional
to the hoppings due to the rescaled ΓCTG(0)/λ plotted. In the
same way, the slope results from contributions proportional
to the magnetic exchange couplings Jn(λ) ∝ λ2. The plot
in Fig. 10 again allows us to separate the two contributions
as the plot in Fig. 4 did for the Hubbard-Kondo model. The
nice linear behavior suggests a hopping contribution of about
76 meV and an exchange contribution of about 43 meV to the
MBS in α-MnTe. This large hopping contribution emphasizes
the important role of the double-exchange mechanism on the
MBS in systems with localized spins.

V. CONCLUSIONS

We established that the MBS in the Mott regime of the 3D
Hubbard model stems from the magnetic exchange coupling.
While the decrease of the MBS with increasing interaction U
had been observed before [20] its proportionality to the mag-
netic exchange J = 4t2/U is a new finding, which sets the
energy scale for further contributions.

Our key result relates to systems which involve localized
spins in addition to itinerant electrons. For the Hubbard-
Kondo model with a ferromagnetic Kondo coupling we
showed that there are two contributions to the MBS: one sim-
ilar to the MBS in the Hubbard model which is proportional
to the magnetic exchange, and another which is proportional
to the hopping. The latter stems from the double-exchange
mechanism which reduces the effective hopping between sites
with antiparallel spin ordering.

This finding opens up a route to applications of the MBS
since a plethora of heavily investigated systems consists of
itinerant electrons and localized spins, for instance the man-
ganites. Exemplarily, we elucidated the origin of the exper-
imentally established MBS in α-MnTe which is a promising
candidate for applications with AF order at room temperature.
We developed an extended Hubbard-Kondo lattice model for
α-MnTe. The MBS found in this model is in overall excellent
agreement with the experimental findings for α-MnTe.

Strong MBSs in magnetic semiconductors can play a ma-
jor role in spin-to-charge conversion on the femtosecond time
scale, which is the characteristic time scale of the hopping and
the intersite exchange interactions. Recent progress in the ma-
nipulation of magnons in antiferromagnets on ultrafast time
scales [24, 61] add to the relevance of a comprehensive un-
derstanding of the coupling of spin and charge dynamics [62].
A major outlook of our work consists in exploring the role of
dimensionality of a Mott system on the MBS. This is highly
relevant in view of both the massive present research activity
on 2D materials and the widely explored properties of low-
dimensional magnetic semiconductors. Hence, the demon-
strated MBS paves a promising route for future research, both
fundamental and applied.
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Appendix A: Theoretical Approach

1. General remarks

We use dynamic mean-field theory (DMFT) [3] which is
an established approach for strong local interactions and large
coordination number. The frequency dependent self-energy
allows us to describe paramagnetic Mott insulators, not ac-
cessible by static mean-field theories. We use the real-space
DMFT (RDMFT) method [63–65] as implemented by one of
us [66] and applied successfully to various models [67–69].
We note that for the bulk properties it is not necessary to use
the real-space extension of DMFT. But in view of future anal-
ysis of the spatial dependence in thin films as in Ref. [30] we
opt for RDMFT for comparability.

Exact diagonalization (ED) is employed as impurity solver
[41] providing direct access to dynamics at real frequencies
and the quantum mechanical treatment of localized spins go-
ing beyond previous classical approximations based on quan-
tum Monte Carlo solver [44, 70, 71]. The local spectral func-
tion A(ω) results from the imaginary part of the local Green’s
function, averaged over both sublattice sites. We compute the
Mott gap from the positions of the peaks in the spectral func-
tion. Although the spectral function for finite number of bath
sites nb consists of a series of sharp peaks approximating the
continuous function, the Mott gap is found accurate and is
used to benchmark the results of other methods [19]. We use
the chemical potential µ to satisfy the condition of half-filling.
The lattice system is approximated by clusters of L × L × L
sites with L = 10. We checked for selected temperatures
close to the transition temperature that the results remain the
same for L = 20.

2. Dynamical mean-field theory of the Hubbard-Kondo model

After the mean-field decoupling of the intersite magnetic
interactions shown in (8) the Hamiltonian from (7) reads

H =−
∑
i,j

∑
σ

tj,i

(
c†j,σci,σ + H.c.

)
−
∑
i

(hiti
i s

z
i + µni)

+ U
∑
i

ni,↓ni,↑−2JH
∑
i

~Si · ~si −
∑
i

hloc
i Szi (A1)

with the effective magnetic fields

hloc
i = 2(J1 − 3J2 + 6J3 − J4)〈Szi + szi 〉, (A2a)

hiti
i = 2(J1 − 3J2 + 6J3 − J4)〈Szi 〉 (A2b)

acting on the localized spin ~Si and on the spin of the itiner-
ant electrons ~si, respectively, at the lattice site i. We added a
chemical potential term µ to the Hamiltonian (A1) to control
the electron density ni := ni,↓ + ni,↑ in the system keeping
it at half filling. In the derivation of Eq. (A2) we consider
ferromagnetic order within the triangular layers and antifer-
romagnetic order between them. For simplicity, the magnetic
order is taken to be in the ẑ direction in spin space, but the
choice of direction does not matter since we consider a fully

spin isotropic model. The treatment of the weak anisotropy
stemming from a spin-orbit coupling [33, 55] is left to future
research. The effective magnetic fields in Eq. (A2) depend on
the local spin polarizations 〈Szi 〉 and 〈szi 〉 and need to be de-
termined self-consistently in the course of the iterations of the
RDMFT.

Essentially, we use the RDMFT implementation of Ref.
[66] for SU(2) systems with a generalization of the Ander-
son impurity model to an Anderson-Kondo impurity model
which includes the additional local degrees of freedom, here
the localized spin in Eq. (A1). Note that we treat the spin
fully quantum mechanically. We also updated the implemen-
tation of Ref. [66] such that some local expectation values are
computed during the RDMFT loop so that the mean-fields can
be modified iteratively. In the case of the Hamiltonian (A1)
these local expectation values are the spin polarizations 〈szi 〉
and 〈Szi 〉, needed for the calculations of the effective magnetic
fields Eq. (A2). We stress that the local Green’s function, the
self-energy, and the dynamical Weiss field are all diagonal in
spin space as the Hamiltonian Eq. (A1) is diagonal in Sz . This
simplifies the general formalism of Ref. [66].

The terms in the first line of Eq. (A1) describe the non-
interacting parts of the itinerant electrons from which the non-
interacting lattice Green’s function is constructed. The second
line in Eq. (A1) contains the Hubbard interaction between the
itinerant electrons, the Hund coupling between the spin of the
itinerant electron and the localized spin S = 2, and the effec-
tive magnetic field at the localized spin. They enter the calcu-
lation in the local impurity problem. The RDMFT loop starts
with an initial guess for the self-energy matrix Σ(iωn) and the
local spin polarizations 〈szi 〉 and 〈Szi 〉. The real-space lattice
Green’s function is calculated according to Dyson’s equation

G(iωn) = [iωn1−H0 −Σ(iωn)]
−1
, (A3)

where H0 is the matrix representation of the non-interacting
terms in the first line of Eq. (A1). To address the local problem
at the lattice site iwe use the Anderson-Kondo impurity model
[72]

Hi = −µni − h
iti
i s

z
i + Uni,↓ni,↑ − h

loc
i Szi − 2JH

~Si · ~si

+

nb∑
`=1

∑
σ

εi`a
†
`,σa`,σ +

nb∑
`=1

∑
σ

(
a†`,σV

i
`,σci,σ + H.c.

)
(A4)

where a†`,σ and a`,σ are the fermionic creation and annihila-
tion operators at the bath site ` with the spin σ =↑, ↓. The
bath sites in Eq. (A4) approximate the effect of the surround-
ing sites in the lattice [3]. The bath parameters εi` and V i`,σ
are determined by fitting the dynamical Weiss field [41, 66].
The self-energy as well as the local spin polarizations 〈szi 〉 and
〈Szi 〉 are calculated using ED of the Anderson-Kondo impu-
rity model (A4). These quantities are employed for the next
RDMFT iteration loop.

Since the model is symmetric with respect to a combined
swap of the sublattice and the spin orientations, we only need
to set up the impurity model (A4) for one representative site.
In this sense, the lattice solutions are homogeneous. Hence,
one does not need to fully invert the matrix in Eq. (A3) be-
cause only the two columns for the two spin orientations at
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the representative site are needed [66]. This enables us to treat
very large system sizes in Eq. (A3) so that finite-size correc-
tions are completely negligible.

Appendix B: Internal energy and magnetic blue-shift

The internal energy of a general interacting fermionic sys-
tem described by the Hamiltonian

H = H0 +W =
∑
i,j

hi,jc
†
i cj +

1

2

∑
i,j,k,l

Wi,j,k,lc
†
i c
†
jckcl ,

(B1)
can be expressed as [73]

E := 〈H〉 =
1

2

∑
i,j

∫ +∞

−∞
dωAi,j(ω)f(ω)[ωδi,j + hi,j ] ,

(B2)
where i and j specify single-particle quantum numbers,
Ai,j(ω) is the spectral function of the single-particle Green’s
function, and f(ω) is Fermi’s occupation function. Eq. (B2)
shows that the internal energy can be determined solely from
the single-particle spectral function. The first contribution in
Eq. (B2) describes 〈H0〉/2 + 〈W 〉 while the second contribu-
tion equals half the kinetic energy, 〈H0〉/2.

The Mott gap separating the lower and the upper Hubbard
bands is typically much larger than the Néel temperature TN.
For temperatures T / TN this essentially restricts the integra-
tion in Eq. (B2) to only the lower Hubbard band (LHB). Then,
the first contribution in Eq. (B2) can be simplified to

ε1 =
E1

N
=

∫
LHB

ωA(ω)dω , (B3)

where N is the number of lattice sites and we used the trans-
lational symmetry of the spin-averaged local spectral function
A(ω), which we plotted in Fig. 1.

In order to see how the energy in Eq. (B3) is distributed
over frequency we consider the partial energy

I(ω) =

∫ ω

−∞
ω′A(ω′)dω′ , (B4)

which equals ε1 if ω is large enough to cover the whole LHB.
In Fig. 11 we plot I(ω) for the 3D Hubbard model at U = 15t
and T = 0.2t in the MI and in the PI as well as in the MI with-
out any MBS of the local spectral function. The results are
obtained using nb = 6 bath sites in the ED impurity solver.
Fig. 11 clearly shows that upon entering the magnetically or-
dered phase from the paramagnetic phase a redistribution of
the weight within the spectral function occurs which leads to
a large increase in the internal energy if it is not compensated
by a MBS. Such a redistribution has been observed also in
Ref. [18], both experimentally and theoretically.

For the Hubbard model H = Ht + HU with the nearest-
neighbor hopping term Ht and the Hubbard interaction HU

we plot the internal energy 〈Ht + HU 〉 per lattice site in Fig.
12 forU = 15t and nb = 6. We include also 〈Ht/2+HU 〉 and

FIG. 11. The partial energy I(ω) defined in Eq. (B4) versus fre-
quency ω changing over the lower Hubbard band for the 3D Hubbard
model for U = 15t and T = 0.2t in the MI (dark blue) and in the
PI (red) as well as in the MI without MBS (light blue). The vertical
dashed line at U/2 = 7.5t shows the Fermi energy. The number of
bath sites is nb = 6 in the ED impurity solver.

〈Ht/2〉 corresponding to the first and the second contribution
in Eq. (B2), respectively. We see that 〈Ht/2 + HU 〉 remains
close to zero and the reduction of the internal energy below
TN is mainly due to 〈Ht/2〉. Without MBS the contribution
〈Ht/2 + HU 〉 would increase substantially in the MI phase,
see Fig. 11. This shows that the MBS is crucial to achieve a
decrease of the internal energy which is the prerequisite for
the phase transition into the ordered phase to occur.

Appendix C: Model parameters for α-MnTe

We fixed the intersite exchange interactions in α-MnTe
according to the value from Ref. [33]: J1 = 3.072 meV,
J2 = 0.0272 meV, J3 = 0.4 meV, and J4 = 0.16 meV. The
hopping parameters corresponding to the different sets of the
Hubbard interaction U and the Hund coupling JH are calcu-
lated from the relation

Jn = 4t2n/∆ (C1)

with ∆ = U + 4JH. They are given in Table I for future
convenient use.

Expressing energies in units of t1, as used in the DMFT
calculations, one has the hopping parameters

tn = t1
√
Jn/J1 (C2)

independent of the choice of U and JH. They are given by
t2 = 0.0941t1, t3 = 0.3608t1, and t4 = 0.2282t1. But the
intersite exchange couplings Jn in units of t1 depend on U
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FIG. 12. The internal energy 〈Ht+HU 〉 and the individual contribu-
tions 〈Ht/2+HU 〉 and 〈Ht/2〉 of the Hubbard modelH = Ht+HU

per lattice site versus the temperature T for the Hubbard interaction
U = 15t and nb = 6 bath sites in the ED impurity solver.

and JH. Table II provides Jn, U , and JH in units of t1 corre-
sponding to the different parameter sets used in Table I.

(U, JH) [eV] t1 [meV] t2 [meV] t3 [meV] t4 [meV]
(7.0, 1.0) 91.91 8.649 33.16 20.97
(7.0, 0.7) 86.75 8.163 31.30 19.80
(5.5, 0.8) 81.74 7.692 29.49 18.65
(4.0, 0.8) 74.36 6.997 26.83 16.97

TABLE I. The hopping parameters tn in α-MnTe according to Eq.
(C1) for the various sets of Hubbard interactionU and Hund coupling
JH. The hopping parameters are in units of meV and U and JH in
units of eV. Their subscripts refer to the numbers in Fig. 8(b).

(U, JH) J1[10−2] J2[10−2] J3[10−2] J4[10−2]
(76.16, 10.88) 3.342 0.02959 0.4352 0.1741
(80.69, 8.07) 3.541 0.03135 0.4611 0.1844
(67.29, 9.787) 3.758 0.03328 0.4894 0.1957
(53.79, 10.76) 4.131 0.03658 0.5379 0.2152

TABLE II. The intersite exchange couplings Jn, the Hubbard inter-
action U , and the Hund coupling JH in units of t1. The rows corre-
spond to the different parameter sets used in Table I.


	Double-Exchange Enhanced Magnetic Blue-Shift of Mott Gaps
	Abstract
	I Introduction
	II The three-dimensional Hubbard model
	III Hubbard-Kondo model
	IV Application to -MnTe
	V Conclusions
	 Acknowledgments
	 References
	A Theoretical Approach
	1 General remarks
	2 Dynamical mean-field theory of the Hubbard-Kondo model

	B Internal energy and magnetic blue-shift
	C Model parameters for -MnTe


