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Scattering phenomena between charged particles and highly excited Rydberg atoms are
of critical importance in many processes in plasma physics and astrophysics. While a
Maxwell-Boltzmann (MB) energy distribution for the charged particles is often assumed
for calculations of collisional rate coefficients, in this contribution we relax this assump-
tion and use two different energy distributions, a bimodal MB distribution and a κ-
distribution. Both variants share a high-energy tails occurring with higher probability
than the corresponding MB distribution. The high energy tail may significantly affect
rate coefficients for various processes. We focus the analysis to specific situations by
showing the dependence of the rate coefficients on the principal quantum number of
hydrogen atoms in n-changing collisions with electrons in the excitation and ionization
channels and in a temperature range relevant to the divertor region of a tokamak device.
We finally discuss the implications for diagnostics of laboratory plasmas.

1. Introduction

Collisions of electrons and ions with neutral atoms are relevant in studies of stellar at-
mospheres (Mashonkina 1996), radio emission in recombination processes of H-II clouds,
primordial cosmological recombination of hydrogen (Chluba et al. 2010), and plasma
fusion (Janev et al. 1987, 2003). Initial studies have focused on scattering and excitation
of ground state or low-lying states, in particular for hydrogen atoms. More challenging
is the extension to high-lying Rydberg states, for which ab initio quantum calculations
become prohibitively untenable. This results in the use of various approximation schemes
with unavoidable systematic errors which at times can be, in some observable quantities,
of order 100 % (Rolfes et al. 1993; Nagesha & MacAdam 2003; Przybilla & Butler 2004;
Vrinceanu et al. 2014).

Among the various assumptions in these models, the fact that colliding particles may
not share energies according to a MB probability distribution, as far as we know, has never
been systematically scrutinized in the context of plasma fusion, apart from the possible
impact in terms of nuclear fusion reactivities (Onofrio 2018). This is at variance with
the astrophysical plasmas for which deviations from MB have been discussed (Nicholls
2012, 2013; Storey & Sochi 2014, 2015; Draine & Kreisch 2018). Deviations from the
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MB distributions are expected in a tokamak-confined plasma both in the Scrape-Off
Layer (SOL), and in the divertor region, due to the lower densities and temperatures
experienced by electrons and ions with respect to the core confinement region. The lowest
density in these regions (1013 − 1014 cm−3) implies that many-body dynamics closer to
the collisionless regime, and therefore there can be deviations from MB due to lack of
thermal equilibration. Moreover, Edge Localized Modes (ELMs) in the SOL region can
suddenly release suprathermal particles spoiling a pre-existing MB distribution.

In this work, we make a quantitative analysis of the electron-Rydberg hydrogen n-
changing excitation and ionization processes with non-MB distributions, with n the
principal quantum number. The rate coefficient for generic collisional processes can be
written as

kif = 〈vσif 〉 =
∫

f(v) v σif (v) dv =

√

2

m

∫

P (E)E1/2σif (E) dE, (1.1)

where σ is the cross section for the given process, f(v) is the probability distribution of
the velocities of the projectile particles, and P (E) is the corresponding probability energy
distribution. The goal is to evaluate changes in the rate coefficients when distributions
f(v) and P (E) in (1.1) deviate from MB.

Deviations from a MB distribution are investigated within two classes, a mixture of
two MB distributions at different temperatures, and the so-called κ-distribution. These
two examples of non-Boltzmann distributions have in common qualitative features, such
as the presence of a substantial high-energy tail, and it is therefore interesting to study
their quantitative impact with respect to a MB distribution for instance in collisions
where the particles share the same low-energy distribution, or total internal energy.

The range of energies and densities is chosen in order to characterize plasmas around
the scrape-off layer of a tokamak machine and the divertor region, with electron densities,
ρe ∼ 1013 cm−3 and energies, E ∼ 0.5 − 20 eV (Anderson et al. 2002). We describe in
detail the two non-MB distributions in sections 2, and then proceed to discuss the results
for excitation and ionization of hydrogen atoms of high n in sections 3 and 4, respectively.
In the concluding section, we relate the results to the atomic physics in the tokamak
divertor region.

2. Non-Maxwellian energy distributions

We have chosen energy distributions differing from MB having in mind examples
already available in various physical contexts which possess pronounced, “hard”, high-
energy tails. This feature can sensibly change the rate coefficients for processes with
energy dependent cross-sections. In general, we expect formation of distributions with
high-energy tail whenever there is an energy inflow into the system which is large enough
to not be dissipated into all the modes during the typical relaxation time scales in the
system (Livadiotis & McComas 2011; Livadiotis 2018).

The first example is provided by a mixture of two Maxwell-Boltzmann distributions
(bMB) with different inverse temperatures β1 = 1/(kBT1) and β2 = 1/(kBT2)

PbMB(E) = 2

√

E

π

[

p1β
3/2
1 exp(−β1E) + p2β

3/2
2 exp(−β2E)

]

, (2.1)

where p1 and p2 are the statistical weights of the two distributions, i.e. the probability
that a given particle will belong to the distribution with β1 or β2 (where we assume,
for instance, β1 > β2), respectively. Since p1 + p2 = 1, the probability distribution is
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Figure 1. Absolute (top panels) and relative (bottom panels) comparison of bMB and
κ-distributions to MB distributions. The solid lines in the top panels represent the limiting
cases for the MB distributions, i. e. p2 = 0, and κ → ∞ for the κ-distributions. (a) bMB
distributions with increasing weight p2 of the high-temperature component, and T2 = 10 T1. (b)
κ-distributions for η = 1/2 have maxima at 〈E〉 = 1

2
kBT , indicated by vertical dashed lines. (c)

κ-distributions for η = −3/2 have average energy given by 〈E〉 = 3

2
kBT , indicated by vertical

dashed lines. The bottom panels (d-f) show more clearly the relative deviations from a MB
energy distribution for the corresponding top panels, especially in the high-energy tails. Notice
that the κ-distributions for η = 1/2 resemble more closely the bMB distributions, compared
to the corresponding κ-distributions for η = −3/2. In the latter, the deviations from a MB
distribution at high energy are less pronounced, while significant deviations instead occur at
low energy. The case of η = 0, not depicted for graphical reasons, has a behavior close to the
η = 1/2 case.

characterized by three independent parameters, β1, β2 and either one of p1 or p2. Having
in mind cases in which the high-temperature component is not dominant, we choose p2
such that in the p2 = 0 case, the MB distribution is recovered at β1.

Such distributions appear in fusion plasma for instance after ion cyclotron resonance
heating, as discussed in Bhatnagar (1993). The neutral hydrogen flux energy distribution
was measured, during heating, to contain a high-energy MB tail with a temperature of
48 keV on top of the pre-existing MB distribution at a temperature of 3 keV. Another
example is provided by temperature anisotropy driven instabilities in the solar wind,
for which the velocity distribution of the involved particles is adequately fitted by
bMB distributions (Klein & Howes 2015; Yoon 2017; Klein et al. 2018). Shocks and
winds affect the electron velocity distribution in collisionally-ionized plasmas, producing
low-energy electrons with power-law tails (Hahn & Savin 2015). The rate coefficients
corresponding to these bMB distributions are linear combinations of MB rate coefficients
for temperatures T1 and T2, with weights given by p1 and p2.

More intriguing is the case of the κ-distributions. These are generalizations of
Lorentzian distributions which were first introduced for applications in space plasma
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physics (Vasyliunas 1968). The characterization of these κ-distributions requires two
parameters determining the shape and the corresponding temperature that can be
associated with a probability distribution in a sense that is explained below.

The energy probability density is defined by

Pκ,η(E) = 2

√

E

π
β3/2 C(κ, η)

(

1 + βE
κ+η

)κ+1 (2.2)

where C(κ, η) = Γ (κ + 1)/[Γ (κ − 1/2)(κ + η)3/2], κ > 3/2 and η > −κ. The MB
distribution is recovered as κ → ∞. According to a semiqualitative analysis presented
in Livadiotis (2017), see in particular figure 3, any distribution with κ > 20 can be well
approximated with an equilibrium MB distribution, while typical values for genuine κ-
distributions out of thermal equilibrium require κ in the range between about 2 and 10.
Our choice of κ-parameters in the following considerations is based on this criterion.

Notice that we have introduced a parameter η which allows to treat various κ-
distributions differing in their average energy content. Indeed, the κ-distribution has
a maximum at energy Emax = (κ + η)/[(1 + 2κ)β] and an average energy 〈E〉 =
3(κ+η)/[(2κ−3)β]. This allows for various interpretations of the temperature associated
with a κ-distribution. For example, by setting η = 1/2, the distribution peaks at
Emax = 1/(2β) = kBT/2 independently of κ and therefore in practical applications
its temperature can be derived as T = 2Emax/kB. For η = −3/2, the average energy
〈E〉 is independent of κ, and temperature can be obtained as T = 2〈E〉/3kB. Another
interesting case is η = 0 for which the κ-distribution of velocities has a κ-independent
maximum corresponding to the most probable velocity vmax =

√

2kBT/m (see Appendix
A for details). While from an operative standpoint, the values of η and β can be extracted
by looking at the behaviour around the peak of the distribution, the value of κ can be
obtained by fitting the high-energy tail.

Figure 1 illustrates the main features of bMB and κ-distributions. They all have only
one maximum and exhibit strong tails at large energies, particularly manifest in the
lower plots, showing the relative difference from the corresponding MB distribution. For
η = 1/2, the maximum of the distribution is at the same position, showing a significant
fraction of particles with higher energy, as compared to MB distributions. At the other
extreme, for η = −3/2, the average energy is the same for various values of κ, pushing a
large number of particles towards energies lower than what would be expected for a MB
distribution, thereby counterbalancing the still significant population in the high energy
tail.

3. Electron-Rydberg atom excitation rate coefficients

Rydberg atom excitations due to electron scattering have been studied with different
techniques and in various physical contexts, ranging from cold atomic plasmas in the lab-
oratory (Rolfes et al. 1993; Nagesha & MacAdam 2003) to the primordial cosmological
recombination (Chluba et al. 2010). Since the pioneering experiment of Frank and Hertz,
excitation by electron bombardment has been studied extensively for low-lying atomic
states. However, there has been much more limited success, in terms of overall accuracy,
in the case of Rydberg atomic states. This is not surprising because there is a vast gap
between the case of low n, for which exact quantum mechanical computations are still
feasible, and the case of high n for which, based on the correspondence principle, Classical
Trajectory Monte Carlo (CTMC) simulations are adequate to describe the processes.
More specifically, CTMC calculations (Pohl et al. 2008) demonstrated that while previous
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rate coefficients obtained by Mansbach and Keck (Mansbach & Keck 1969) are correct
for large energy transfers, significant corrections, singular in 1/∆E, have to be introduced
for the proper description of collisions at small energy transfer.

For collisional excitation, the proposed rate formula is (Pohl et al. 2008)

kif = k0ǫ
3/2
f

[

22

(ǫi + 0.9)7/3
+

9/2

ǫ
5/2
i ∆ǫ4/3

]

eǫf−ǫi , (3.1)

where k0 = βe4/
√
mR (k0 expressed in cm3/s in the cgs system with the electric charge

in Gaussian units), ǫi = βEi, ǫf = βEf , with Ei = R/ni
2, Ef = R/nf

2 the absolute
values of the initial and final energies, R the Rydberg constant, and ∆ǫ = β(Ef − Ei).

Equation (3.1) does not describe correctly the β → 0 limit, because it has a power-
like βs behavior as opposed to the much slower log(β) dependence expected by the
Born approximation. This suggests to incorporate the expected Born-like behavior in the
classical formula (3.1) to adequately describe the collision rate coefficients over the whole
range of temperatures. By replacing the exponential factor exp(ǫf − ǫi) in (3.1) with the
“quantum factor” ∆ǫ Γ (0, ∆ǫ), where we have introduced the incomplete gamma function
as

Γ (0, ∆ǫ) =

∫ +∞

∆ǫ

e−x

x
dx, (3.2)

we obtain an expression for the rate coefficient that has the correct behavior at both low
and high temperatures, and maintains its validity even at large n. Moreover, the formula
may be extended to low n by introducing a simple fitting factor that is in the range
of unity uniformly across all parameters, and that can be found by direct comparison
with the accurate R-matrix results of Pryzbilla and Butler, for transitions between low
n (Przybilla & Butler 2004).

The resulting expression is (Vrinceanu et al. 2014)

kif = k0

(

ǫf
ǫi

)3/2
[

22

(ǫi + 0.9)7/3
+

9/2

ǫ
5/2
i ∆ǫ4/3

](

3.5 + 0.18n2
f

1 + 1/ǫ
5/2
i

)

∆ǫ Γ (0, ∆ǫ). (3.3)

In Vrinceanu et al. (2014), a comparison between this interpolating formula and many
analytical models valid at low n is carried out for various transitions and in a temperature
range 2, 500 < T < 250, 000 K. Although both plots and tables in Vrinceanu et al. (2014)
show disagreement between various models even by a factor two in some cases, it is still
worth to explore the effect of bMB and κ-distributions within the same model especially
considering that the cross section is quite sensitive to the details of the high-energy
population.

The evaluation of the rate coefficients for the bMB distribution is easily expressed

as k
(bMB)
if = p1k

(1)
if + p2k

(2)
if , denoting with k

(1)
if and k

(2)
if the rate coefficients for MB

probability distributions at β1 and β2. In figure 2 (left), we plot the rate coefficients for
electron-hydrogen scattering versus temperature for the bMB distribution with different
weights, all normalized to the analogous rate coefficients for a single MB distribution
without the high-temperature component (p2 = 0).

The evaluation of the rate coefficients for the κ-distribution is considerably more
involved, requiring extensive CTMC simulations similar to the ones carried out in
Pohl et al. (2008), but starting from κ-distributed configurations. The initial positions
and velocities for the Rydberg electrons are generated according to a microcanonical
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Figure 2. Rate coefficients for H(n = 10 → n′ = 11) Rydberg excitation as a function of
temperature, in the 500-5000 K range, for bMB distribution with different weights for the
two components and T2 = 10T1 (left) and for κ distributions with various κ parameters
and η = 0 (right). Rate coefficients are scaled by the corresponding MB rates, obtained for
p2 = 0 for the bMB distribution, and κ → ∞ for the κ-distribution. Notice the suppression
of the rate coefficient for bMB occurring at high temperature with progressively increasing
high-temperature (T2) component, as the high-energy tail of this component becomes ineffective
for the transition due to the 1/E dependence of the collision cross-section.

distribution corresponding to the H(n = 10) energy level, and a continuous distribution
of angular momenta. The initial conditions for the incoming electrons are sampled with
random impact parameters and velocities from a κ-distribution in (2.2) with η = 0. The
temperature can then be related to the most probable velocity, independent of κ, thereby
allowing for a fair comparison between the different κ distributions.

To obtain κ-distributed velocities, it is most straightforward to first sample a random
number u from a Fisher-Snedecor F-distribution (Abramowitz & Stegun 1972), u ∼
F (3, 2κ − 1), and then assign the velocity as v = vT

√

3u(κ+ η)/(2κ− 1), with vT =
√

2kBT/m. Most numerical packages have routines for dealing with the F-distribution
(Press et al. 1992). Alternatively, κ-distributed random numbers can be obtained by
inverting the cumulative distribution function, as detailed in Appendix A.

In figure 2 (right), results of the CTMC simulations are also shown, each simulation
consisting of 4 × 105 complete trajectories, with random initial conditions generated
according with the rules explained above, classified according to the observed outcome,
and repeated for each combination of parameters κ and temperature T . As κ increases,
the probability distribution of velocities for the electrons approaches a MB distribution
and the rate coefficients scaled by the corresponding MB values, approach unity.

The most pronounced deviation is observed at low temperatures, when the rate
coefficients can be as much as 2.5 times larger than the MB ones. In this specific example,
the 10 → 11 transition for hydrogen corresponds to 28.3 meV, i.e. about 280 K. In order
to remain in a scattering state, the impinging electron producing the transition should
have an energy much larger than the excited electron. This implies that MB-distributed
electrons in the low temperature range around 500 K are disadvantaged with respect
to κ-distributed electrons with a larger high-energy population. As the temperature
is increased, this disadvantage is progressively compensated. In the case of a bMB
distribution as in Fig. 2 (left), the use of a high temperature component progressively
results in even lower rate coefficients with respect to a single MB distribution as the
temperature is increased. This result is reasonable considering that the collision cross
sections decrease as 1/E, and therefore too large energies for the impinging electrons are
ineffective in causing the atomic transitions.
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Figure 3. Ionization rate coefficients, normalized to the corresponding MB rates, for various
bMB distributions with T2 = 10 T1 (left), and for various κ-distributions (right). The dots in
the right plot originate from CTMC simulations, including their statistical errors, while the
lines are from the numerical integration of (1.1) with the model ionization cross section of (4.1)
taken from the Rost and Pattard (RP) parameterization. The parameters used are: n = 10,
η = 0, α = 1.127, and EM = 2In, where In is the binding energy of the Rydberg atom in state
with quantum number n. The RP rate coefficients for the κ distributions strongly depend on the
EM/In ratio since a resonance occurring at higher energies has better overlap with the enhanced
high-energy tail of the κ distribution. For instance, by choosing EM = 5In we obtain RP rate
coefficients larger by a factor 1.8 with respect to the EM = 2In case for the κ = 2 distribution.

4. Electron-Rydberg atom ionization rate coefficients

We now analyze the case of ionization of the Rydberg atoms, employing the generalized
ionization cross sections for Rydberg atoms introduced in Rost & Pattard (1997)

σ(E) = (1 + 1/α)α+1 EMEα

(E + EM/α)α+1
σM , (4.1)

where E is the excess energy, i.e. the difference between the absolute energy and the
ionization threshold energy, and α is the Wannier threshold exponent (Wannier 1953)
characteristic of each target-projectile system at low energies (α = 1.127 for the electron-
hydrogen collision). This parameterization of the cross section has the proper low energy
Wannier threshold behavior, σ(E → 0) ∼ Eα, the expected behavior σ ∼ 1/E for
E → ∞, and peaks for E = EM such that σ(EM ) = σM . Notice that the 1/E asymptotic
behavior is reminiscent of a classical approximation, and therefore does not account for
the logarithmic quantum corrections, as would be expected in the Born approximation.

In figure 3 (left) we plot the ratio between the rate coefficient for a mixture of bMB
distribution with different values for p2, and the corresponding rate coefficient for p2 =
0 versus temperature. The calculations were repeated for κ-distributions with η = 0
and the outcome is depicted in figure (3) (right). In addition to the analysis based on
Rost & Pattard (1997), we have also evaluated the rate coefficients based on the same
CTMC simulations performed for the excitation analysis. We have chosen an energy for
the peak of the cross section EM = 2In as suggested by numerical simulations (Vrinceanu
2005). This is also in line with various parameterization of experimental data showing
that the peak of the ionization cross-section is of the order of 5-10 times the ionization
energy for low n, thereafter approaching a value of 2-3 times the ionization energy at
higher n quantum numbers (Janev et al. 1987).

The agreement between the simulations and the analytical interpolation based on
Rost & Pattard (1997) is remarkably good, and yet not completely surprising because
they both share the classical behavior at high energy, omitting Born-like logarithmic
corrections to the cross-section. There are large (up to an order of magnitude at the
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Figure 4. Evidence for the suppression of the ionization rate coefficients with the κ
distributions. The rate coefficients are normalized to the corresponding MB rates, for η = 1/2
(left) and η = −3/2 (right), for various values of κ.

lowest κ) deviations at low temperature, in a range of interest for plasma diagnostics in
the scrape-off layer region and in the divertor region of a tokamak.

The effect of a more pronounced high-energy tail becomes minimal at high temperature,
as expected for phenomena in which a cross section with a resonant behavior appears.
However, it is worth to remark that we expect suppression of the rate coefficient in
some region of the parameter space for both bMB and κ distributions. This behavior is
emphasized by a side to side comparison for two κ distributions, corresponding to different
η parameters, in figure 4. Notice that for η = 1/2, a slight suppression occurs, in the
discussed temperature range, only for the κ = 2 case and at the highest temperature. In
the case of η = −3/2 instead the suppression is visible for all values of κ, reaching almost
a factor of two for κ = 2 at about 2,000 K. The suppression is not monotonic, an effect
already observed in figure 5 in Nicholls (2012). This effect is easy to explain in terms of
mismatching between the resonance of the cross section of the process and the energy
probability distribution. This is more evident in the case of η = −3/2 and small κ, as the
energy probability distribution has a large excess at both low and high energies, as visible
in panels (c) and (f) of figure 1, i.e. far from the resonance condition for the cross-section.
The same suppression is also present in bMB distributions, as barely evident in figure 3
a. In appendix B, we discuss an analytical model based on a convenient parameterization
of the resonant cross-section, leading to a simple formula showing enhancement and
suppression of the corresponding rate coefficient in the opposite temperature limits.

5. Conclusions

We have discussed the sensitivity of the rate coefficients for excitation and ionization
in electron-atom collisions to deviations from Maxwell-Boltzmann distributions. The
outcome indicates that the rate coefficients may differ significantly from those derived
from MB distributions especially at low temperatures, in the range of 1,000 K. The
results readily translate into rate coefficients for proton-atom collisions, since there is
an approximate scaling with the square mass ratio in the excitation case, and analogous
parameterization of the cross-section with the Rost and Pattard approach, using different
Wannier exponents, for the ionization case.

Our discussion is of interest to tokamak physics for two main reasons. First, an accurate
knowledge of the kinetics of the involved ions and atoms in the plasma-edge region is a
crucial element for the correct working of ITER and related fusion reactors, and for this
reason a dedicated facility, DTT, is under construction in Frascati (Albanese 2017) with
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the aim to guide the divertor design for the ITER facility. In the plasma edge region
the plasma is colder than in the core of the reactor, and contains impurities due to
the interactions with the materials of the vessel-wall. Detailed models of this region are
important because these boundary effects regulate the amount of impurities penetrating
the core, determining the plasma heat load on the divertor target plates, and therefore
the overall performance of the reactor (Reiter 1992; Winter 2000). Second, the extraction
of the temperature and fluxes for plasma components can be affected by this systematic
effect, since so far all calculations for the flux of charge-exchanged fast neutrals escaping
from a plasma assume MB distributions (Tugarinov 1994; Hollmann et al. 2006).

We believe that the κ distributions may play a major role in the atomic physics around
the plasma-edge region, since the conditions for local thermal equilibrium are not easily
met due to the steep drop in plasma density. While our study is limited to two specific
atomic processes, a more general programme should also be implemented for charge
exchange and recombination processes (Takamura 2002).

DV is grateful to Texas Southern University High Performance Computing Center for
making the necessary computational resources available, and to the National Science
Foundation for the support received through grants PHY-1831977 and HRD-1829184.
This work was also partially supported by the National Science Foundation through a
grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard
University and the Smithsonian Astrophysical Laboratory.

Appendix A. Cumulative functions for generating κ-distributed

velocities

Monte Carlo Classical Trajectory simulations require κ-distributed velocities corre-
sponding to the energy probability density (2.2), and we summarize here some of their
properties and how to generate them from uniform random numbers. The normalized
velocity probability density in three dimensions is defined by

f3D(v;κ, η) =
4√
π

(

βm/2

κ+ η

)3/2
Γ (κ+ 1)

Γ (κ− 1/2)

v2
(

1 + βmv2/2
κ+η

)κ+1 , (A 1)

where β is the inverse temperature and m is the particle mass. The parameter η
allows for selecting different classes of κ-distributions that have special properties and
interpretations, as explained below. The conventional MB distribution is obtained from
(A1) in the κ → ∞ limit.

The κ-distribution in (A 1) peaks at a velocity given by vp =
√

2(κ+ η)/(κβm). This
shows that the class of κ-distributions with η = 0 have the maximum at a κ-independent
velocity. Therefore for this class of distributions the temperature can be defined in a
κ-independent way as T = mv2p/(2kB), with vp the most probable velocity.

The mean and mean square velocities for κ-distributions respectively are

〈v〉 = 2

√

2(κ+ η)

πβm

Γ (κ− 1)

Γ (κ− 1/2)
and 〈v2〉 = 3(κ+ η)

2κ− 3

2

βm
. (A 2)

For the class of distributions with η = −3/2 the temperature can be defined in a κ-
independent way as T = m〈v2〉/(3kB). For a general κ-distribution, the “core” tem-
perature, obtained from the most probable velocity, and the “kinetic” temperature that
results from the mean square velocity are different, and depend on the specific κ and
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η parameters. Only for the special values η = 0, and η = −3/2, the interpretation of
temperature becomes straightforward. Another important class of distributions is η = 1/2
where the most probable energy in the distribution (2.2) relates with the temperature
regardless of κ, essentially the same as in the MB distribution obtained for κ → ∞.

The cumulative distribution function related to (A 1) can be calculated exactly as

F (x;κ, η) =

∫ x

0

f3D(t;κ, η) dt =
1

x

√

κ+ η

π

Γ (κ+ 1)

Γ (κ+ 3/2)

1

(1 + x2/(κ+ η))κ
×

[

2F1

(

1,−κ− 1

2
,
1

2
;− x2

κ+ η

)

− 1− 2κ+ 1

κ+ η
x2

]

, (A 3)

where x2 = βmv2/2, and 2F1 is the ordinary hypergeometric function. Starting from
uniformly distributed random numbers u and using the inverse of the cumulative distri-
bution function (A 3) one obtains κ-distributed velocities using v = F−1(u)

√

2/(βm). A
practical way to solve the transcendental equation F (x) = u is to create a two-way table
for x and u, and then use an interpolation to obtain x for any 0 < u < 1.

For one-dimensional problems a κ-distribution of velocities has a probability density
function

f1D(v;κ, η) =

√

βm

2π(κ+ η)

Γ (κ+ 1)

Γ (κ+ 1/2)

1
(

1 + βmv2/2
κ+η

)κ+1 . (A 4)

This distribution has a maximum at v = 0, with zero average 〈v〉 = 0 and vari-
ance σ2 = 〈v2〉 = (κ + η)/(βm(κ − 1/2)). The special class of κ distributions with
η = −1/2 has a κ-independent variance, which leads to a direct interpretation of
temperature as T = m〈v2〉/kB . As expected, for large κ the distribution becomes nor-
mal, limκ→∞ f1D(v;κ, η) =

√

βm/(2π) exp(−βmv2/2). The corresponding cumulative
distribution function can be expressed as

F1D(x;κ, η) =

∫ x

−∞

f1D(t;κ, η)dt =

1

2
+

x
√

(κ+ η)π

Γ (κ+ 1)

Γ (κ+ 1/2)
2F1

(

1

2
, κ+ 1,

3

2
,− x2

κ+ η

)

, (A 5)

with x2 = βmv2/2. An alternative method to generate 1D κ-distributed velocities uses
random variates of the Student t-distribution, as described in Abdul & Mace (2014).
This distribution is not useful to generate configurations in three dimensions because the
magnitude of the sum of three squares of 1D κ-distributed velocities

√

v21 + v22 + v23 is
not κ-distributed. This does not happen for MB distributions since a three-dimensional
MB distribution is factorizable into three one-dimensional normal distributions.

Appendix B. Enhancement and suppression of scattering rates in

non-MB distributions: An analytical example

As visible in the left plot of figure 2 and, to a smaller extent, in the analogous one
in figure 3, the rate coefficients for bMB distributions can be enhanced or suppressed
depending on the temperature range. Intuitively this depends on the overlap between
the energy distribution and the cross-section dependence on energy. In particular, for
resonant cross-sections, one expects that at high temperature the overlap in the presence
of enhanced high-energy tails is smaller with respect to the corresponding MB distribution
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thereby suppressing the rate coefficient. In order to show this analytically we discuss the
case of a simple cross-section parameterized as

σ(E) = σM

(

E

EM

)λ

exp[−βλ(E − EM )], (B 1)

where EM = λ/βλ is the value of the energy for which the cross-section peaks, and
βλ, λ > 0. While this cross-section is not encountered in concrete physical applications,
it has the same features of many realistic cross-sections, with a peak value at some
intermediate energy and tails falling at lower and higher energies. Its advantage is that
it allows to get a simple expression for the rate coefficient when convoluted with a MB
energy distribution at inverse temperature β1

PMB(E) = 2

√

E

π
β
3/2
1 exp(−β1E), (B 2)

obtaining a rate coefficient, based on (1.1)

k1 =

√

8

πm

σM exp (βλEM )

Eλ
M

β
3/2
1 (β1 + βλ)

−λ−2Γ (λ+ 2). (B 3)

For a bMB mixture involving another inverse temperature β2 and weights p1 and p2 we
then obtain, by defining the common factor C =

√

8/(πm)σM exp(βλEM )/Eλ
MΓ (λ+ 2)

kbMB = C
[

p1β
3/2
1 (β1 + βλ)

−λ−2 + p2β
3/2
2 (β2 + βλ)

−λ−2
]

. (B 4)

By taking the ratio between (B 4) and (B 3), with β2/β1 = ξ = const < 1 the rate
coefficient ratio is written as

kbMB

kMB
= p1 + (1− p1)ξ

3/2

(

ξβ1 + βλ

β1 + βλ

)

−λ−2

. (B 5)

In the (low-temperature) limit β1 → ∞ we have kbMB/kMB → p1+(1−p1)ξ
−λ−1/2 > 1.

In the opposite limit, β1 → 0, the rate coefficient ratio instead tends to kbMB/kMB →
p1 + (1− p1)ξ

3/2 < 1.
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