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Topological phases and their topological features are enriched by the fundamental time-reversal, particle-
hole, and chiral as well as crystalline symmetries. While one-dimensional (1D) generalized Su-Schrieffer-
Heeger (SSH) systems show various topological phenomena such as topological solitons and topological charge
pumping, it remains unclear how such symmetry protects and relates such topological phenomena. Here we
show that the generalized time-reversal, particle-hole, and chiral symmetry operators consistently explain not
only the symmetry transformation properties between the ground states but also the topological features of the
topological solitons in prototypical quasi-1D systems such as the SSH, Rice-Mele, and double-chain models.
As a consequence, we classify generalized essential operators into three groups: Class I and class II opera-
tors connect ground states in between after spontaneous symmetry breaking while class III operators give the
generalized particle-hole and chiral symmetries to ground states. Furthermore, class I operators endow the
equivalence relation between topological solitons while class II and III operators do the particle-hole relations.
Finally, we demonstrate three distinct types of topological charge pumping and soliton chirality from the view-
point of class I, II, and III operators. We build a general framework to explore the topological features of the
generalized 1D electronic system, which can be easily applied in various condensed matter systems as well as
photonic crystal and cold atomic systems.

I. INTRODUCTION

CPT symmetries are fundamental symmetries in nature and
play important roles in the CPT theorem. In condensed matter
systems, time-reversal T̂ , charge-conjugation Ĉ (or particle-
hole), and chiral Γ̂ ≡ T̂ Ĉ symmetry operators are the funda-
mental symmetry operators for not only classifying the topo-
logical insulators and superconductors but also endowing var-
ious symmetries and dualities to the quasiparticles within con-
densed matter CPT theorem [1–3]. For example, quantum
spin Hall insulator [4–6] and Majorana fermion [7, 8] are pro-
tected by time-reversal and particle-hole symmetry, respec-
tively, and a skyrmion-antiskyrmion pair satisfies the particle-
hole relations via T̂ allowing pair creation and pair annihila-
tion [9–11].

As one of the most famous one-dimensional (1D) topo-
logical insulators, the Su-Schrieffer-Heeger [12, 13] model
exhibits fascinating topological phenomena such as topo-
logically nontrivial ground states, topological Jackiw-Rebbi
solitons, fractional fermion number, and spin-charge separa-
tion [14–16]. Such topological features are protected by time-
reversal, particle-hole, and chiral symmetries leading to the
BDI class [1]. Beyond the Su-Schrieffer-Heeger (SSH) sys-
tem, the Rice-Mele (RM) [17], the extended SSH [18, 19], and
double-chain (DC) [20] systems introduce more interesting
topological solitons and topological Thouless charge pumping
by manipulating symmetries [21–25]. In particular, chirality
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of topological solitons in the DC system emerges and such
solitons are named as chiral solitons [20].

However, such topological features of the extended quasi-
1D electronic systems have not been studied yet in terms of T̂ ,
Ĉ, and Γ̂. In fact, only T̂ , Ĉ, and Γ̂ cannot support topological
features of extended 1D electronic systems without consider-
ing the discreteness of lattice systems. For example, nonsym-
morphic symmetries may enforce the existence of topological
band crossings in the bulk of 1D system [26]. Therefore, addi-
tional proper operators reflecting the entire symmetry of dis-
crete lattice systems are required to understand various topo-
logical features. One of the purposes of this work is to give a
general framework that consistently explains the topological
features of extended 1D electronic systems by using T̂ , Ĉ, Γ̂,
nonsymmorphic, and their composite operators.

On the other hand, spontaneous symmetry breaking and
the Nambu-Goldstone theorem [27, 28] are fundamental prin-
ciples that stipulate the fundamental phenomena of diverse
symmetry-broken systems, from the ferromagnetism and su-
perconductivity in condensed matter physics to the Higgs
mechanism in particle physics. In a 1D electronic topological
system, after the spontaneous symmetry breaking of Peierls
dimerization [29] occurs, a remaining crystalline symmetry
(such as inversion) gives the topological classification of ener-
getically degenerate but distinct ground states [30, 31]. At the
same time, the broken symmetry operators relate the degen-
erate ground states, which is similar to the Nambu-Goldstone
theorem for the continuous system. Due to the lack of con-
tinuous symmetry in the lattice systems, instead of massless
Goldstone bosons, topological solitons with finite excitation
energy emerge and the broken symmetry operators may en-
dow unique relations to the ground states as well as topolog-
ical solitons. However, no systematic study reveals the inter-
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TABLE I. Symmetry properties of the SSH, RM, and DC mod-
els under the class I (ÔI), II (ĈII, Γ̂II), and III (ĈIII, Γ̂III) operators
for both undimerized and dimerized phases. The presence and ab-
sence of symmetries is denoted by±1 and 0, respectively. +1 or−1
denotes the square of the corresponding operator. When the sym-
metry properties are distinct for undimerized and dimerized phases,
their properties are indicated without (with) parentheses for dimer-
ized (undimerized) phases.

Class I Class II Class III

Model T̂ ÔI ĈII Γ̂II ĈIII Γ̂III

SSH 1 0 (1) 0 (1) 0 (1) 1 1
RM 1 0 (1) 0 (1) 0 (1) 1 1
DC 1 0 (1) 0 (1) 0 (1) −1 −1

play between spontaneous symmetry breaking and topology.
Here we generalize the Goldstone theorem to explain not only
the symmetry transformation properties between the ground
states but also the various dualities between the topological
solitons in prototypical quasi-1D systems.

In this work, we show that the generalized time-reversal,
particle-hole, and chiral symmetry operators consistently ex-
plain not only the symmetry transformation properties be-
tween the ground states but also the topological features of the
topological solitons in prototypical quasi-1D systems such as
the SSH, RM, and DC models. Combining fundamental sym-
metry operators (T̂ , Ĉ, and Γ̂) and nonsymmorphic crystalline
operators, we establish three classes of essential symmetry op-
erators according to their natures and roles (see Table I). The
class I and II operators connect distinct ground states after
spontaneous symmetry breaking while the class III operators
give particle-hole and chiral symmetries regardless of spon-
taneous symmetry breaking. The class I (II and III) oper-
ators endow the equivalence (particle-hole) relation between
ground states as well as topological solitons. Using class I, II,
and III operators, we derive the topological properties of topo-
logical solitons and their Z2 or Z4 group structures. Further-
more, we systematically demonstrate three distinct types of
topological charge pumping and soliton chirality in the SSH,
RM, and DC models. We build a general framework to ex-
plore the topological features of the generalized 1D electronic
system, which can be easily applied in various condensed mat-
ter systems as well as photonic crystal [32] and cold atomic
systems [33].

II. MODELS

In this work, we consider three concrete models: the
SSH [12], RM [17], and DC models [20]. For each model,
we construct a tight-binding Hamiltonian H , Bloch Hamilto-
nianH, and low-energy effective Hamiltonian H to investigate
the symmetry relations and topological features of the ground
states as well as topological solitons.

∆
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FIG. 1. [(a) and (b)] SSH model. [(c) and (d)] RM model. Pan-
els (a) and (c) [panels (b) and (d)] represent undimerized (dimerized)
phases. ∆ is the dimerization displacement and a and b label the sub-
lattice atoms in the unit cell. Each unit cell is indicated by gray solid
lines. In (b) [(d)], A (A∗) and B (B∗) are two degenerate dimerized
phases in the SSH (RM) model, respectively, and class I operator ÔI

connects them. In (b), ÔI = Ĝ ≡ {E|a0
2
} is the half-translation op-

erator while, in (d), ÔI = ĜPT ≡ ĜP̂T̂ is the parity-time-symmetric
half-translation operator. Red circles indicate the inversion centers
for the inversion operator P̂ . [(e)–(g)] DC model. Undimerized dou-
ble chains (e) without and (f) with interchain coupling which is in-
dicated by zigzag dashed lines. ∆(i=1,2) indicates the dimerization
displacement of the ith chain and a, b, c, and d denote the sublattice
atoms. (g) Four dimerized phases, where the zigzag dashed lines are
omitted for simplicity. The class I operator (ÔI) cyclically connects
the four dimerized phases. In (g), ÔI = Ĝy ≡ {My| − a0

4
} is the

glide reflection symmetry operator, whereMy is a reflection operator
with respect to the xz plane (horizontal dashed lines).

A. Single-chain model

The SSH [Fig. 1(a)] and RM models [Fig. 1(c)] are ba-
sic building blocks in 1D electronic systems. The SSH
(RM) model has two identical (different) atoms without (with)
a staggered sublattice potential mz in the unit cell. For
both model, we construct a general single-chain tight-binding
Hamiltonian Hsingle which is composed of the electron hop-
ping Hamiltonian He between two atoms, the onsite Hamilto-
nianHon for the staggered sublattice potential, and the phonon
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Hamiltonian Hph:

Hsingle = He +Hon +Hph, (1)

He =
∑
n,s

tn+1,nc
†
n+1,scn,s + H.c.,

Hon =

N/2∑
n=1

mz

(
c†2n−1,sc2n−1,s − c†2n,sc2n,s

)
,

Hph =

N∑
n=1

1

2
Mnu̇

2
n +

1

2
K(un+1 − un)2,

where tn+1,n is the nearest hopping integral from the nth site
to the (n + 1)th site, c†n,s (cn,s) is the creation (annihilation)
operator of an electron with spin s on the nth site. N is the to-
tal number of atoms, K is the harmonic spring constant when
expanded to the second order about the undimerized phase,
and un is the displacement of the nth atom. M2n+1 = Ma

and M2n = Mb and Ma and Mb are the masses of two atoms
in a unit cell. The electron-phonon interaction is embedded in
the distance-dependent hopping parameter tn+1,n. In the first-
order approximation, tn+1,n linearly depends on the relative
atomic displacement: tn+1,n = t0 − α(un+1 − un), where α
and t0 are set to be positive for p-orbital systems.

Both models undergo a spontaneous Peierls dimeriza-
tion [29], which gives two (energetically degenerate) dimer-
ized ground states as shown in Figs. 1(b) and 1(d); ∆ > 0
and ∆ < 0 correspond to the A (A∗) and B (B∗) phases for
the SSH (RM) model, respectively. These two ground states
are distinguished by the dimerization displacement un =
(−1)n+1u, where u > 0 and u < 0 correspond to A (A∗)
and B (B∗) phases. Here u (or, equivalently, ∆ = 4αu) is the
dimerization displacement of the ground states.

From the tight-binding Hamiltonian, the Fourier trans-
formed Hamiltonian is given by

Hsingle =
∑
kx,s

2∑
i,j=1

Hijsingle(kx,∆,mz)c
†
i,kx,s

cj,kx,s, (2)

where the single-chain Bloch HamiltonianHsingle(kx,∆,mz)
is given by

Hsingle = 2t0 cos(kxa02 )σx −∆ sin(kxa02 )σy +mzσz. (3)

Here σi is the Pauli matrix for the pseudospin space and the
spin index s is omitted for simplicity. The energy eigenvalues
E are analytically obtained as

E = ±
[
4t20 cos2(kxa02 ) + ∆2 sin2(kxa02 ) +m2

z

]1/2
. (4)

If one takes the continuum limit (a0 → 0) and treats the
dimerization displacement as a classical field ∆(x), then the
low-energy effective continuum Hamiltonian near the Fermi
level can be obtained [17, 34–36]. Then the low-energy effec-
tive Hamiltonian Hsingle(x,∆(x),mz) is given by

Hsingle = −ivF∂xσx + ∆(x)σy +mzσz, (5)

where vF = t0a0 is the Fermi velocity.

B. Double-chain model

The DC model—which is a nontrivially extended model—
is composed of two identical SSH chains without (with) a
zigzag interchain coupling δ as shown in Fig. 1(e) [Fig. 1(f)].
The DC model is described by the tight-binding Hamiltonian
HDC which is given by

HDC = H
(1)
SSH +H

(2)
SSH +Hcoupling, (6)

where

H
(i)
SSH = H(i)

e +H
(i)
ph ,

H(i)
e =

∑
n,s

t
(i)
n+1,nc

(i)†
n+1,sc

(i)
n,s + H.c.,

H
(i)
ph =

N∑
n=1

1

2
M(u̇(i)

n )2 +
1

2
K
[
u

(i)
n+1 − u(i)

n

]2
,

and

Hcoupling = δt0
∑
n,s

[
c(1)
n,s

†
c(2)
n,s + c(1)

n,s

†
c
(2)
n+1,s + H.c.

]
.

Here the superscript i indicates the ith chain (i = 1, 2) and δ
indicates the interchain coupling strength [zigzag dashed lines
in Fig. 1(f)] between the two chains. The interchain coupling
is assumed to be a constant regardless of the atomic distance
for simplicity.

Similarly to the single-chain models, the DC model under-
goes the spontaneous Peierls dimerization. Instead of the two
degenerate phases in the single-chain model, the DC model
has four energetically degenerate phases [AA, AB, BA, and
BB in Fig. 2(d)]. The four phases are distinguished by dimer-
ization displacements of each chain, u(i)

n = (−1)n+1u(i),
where u(i) > 0 and u(i) < 0 correspond to A and B
phases for the ith chain, respectively. u(i) [or, equivalently,
∆(i) = 4αu(i)] is the dimerization displacement of the ith
chain.

Then the Fourier transformed Hamiltonian is given by

HDC =
∑
kx,s

4∑
i,j=1

HijDC(kx,∆
(1),∆(2))c†i,kx,scj,kx,s, (7)

where the Bloch Hamiltonian is given by

HDC(kx,∆
(1),∆(2)) =

(
H1 H12

H21 H2

)
, (8)

with

Hi = (2t0 cos(kxa0/2),−∆(i) sin(kxa0/2), 0) · σ,
H12 = H†21 = δt0(e−ikxa0/412×2 + eikxa0/4σx).

Similarly to the single-chain model, the low-energy effec-
tive continuum Hamiltonian near the Fermi level is given by

HDC(∆(1),∆(2)) =

(
H1 H12

H21 H2

)
, (9)
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FIG. 2. [(a)–(d)] Band structures of the (a) SSH, (b) RM, and
DC models (c) without and (d) with interchain coupling. The red
and black bands represent the bands of the dimerized and undimer-
ized phases in each model, respectively. In (d), the left inset shows
the closeup from 3

4
π
a0

to π
a0

. The band structures for the SSH and
RM models in (a) and (b) have the spectral symmetry—particle-hole
symmetric spectra with respect to E = 0. For the DC model with
an interchain coupling, the band structure near the Fermi level [left
inset of (d)] shows the spectral symmetry. The wave functions of the
dimerized phases at kx = π/a0 are plotted in each inset. The am-
plitude and phase of the wave function are represented by the size of
circles and colors, respectively. Red and cyan colors indicate 0 and π
phases, respectively. In each inset, the atoms in a unit cell are shown
while they are omitted for simplicity in the right inset of (d).

where

Hi = −ivF∂xσx + ∆(i)(x)σy, (10)

H12 = H†21 =
t0δ√

2
[(1 + i)12×2 + (1− i)σx] . (11)

All four ground states have the same energy eigenvalues,
which are given by

Ekx = ±
√
A±B, (12)

where A = v2
F k

2
x + ∆2 + 2(t0δ)

2, B = 2t0δ
√

2v2
F k

2
x + ∆2.

C. Band structure and sublattice symmetry

Before going on, we briefly discuss the band structures
and the sublattice symmetries. For the SSH and RM models,
the calculated band structures [Figs. 2(a) and 2(b)] indicate
that both SSH and RM models have the spectral symmetry—
particle-hole symmetric spectra. This particle-hole symmetry
can be seen in the energy eigenvalues in Eq. (4), which will
be consistently explained by the symmetry analysis in Sec. III.
The calculated wave functions [insets in Figs. 2(a) and 2(b)]
show sublattice symmetry in the SSH model while they do not
in the RM model.

For the DC model, in the absence of the interchain coupling
(δ = 0), the band structure is the duplication of the SSH bands

[Fig. 2(c)]. In the presence of the interchain coupling (δ 6= 0),
the band structure does not have a spectral symmetry in the
whole Brillouin zone due to dynamical sublattice symmetry
breaking [Fig. 2(d)]. Near the Fermi level, however, there
exists a spectral symmetry [see left inset of Fig. 2(d)]. This
spectral symmetry can be explained by the energy eigenvalues
in Eq. (12) in the low-energy effective theory, which will be
consistently explained by the symmetry analysis in Sec. III.

III. SYMMETRIES OF HAMILTONIANS

We briefly discuss the limitations of three fundamental non-
spatial symmetry operators (T̂ , Ĉ, and Γ̂). For instance, in the
general single-chain model, these operators are represented in
the Bloch basis as

T̂ = K̂ ⊗ (kx → −kx), (13)

Ĉ = σzK̂ ⊗ (kx → −kx), (14)

Γ̂ = σz, (15)

and they satisfy the prior relation [3] of Γ̂ = T̂ Ĉ. Here K̂
is the complex conjugation operator. Under these operations,
the general single-chain Bloch Hamiltonian in Eq. (3) satisfies
the following equations:

T̂ Hsingle(kx,∆,mz)T̂ −1 = +Hsingle(kx,∆,+mz),

ĈHsingle(kx,∆,mz)Ĉ−1 = −Hsingle(kx,∆,−mz),

Γ̂Hsingle(kx,∆,mz)Γ̂
−1 = −Hsingle(kx,∆,−mz).

Thus, the SSH model has time-reversal, particle-hole, and chi-
ral symmetries while the RM model has time-reversal symme-
try only.

For the DC model, the time-reversal T̂D, particle-hole ĈD,
and chiral Γ̂D symmetry operators are given by the direct
sum of the corresponding operators for each chain. The ex-
plicit form of each operators are shown in Table VI in Ap-
pendix A. Then the DC Bloch Hamiltonian in Eq. (8) has the
time-reversal symmetry while not having the particle-hole and
chiral symmetries in the presence of the interchain coupling:

T̂DHDC(kx,∆
(1),∆(2))T̂ −1

D = +HDC(kx,∆
(1),∆(2)),

ĈDHDC(kx,∆
(1),∆(2)) Ĉ−1

D 6= −HDC(kx,∆
(1),∆(2)),

Γ̂DHDC(kx,∆
(1),∆(2)) Γ̂−1

D 6= −HDC(kx,∆
(1),∆(2)).

Therefore, SSH model is in the BDI class while the RM
and DC ones are in the AI class (Altland-Zirnbauer classifi-
cation [1, 37]). As a result, T̂ , Ĉ, and Γ̂ operators are not
sufficient to discuss the properties of the ground states and
topological solitons for all three systems in a single frame-
work.

To overcome this limitation, we construct class I, II, and
III operators using the three nonspatial symmetry operators
above and crystalline nonsymmorphic symmetry operators.
The class I operators (ÔI) are nonsymmorphic operators. For
class II operators (ÔII), there are two types of operators: a
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TABLE II. Transformation properties of the Hamiltonians of the SSH, RM, and DC model under the class I, II, and III operators. A transformed
Hamiltonian under an operation Ô is given by the following transformation equation: either ÔH(k,∆,mz)Ô−1 = ηH(k,∆′,m′z) for the
SSH and RM models or ÔH(k,∆(1),∆(2))Ô−1 = ηH(k,∆′(1),∆′(2)) for the DC model, where η = ±1. For the SSH and RM models,
H can be the Bloch and low-energy effective Hamiltonians to all class I, II, and III operators. For the DC model, H can be the Bloch and
low-energy effective Hamiltonians to the class I operator while H is the low-energy effective Hamiltonian to the class II and III operators.
Here X , Y and Z can be either A or B phases for the SSH and DC models; either A∗ or B∗ phases for the RM model. X and Y cannot
be the same. “GS connecting” means that the corresponding operator connects different ground states and “Chiral symmetry” means that the
corresponding operator endows the chiral symmetry to a ground state itself. Under the column “Group”, Zn indicates that the corresponding
operator connects n different ground-state phases cyclically.

Model Class Operator η ∆′s & m′z GS relation Role Group

I ÔI +1 −∆ 0 ÔIX = Y GS connecting Z2

SSH II Γ̂II, ĈII −1 −∆ 0 ÔIIX = Y GS connecting Z2

III Γ̂III, ĈIII −1 +∆ 0 ÔIIIX = X Chiral symmetry Z1

I ÔI +1 −∆ +mz ÔIX = Y GS connecting Z2

RM II Γ̂II, ĈII −1 −∆ +mz ÔIIX = Y GS connecting Z2

III Γ̂III, ĈIII −1 +∆ +mz ÔIIIX = X Chiral symmetry Z1

I ÔI +1 −∆(2) +∆(1) See belowa GS connecting Z4

II Γ̂
(1)
II , Ĉ(1)

II −1 −∆(1) +∆(2) Ô(1)
II XZ = Y Z GS connecting Z2

DC II Γ̂
(2)
II , Ĉ(2)

II −1 +∆(1) −∆(2) Ô(2)
II ZX = ZY GS connecting Z2

III Γ̂
(1)
III , Ĉ(1)

III −1 +∆(2) +∆(1) Ô(1)
III XX = XX Chiral symmetry Z1

Ô(1)
III XY = Y X GS connecting Z2

III Γ̂
(2)
III , Ĉ(2)

III −1 −∆(2) −∆(1) Ô(2)
III XY = XY Chiral symmetry Z1

Ô(2)
III XX = Y Y GS connecting Z2

a AA = ÔIAB = Ô2
I BB = Ô3

I BA = Ô4
I AA

nonsymmorphic particle-hole operator (ĈII) and a nonsym-
morphic chiral operator (Γ̂II). These operators satisfy Γ̂II =

T̂ ĈII, similarly to Γ̂ = T̂ Ĉ. By multiplying class I and II op-
erators, the two types of class III operators (ÔIII) are naturally
defined: ĈIII and Γ̂III. Once the class I, II, and III operators are
defined, three models have similar symmetry properties in the
low-energy effective theory. For undimerized phases, class I,
II, and III operators are symmetry operators while class I and
II are not a symmetry operators for dimerized phases as shown
in Table I.

We find that class I, II, and III operators endow unique
properties among the ground states regardless of the model,
which are summarized in Table II. The class I and II op-
erators are symmetry operators before the Peierls dimeriza-
tion. After spontaneous dimerization, on the other hand, the
class I (II) operator connects distinct ground states with the
same (opposite) energy spectra. Thus, the class I (II) opera-
tor gives the equivalent relation (particle-hole duality) among
distinct ground states. By contrast, the class III operator acts
as the generalized particle-hole and chiral operator, endowing
particle-hole or chiral symmetries to the Hamiltonian. As a
consequence, T̂ , ĈIII, and Γ̂III act as the generalized T̂ , Ĉ, and
Γ̂ symmetry operators for various quasi-1D systems as T̂ , Ĉ,
and Γ̂ do in the SSH model. Note that the explicit representa-
tions of the class I, II, and III operators for SSH, RM, and DC
models are shown in Appendix A (see Tables VII and VIII).

From now on, we will discuss the main results. (The results

are summarized in Table II and the corresponding schematic
diagrams are shown in Fig. 3.) In the SSH model, the non-
symmorphic half-translation operator, Ĝ ≡ {E|a02 } is the
class I operator that connects two degenerate ground states
[Figs. 1(b) and 3(a)]: Mathematically, ĜHsingle(kx,∆,mz =

0)Ĝ−1 = Hsingle(kx,−∆,mz = 0). In the RM model, how-
ever, Ĝ does not connect two degenerate ground states due

(c) (d)

(e) (f) (g)

(1)ΓII,
^ CII

(1)^

(2)ΓII,
^ CII

(2)^

AA

ABBB

BAAA

ABBB

BA

ΓIII 
^ (1)

, CIII
(1)^

ΓIII 
^ (2)

, CIII
(2)^

(a) (b)

AA

ABBB

BA

OI ^

ΓII,
^ CII^

A B

ΓIII,
^ CIII^

A B
OI ^

ΓIII,
^ CIII^ΓII,

^ CII^

A* B*

A* B*
OI ^

FIG. 3. [(a)–(d)] Transformation properties between two degen-
erate ground states of the [(a) and (c)] SSH and [(b) and (d)] RM
under class I, II, and III operators. [(e)–(g)] Transformation prop-
erties among four degenerate ground states of the DC model under
class I, II, and III operators.
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to the sublattice symmetry breaking [Fig. 1(d)] and hence it
is no longer a proper class I operator. We find that the com-
bined operator ĜPT ≡ ĜP̂T̂ [parity-time- (PT) symmetric
half-translation operator] is the class I operator regardless of
the sublattice symmetry breaking because ĜPT shifts a half
unit cell after switching a and b atoms [Figs. 1(d) and 3(b)].
Here P̂ is an inversion operator with respect to the unit-cell
center. Mathematically, ĜPTHsingle(kx,∆,mz)(Ĝ

PT)−1 =
Hsingle(kx,−∆,mz).

For the class II operator, a nonsymmorphic chiral op-
erator Γ̂II ≡ {E|a02 } ⊗ Γ̂ consistently connects two
degenerate ground states in the SSH and RM models
[Figs. 3(c) and 3(d)] because Γ̂ exchanges the sublattice
potential. Furthermore, there exists another class II oper-
ator, a nonsymmorphic charge-conjugation operator ĈII ≡
{E|a02 } ⊗ Ĉ using the relation Γ̂ = T̂ Ĉ. Mathemati-
cally, Γ̂IIHsingle(kx,∆,mz)Γ̂

−1
II = −Hsingle(kx,−∆,mz) and

ĈIIHsingle(kx,∆,mz)Ĉ−1
II = −Hsingle(kx,−∆,mz). Thus,

class II operators connect distinct ground states having the op-
posite dimerization and energy spectra leading to the particle-
hole duality between ground states.

By combining the class I and II operators, we find that Ĉ
and Γ̂ (ĈPT and Γ̂PT) are the class III operators for the SSH
(RM) model [Figs. 3(c) and 3(d)]. Here ĈPT ≡ ĈP̂T̂ and
Γ̂PT ≡ Γ̂P̂T̂ are PT-symmetric particle-hole and chiral op-
erators, respectively. These class III operators (ÔIII) anticom-
mute with the Hamiltonian, {ÔIII,Hsingle} = 0, explaining the
spectral symmetry of the band structures in Figs. 2(a) and 2(b)
regardless of the sublattice symmetry breaking.

In the DC model, as a class I operator, the glide reflec-
tion operator Ĝy = {My| − a0

4 } connects the four degener-
ate ground states cyclically, where My is a reflection operator
with respect to the xz plane [Figs. 1(g) and 3(e)]. Mathemat-
ically, under Ĝy , the Bloch Hamiltonian HDC and the low-
energy effective Hamiltonian HDC transform as

ĜyHDC(∆(1),∆(2))Ĝ−1
y = HDC(−∆(2),∆(1)),

ĜyHDC(∆(1),∆(2))Ĝ−1
y = HDC(−∆(2),∆(1)),

which imply a ground state with (∆(1),∆(2)) transforms into
another ground state with (−∆(2),∆(1)). Then a ground state
comes back to itself under Ĝ4

y and hence Ĝy transforms a
ground state to another ground state cyclically:

AA = ĜyAB = Ĝ2
yBB = Ĝ3

yBA = Ĝ4
yAA.

Thus, the four ground states correspond to the atomic repre-
sentation of a cyclic Z4 group, of which the generator is Ĝy .
In this sense, Ĝy is a Z4 operator while Ĝ in the single-chain
models is a Z2 one. Hence, class I operators can endow dis-
tinct group structures for degenerate ground states of different
1D electronic systems.

The DC model has more abundant symmetry operators be-
cause it is intrinsically an extended system. As the class II
operators, there exist two nonsymmorphic chiral operators:
Γ̂

(i)
II ≡ Ĝ(i) ⊗ Γ̂D, where Γ̂D = σz ⊕ σz is an extended chi-

ral operator for the DC model and Ĝ(i) ≡ {E|(−1)i+1 a0
2 }
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FIG. 4. [(a)–(e)] Geometric configurations of solitons. For the SSH
(RM) model, the soliton S (S∗) and the antisoliton S̄ (S̄∗) are shown
in (a) [(b)]. For the DC model, there are 12 chiral solitons grouped
into three types: (c) four right-chiral (RC), (d) four left-chiral (LC),
and (e) four achiral (AC) solitons are shown (Ski ; i = 1, 2, 3, 4; k =
R,L,A). For simplicity, all solitons are drawn as short as possible.
[(f)–(i)] Solitons in the order parameter space. In (f), solitons of
the SSH and RM models are denoted as green and magenta arrows,
respectively, in the order parameter space (∆,mz), where mz is a
staggered sublattice potential for the RM model. For (g) RC, (h)
LC, and (i) AC solitons, each soliton is denoted by a corresponding
colored arrow in the order parameter space (∆(1),∆(2)).

is a half-translation operator for the ith chain only. Thus,
Γ̂

(i)
II properly connects two ground states having opposite en-

ergy spectra and dimerization pattern of the ith chain, leading
to the particle-hole duality between degenerate ground states
[Fig. 3(f)]. Similarly to the single-chain model, two class II
nonsymmorphic particle-hole operators Ĉ(i)

II can be defined
using Γ̂ = T̂ Ĉ. The mathematical proof is as follows. Under
Γ̂

(i)
II and Ĉ(i)

II , the low-energy effective Hamiltonian satisfies
the following transformation equations:

Γ̂
(1)
II HDC(∆(1),∆(2))(Γ̂

(1)
II )−1 = −HDC(−∆(1),∆(2)),

Γ̂
(2)
II HDC(∆(1),∆(2))(Γ̂

(2)
II )−1 = −HDC(∆(1),−∆(2)),

Ĉ(1)
II HDC(∆(1),∆(2))(Ĉ(1)

II )−1 = −HDC(−∆(1),∆(2)),

Ĉ(2)
II HDC(∆(1),∆(2))(Ĉ(2)

II )−1 = −HDC(∆(1),−∆(2)),

which imply that the dimerization pattern of ith chain and en-
ergy eigenvalues are reversed. A ground state having energy
eigenvalues {±E1,±E2, . . .} transforms to another ground
state having the same energy eigenvalues except for the en-
ergy band crossing. Thus, class II operators connect different
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FIG. 5. Numerically calculated soliton spectra for the (a) SSH, (b)
RM, (c) RC, (d) LC, and (e) AC solitons. (a) In the SSH model, the
soliton (S) and antisoliton (S̄) states are degenerated at the midgap.
(b) In the RM model, the soliton (S∗) and antisoliton (S̄∗) states
are located above (E = +mz) and below (E = −mz) the Fermi
level, respectively. [(c) and (d)] RC and LC soliton has two soliton
states: The orange and green arrows indicate the primary (P) and
induced (I) subsoliton states, respectively. (e) An AC soliton has two
subsoliton states which are symmetrically located with respect to the
zero energy in contrast to RC and LC solitons: the antibonding (AB)
and bonding (B) subsoliton states. In (a)–(e), all spectra are plotted
as a function of the eigenvalue index.

phases as summarized in Table II.
Finally, by combining the class I and II operators, we find

that the class III operators Γ̂
(i)
III and Ĉ(i)

III give not only the
spectral symmetry but also particle-hole dualities among the
ground states [Fig. 3(g)]. Under Γ̂

(i)
III and Ĉ(i)

III , the low-energy
effective Hamiltonian satisfies the following transformation
equations:

Γ̂
(1)
III HDC(∆(1),∆(2))(Γ̂

(1)
III )−1 = −HDC(+∆(2),+∆(1)),

Γ̂
(2)
III HDC(∆(1),∆(2))(Γ̂

(2)
III )−1 = −HDC(−∆(2),−∆(1)),

Ĉ(1)
III HDC(∆(1),∆(2))(Ĉ(1)

III )−1 = −HDC(+∆(2),+∆(1)),

Ĉ(2)
III HDC(∆(1),∆(2))(Ĉ(2)

III )−1 = −HDC(−∆(2),−∆(1)).

The first and third equations show the chiral symmetry forAA
and BB phases [∆(1) = ∆(2)]. The second and fourth equa-
tions also indicate the chiral symmetry forAB andBA phases
[∆(1) = −∆(2)]. Therefore, Γ̂

(i)
III and Ĉ(i)

III act as the general-
ized chiral symmetry and particle-hole operators, respectively.
Moreover, the class III operators in the DC model also act
as ground state-connecting operators; the first and third equa-
tions connect theAB andBA phases [∆(1) = −∆(2)] and the
second and fourth equations connect the AA and BB phases
[∆(1) = ∆(2)].
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FIG. 6. [(a)–(c)] Transformations of SSH solitons under (a) class I,
(b) II, and (c) III operators. [(d)–(f)] Transformations of RM solitons
under (d) class I, (e) II, and (f) III operators. [(g)–(i)] Transforma-
tions of RC, LC, and AC solitons under (g) class I, (h) II, and (i) III
operators in the DC model. See Table III for more information.

IV. DUALITIES BETWEEN TOPOLOGICAL SOLITONS

We briefly introduce the topological solitons before dis-
cussing the their topological features. All possible types of
solitons can be represented in the order parameter spaces
[Figs. 4(f)–4(i)]. Each soliton has a definite geometrical con-
figuration [Figs. 4(a)–4(e)] and the characteristic spectrum
[Figs. 5(a)–5(e)]. In the SSH (RM) model, there are two types
of solitons: a soliton S (S∗) and an antisoliton S̄ (S̄∗). Both
soliton and antisoliton states in the SSH model are located at
zero energy [Fig. 5(a)] due to the chiral symmetry. For RM
solitons, the energy spectrum of a soliton (an antisoliton) is
above (below) E = 0 [Fig. 5(b)] due to the chiral (or sublat-
tice) symmetry breaking.

In the DC model, there are 12 chiral solitons, which are
classified into three classes [20]: right-chiral (RC), left-chiral
(LC), and achiral (AC) solitons [Figs. 4(c)–4(e)]. All chiral
solitons have two midgap states but the corresponding spec-
tra are distinguishable. For RC solitons (LC solitons), two
states are located below (above) E = 0 [Figs. 5(c) and 5(d)];
the soliton states near (far from) the Fermi level are denoted
as primary (induced) subsoliton states. A pair of an RC soli-
ton and an LC soliton forms a particle-hole symmetric spec-
tra. For AC solitons, a bonding (antibonding) state is located
above (below) E = 0 [Fig. 5(e)]. All these particle-hole sym-
metric spectra are explained by the symmetry analysis below.

We now investigate the roles of the class I, II, and III opera-
tors among topological solitons using the low-energy effective
continuum theory [17, 34, 35]. The results are summarized in
Fig. 6 and Table III. See detail proofs in Appendix B.



8

TABLE III. Transformation properties of the solitons under the class I, II, and III operators. Before a transformation, a soliton has an
energy eigenvalue E and dimerization profiles ∆(x) or (∆(1)(x),∆(2)(x)) while the transformed soliton has the energy eigenvalue E′ and
dimerization profiles ∆(x)′ or (∆′(1)(x),∆′(2)(x)). For the RM model, we explicitly take the spatial inversion x→ −x due to the inversion
operator P̂ . Under the column “Soliton relation,” X and Y can represent S (S∗) and S̄ (S̄∗) for the SSH (RM) model, but X and Y cannot
be the same. For the DC model, Sk0,1 = Sk4,5 for all k = R,L,A. The role of the operator is explicitly shown under the column “Role” and
is categorized under the column “Type” according to the similarity with the SSH and RM models, where “Both” represents the role of the
operator in the DC model is similar to both the SSH and RM models. Under the column “Group,” Zn indicates that the corresponding operator
connects n different topological solitons cyclically.

Model Class Operator E′ ∆′(x)s Soliton relation Role Type Group

I ÔI +E −∆(x) ÔIX = Y Equivalence Z2

SSH II Γ̂II, ĈII −E −∆(x) ÔIIX = Y Particle-hole Z2

III Γ̂III, ĈIII −E +∆(x) ÔIIIX = X Self-duality Z1

I ÔI +E −∆(−x) ÔIX = X Equivalence Z1

RM II Γ̂II, ĈII −E −∆(x) ÔIIX = Y Particle-hole Z2

III Γ̂III, ĈIII −E +∆(−x) ÔIIIX = Y Particle-hole Z2

I ÔI +E −∆(2)(x) +∆(1)(x) See belowa Equivalence SSH Z4

II Γ̂
(1)
II , Ĉ(1)

II −E −∆(1)(x) +∆(2)(x) Ô(1)
II S

R(L)
i = S

L(R)
5−i (i = 1, 2, 3, 4) Particle-hole Both Z2

Ô(1)
II SAi = SAi+1 (i = 1, 3) Particle-hole Both Z2

DC II Γ̂
(2)
II , Ĉ(2)

II −E +∆(1)(x) −∆(2)(x) Ô(2)
II S

R(L)
i = S

L(R)

i+(−1)i+1 (i = 1, 2, 3, 4) Particle-hole Both Z2

Ô(2)
II SAi = SA5−i (i = 2, 4) Particle-hole Both Z2

III Γ̂
(1)
III , Ĉ(1)

III −E +∆(2)(x) +∆(1)(x) Ô(1)
III S

A
i = SAi (i = 1, 3) Self-duality SSH Z1

Ô(1)
III S

R(L)
i = S

L(R)
4−i (i = 1, 2, 3, 4) Particle-hole RM Z2

III Γ̂
(2)
III , Ĉ(2)

III −E −∆(2)(x) −∆(1)(x) Ô(2)
III S

A
i = SAi (i = 2, 4) Self-duality SSH Z1

Ô(2)
III S

R(L)
i = S

L(R)
6−i (i = 1, 2, 3, 4) Particle-hole RM Z2

a Sk1 = ÔIS
k
4 = Ô2

I S
k
3 = Ô3

I S
k
2 = Ô4

I S
k
1 for k = R,L,A.

First, class I operators endow cyclic equivalent relations to
solitons leading to a cyclic group. For the SSH model, Ĝ shifts
a soliton by a half unit cell in real space, which transforms S
into S̄ and vice versa [Fig. 6(a)]. As Ĝ does not change soli-
ton’s physical properties, it endows the equivalence relation
between S and S̄: Symbolically, S̄ = ĜS and S = ĜS̄. As
S = Ĝ2S and S̄ = Ĝ2S̄, SSH solitons not only respect the Z2

transformation properties of the dimerized ground states un-
der Ĝ but also form a representation of a Z2 group, of which
the generator is Ĝ. For the RM model, ĜPT inverts a soliton
and translates the inverted soliton by a half unit cell, which
transforms a soliton into itself having the same energy eigen-
value: S = ĜPTS and S̄ = ĜPTS̄ [Fig. 6(d)]. Thus, ĜPT

endows equivalent relations to RM solitons, as well.

Similarly, for the DC model, the class I operator (Ĝy)
gives equivalence relations among solitons of the same chi-
rality. Under Ĝy , the four RC solitons are cyclically trans-
formed into other RC solitons having the same energy spec-
trum [Fig. 6(g)]. Similarly, the four LC solitons and four AC
solitons are cyclically transformed under Ĝy [Fig. 6(g)]. Like
the single-chain model, each set of chiral solitons of the same
chirality not only respects the Z4 transformation properties of
the dimerized ground states but also forms the representation
of a Z4 group, which can be useful in the topological opera-
tion [38].

Next, class II operators endow the particle-hole dualities to
solitons. In the single-chain models, Γ̂II effectively exchanges
the sublattice potentials in every unit cell and translates a soli-
ton by a half unit cell. The soliton then transforms into the
antisoliton with the opposite energy spectrum, and vice versa
[Figs. 6(b) and 6(e)]. Furthermore, the wave functions of
the soliton and antisoliton (ΨS and ΨS̄) are related by ĈII as
ΨS̄ ∝ ĈIIΨS = iσxΨ∗S , which endows the particle-hole dual-
ity in the quantum level.

Similarly, for the DC model, the class II operator (Γ̂(i)
II ,

Ĉ(i)
II ) transforms an RC soliton into an LC soliton having the

opposite soliton energy states, and vice versa, endowing the
particle-hole duality between RC and LC solitons [Fig. 6(h)].
For example, SR1 = Γ̂

(2)
II S

L
2 [Fig. 6(h)], which explains the

opposite spectra of the RC and LC solitons [Figs. 5(c) and
5(d)]. The complete relations are shown in Fig. 6(h). It is
noteworthy that due to the particle-hole duality, solitons and
antisolitons can be created or annihilated pairwise like an or-
dinary particle-antiparticle pair.

Finally, the class III operator can endow either self- or
particle-hole dualities depending on the type of solitons. Un-
der the class III operator (Γ̂III or ĈIII), an SSH soliton is trans-
formed into itself with the opposite energy level [Fig. 6(c)].
As a result, the SSH soliton should have a symmetric spec-
trum, which allows a zero energy state only [Fig. 5(a)]. How-
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TABLE IV. Relations among topological charges. QS andQS̄ (QS∗

and QS̄∗ ) are the topological charges of the soliton and antisoliton
for the SSH (RM) model, respectively. For the DC model, QSki
(k = R,L,A) indicate the topological charges of RC, LC, and AC
solitons. Here i, j = 1, 2, 3, 4 and Sk0,1 = Sk4,5.

Model Class Charge relation Role

I QS = QS̄ Equivalence
SSH II QS = −QS̄ Particle-hole

III QS = −QS , QS̄ = −QS̄ Self-duality

I QS∗ = QS∗ , QS̄∗ = QS̄∗ Equivalence
RM II QS∗ = −QS̄∗ Particle-hole

III QS∗ = −QS̄∗ Particle-hole

I QSki
= QSkj

Equivalence
II QSRi

= −QSLi±1
Particle-hole

DC II QSAi
= −QSAi+1

Particle-hole
III QSRi

= −QSLj Particle-hole
III QSAi

= −QSAi Self-duality

ever, for the RM solitons, there is no allowed self-duality due
to the sublattice symmetry breaking. Rather, the class III op-
erator transforms S∗ to S̄∗ with the opposite energy level, and
vice versa, endowing the particle-hole duality to the RM soli-
tons [Figs. 5(b) and 6(f)].

For the DC model, the class III operator endows the self-
duality to AC solitons as it does in the SSH model and
particle-hole duality to a pair of RC and LC solitons as it does
in the RM model [Fig. 6(i)]. For example, Γ̂

(i)
III transforms an

AC soliton (RC soliton) into itself (LC soliton) with the op-
posite soliton energy states. For AC solitons, this self-duality
explains the symmetrically located midgap states [Fig. 5(e)].

V. TOPOLOGICAL PROPERTIES OF SOLITONS

A. Topological charges

We now investigate the roles of the class I, II, and III opera-
tors in the topological properties of topological solitons using
an adiabatic evolution and the corresponding effective two-
dimensional (2D) systems. An adiabatic evolution can be gen-
erated by transporting solitons very slowly along the adiabatic
path [Figs. 7(a1)–7(e1)] and the corresponding effective 2D
Hamiltonian is obtained by taking the second dimension in the
momentum space as the cyclic evolution [20, 39] [Figs. 7(a2)–
7(e2)]. The corresponding topological charges of solitons can
be calculated through the generalized Goldstone-Wilczek for-
mula or the partial phase-space Chern number [15, 39]. As a
result, the class I operators give the equivalent relations among
topological soliton charges while the class II operators do the
particle-hole relations. The class III operators can endow ei-
ther particle-hole or self-duality depending on the model sys-
tem. The results are summarized in Table IV. See detail proofs
in Appendix C.

In the SSH model, the soliton chargeQS and the antisoliton

charge QS̄ are obtained from the adiabatic processes A → B
and B → A, respectively [Figs. 7(a1) and 7(a2)]. Then class I
(Ĝ) and II operators (Γ̂II, ĈII) endow the equivalence relation
(QS = QS̄) and the particle-hole relation (QS = −QS̄), re-
spectively. On the other hand, class III operator (Γ̂III, ĈIII)
endows the self-duality (QX = −QX ), where X = S, S̄.
Combining these, because the soliton charge is defined up to
modulo |e|, the SSH soliton charge is consistently given by
± 1

2 |e| per spin [13].
Similarly, in the RM model, the soliton charge QS∗ and

the antisoliton charge QS̄∗ can be obtained from the adia-
batic processes A∗ → B∗ and B∗ → A∗, respectively [see
Figs. 7(b1) and 7(b2)]. First, the class I operator (ĜPT) gives
the equivalence relation: QS = QS and QS̄ = QS̄ . Second,
like the SSH model, the class II operator (Γ̂II, ĈII) gives the
particle-hole relation of QS∗ = −QS̄∗ , which is consistent
with the known topological charge of the solitons in the RM
model [17]: QS∗ = |e|

2 (1−f) andQS̄∗ = |e|
2 (1+f) = −QS∗

(mod |e|), where f is the fractional charge deviated from the
SSH soliton due to the sublattice symmetry breaking.

In the DC model, the class I operator (Ĝy) imposes the
equivalent relations such that the topological charges of chiral
solitons of the same chirality are exactly the same. In con-
trast, the class II operator (Γ̂(i)

II , Ĉ(i)
II ) gives the particle-hole

relation to the topological charges of the RC and LC solitons
such that QSRi = −QSLi±1

. The class II operator also en-
dows the particle-hole relation to the topological charges of
the AC solitons: QSAi = −QSAi+1

. The class III operator can
endow the self-duality to the topological charges among AC
solitons as it does in the SSH model (QSAi = −QSAi ) and
give particle-hole relation to a pair of RC and LC solitons as it
does in the RM model (QSRi = −QSLj ). Combining these
relations and the calculated Chern number [20] of ±2, the
topological charges of the RC and LC solitons are obtained:
QSRi = −QSLi = − 1

2 |e| per spin. Similarly, for the AC soli-
ton, one can derive QSAi = ±QSAi . Here i, j = 1, 2, 3, 4 and
Sk0,1 = Sk4,5. As the soliton charge is defined up to modulo
|2e| for the DC model, the possible AC soliton charges are
QAi = 0,± |e| per spin.

B. Topological charge pumping

Using class I, II, and III operators, we have found the equiv-
alent and particle-hole relations among topological solitons.
Based on this finding, we now systematically discuss topo-
logical properties of the SSH, RM, and DC models.

Due to the equivalence and particle-hole duality, there is
no topologically protected charge pumping in the SSH and
RM models. In the SSH model, along the adiabatic evolution
A → B → A, the Wannier charge centers [40] split into
two parts and then return to their original positions after one
adiabatic cycle [Fig. 7(a1)]. Similarly, in the RM model, the
Wannier charge center moves to the right and finally returns to
its original position [Fig. 7(b1)] along the adiabatic evolution
A∗ → B∗ → A∗.
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FIG. 7. Adiabatic evolutions, topological charge pumpings, and chiral edge states. [(a1)–(e1)] Adiabatic evolutions (top panel) and topological
charge pumping (bottom panel) for the (a1) SSH, (b1) RM, (c1) RC, (d1) LC, and (e1) AC solitons. Each adiabatic evolution is generated by
transporting successive solitons along the adiabatic paths in the order parameter space [Figs. 4(f)–4(i)]. The movements of Wannier charge
centers (cyan circles) are represented by the cyan arrows. Each bottom graph shows the calculated Berry phase (left axis) and Wannier charge
center (right axis) under one cycle of the adiabatic evolution. In (a1), (b1), and (e1), there is no Thouless topological charge pumping. In (c1)
[(d1)], the quantized charges are pumped to the left (right). [(a2)–(e2)] Calculated 2D Berry curvature maps of the corresponding 2D effective
systems, where each adiabatic evolution is represented by ky momentum in the extra dimension. The color scale is normalized. In (a2) and
(e2), red and blue arrows indicate the singular points. [(a3)–(e3)] Calculated band spectra with open (closed) boundary condition along the
x direction (y direction) over the cylindrical geometries in (a4)–(e4). Dispersions of edge states are indicated by blue, red, and green colors.
[(a4)–(e4)] Schematics of cylindrical geometries and edge states in real space. On each cylinder, red and green arrows (blue lines and arrows)
indicate chiral (trivial) edge states. The chiral edge states for RC and LC solitons move oppositely in (c4) and (d4), leading to the particle-hole
duality between them. In (e3) and (e4), the AC solitons have both right- and left-moving edge states at each side, leading to the self-duality
like the SSH solitons in (a3) and (a4).
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On the other hand, in the DC model, the topological charge
pumping is allowed during the adiabatic processes that cor-
respond to four successive RC and LC solitons. Along the
adiabatic evolution AA → BA → BB → AB → AA,
two electrons are pumped to the left [Fig. 7(c1)] while two
are pumped to the right along the opposite adiabatic evalua-
tion AA → AB → BB → BA → AA [Fig. 7(d1)]. For
the adiabatic process using AC solitons, however, there is no
topological charge pumping like the SSH model [Fig. 7(e1)].

These features are clearly encoded in the phase-space Berry
curvatures. Due to the particle-hole duality, the signs of the
Berry curvature for two adiabatic processes (A → B and
B → A that correspond to soliton and antisoliton, respec-
tively) are opposite in the SSH model [Fig. 7(a2)], which leads
to a zero total Chern number. Similarly, the Berry curvatures
for two adiabatic processes (A∗ → B∗ and B∗ → A∗ that
correspond to soliton and antisoliton, respectively) show the
opposite signs in the RM model leading to a zero total Chern
number as well. Note that we take the limit of mz → 0 in the
RM model to calculate Berry curvature in the gapless SSH
model. For the DC model, due to the particle-hole duality,
the Berry curvatures for the RC and LC solitons also lead to
opposite total Chern numbers [Figs. 7(c2) and 7(d2)]. For
the AC soliton, the signs of the Berry curvature for the adi-
abatic processes (AA → BB and BB → AA) are opposite
like the SSH model, which leads to a zero total Chern number
[Fig. 7(e2)].

C. Soliton chirality

Furthermore, the collaboration of the equivalence relation
and particle-hole duality determines the existence of soliton
chirality. As soliton chirality is inherited from the chiral
edge states of the quantum Hall insulator [20, 41], a sufficient
condition is either the time-reversal symmetry breaking or a
nonzero total Chern number.

However, for the SSH and RM models, adiabatic pro-
cesses, which are generated by the soliton and antisoliton pair
[Figs. 7(a1) and 7(b1)], have a zero total Chern number due
to the particle-hole duality [Figs. 7(a2) and 7(b2)] permitting
no chirality to solitons. The corresponding adiabatic evolu-
tion and the effective 2D Hamiltonians (Appendix E) have the
time-reversal symmetry [Figs. 7(a1) and 7(b1)], leading to no
chiral edge states in the 2D cylindrical geometry [Figs. 7(a3)
and 7(b3)].

By contrast, two possible adiabatic processes, which are
generated by either RC solitons or LC solitons via the equiv-
alent relations [Figs. 7(c1) and 7(d1)], have opposite total
Chern numbers [20] of ±2 due to the particle-hole dual-
ity [Figs. 7(c2) and 7(d2)] permitting the opposite chirali-
ties to the solitons. The corresponding effective 2D Hamil-
tonians become Chern insulators with time-reversal symme-
try breaking (Appendix E), which leads to the opposite chi-
ral edge states in the 2D cylindrical geometry [Figs. 7(c3),
7(c4), 7(d3), and 7(d4)]. For AC solitons, the recovered
time-reversal symmetry makes the total Chern number zero
[Fig. 7(e2)] leading to no chirality [Figs. 7(e3) and 7(e4)] like

SSH solitons [Figs. 7(a3) and 7(a4)].

D. Electrical charges of soliton and topological algebra

Finally, we recover the spin degree of freedom and discuss
the electric charges and possible topological algebra of chiral
solitons for potential topological information devices. First,
consider RC and LC solitons. Because RC and LC solitons
have a topological charge of QRi = −QLi = − |e| /2 per spin,
RC and LC solitons have electric charges in integer multiples
of |e| when considering the spin degree of freedom. When
the Fermi level lies at E = 0, an RC soliton (LC soliton) is
negatively (positively) charged by |e| with no spin, acting like
a spinless electron (hole): qSR = − |e| and qSL = + |e|. Here
qSk denotes the electric charge of solitons (k = R,L,A).

Next consider the AC solitons. An AC soliton can have
three electrical charges qSA = 0, ±2 |e|, because an AC soli-
ton can have three topological charge values QAi = 0, ± |e|
per spin based on the symmetry analysis. In the absence of
interchain coupling, an AC soliton is composed of two SSH
solitons (one for each chain). When the charge-neutrality of
the system is maintained, an SSH soliton has only one electron
state, which leads a spinful charge-neutral soliton. However,
in the presence of the interchain coupling, two soliton states
are located above and below E = 0, respectively [Fig. 5(e)].
Then two electrons occupy the lower energy level and an AC
soliton becomes both chargeless and spinless. In this case,
in contrast to the SSH solitons, an AC soliton is a new ex-
tended state having no charge and no spin: qSA = 0. Thus,
this neutral AC soliton can survive very long time even when
it interacts with other external defects having either charge or
spin. On the other hand, when EF is located between the up-
per (lower) soliton states and valence (conduction) band, the
AC soliton has the electrical charge of qSA = −2 |e| (+2 |e|)
with no spin.

Furthermore, in the sense of topological operations, the
topological electric charges of chiral solitons respect Z4 topo-
logical algebra. That is, the topological solitons can be added
or subtracted in between and their topological charges satisfy
the Z4 algebra during the corresponding addition or subtrac-
tion. For example, an AC soliton (SA1 ) is equivalent to the
addition of two successive RC solitons (SR1 and SR2 ) or LC
solitons (SL2 and SL3 ) as shown in the order parameter space
[Figs. 4(g)–4(i)]. Then the electric charges automatically sat-
isfy the algebra of qSA = 2qSR = 2qSL (mod 4 |e|), because
qSA = ±2 |e|, qSR = − |e|, and qSL = + |e|.

VI. CONCLUSION

We have demonstrated a general framework that explains
topological features of ground states as well as topological
solitons in prototypical quasi-1D systems such as the SSH,
RM, and DC models using the generalized time-reversal,
particle-hole and chiral symmetry operators. Combining time-
reversal, particle-hole, chiral, and nonsymmorphic symmetry
operators, we established three essential operators which are
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TABLE V. Basic nonspatial and spatial operators for the SSH and
RM models in the Bloch basis and low-energy continuum theory.
Ĝ ≡ {E|a0

2
} is the half-translation operator, P̂ is the inversion

operator with respect to the bonding center (Fig. 1), and K̂ is the
complex-conjugation operator.

Type Operator Bloch Continuum

T̂ K̂ ⊗ (kx → −kx) σzK̂
Nonspatial Ĉ σzK̂ ⊗ (kx → −kx) K̂

Γ̂ σz σz

Spatial Ĝ e−i
kxa0

2 σx ei
π
2 σx

P̂ σx ⊗ (kx → −kx) σy ⊗ (x→ −x)

TABLE VI. Basic nonspatial and spatial operators for the DC model
in the Bloch basis and low-energy continuum theory. T̂D, ĈD, and Γ̂D

are the extended time-reversal, particle-hole, and chiral operators,
respectively. Ĝ(i) ≡ {E|(−1)i+1 a0

2
}(i) is the fractional translation

operator along the ith chain only. Ĝy ≡ {My| − a0
4
} is the glide

reflection operator, whereMy is a mirror operator with respect to the
xz plane.

Type Operator Bloch Continuum

T̂D

(
1 0
0 1

)
K̂ ⊗ (kx → −kx)

(
σz 0
0 e−i

π
2 σz

)
K̂

Non ĈD

(
σz 0
0 σz

)
K̂ ⊗ (kx → −kx)

(
1 0
0 e−i

π
2 1

)
K̂

Γ̂D

(
σz 0
0 σz

) (
σz 0
0 σz

)
Ĝ(1)

(
e−i

kxa0
2 σx 0
0 1

) (
ei
π
2 σx 0
0 1

)
Spatial Ĝ(2)

(
1 0

0 ei
kxa0

2 σx

) (
1 0
0 e−i

π
2 σx

)
Ĝy ei

kxa0
4

(
0 σx
1 0

)
e−i

π
4

(
0 σx
1 0

)

symmetry operators before the spontaneous symmetry break-
ing. After spontaneous symmetry breaking, the class I and II
operators connect degenerate ground states while the class III
operators give particle-hole symmetry to each ground state,
which is an extended Goldstone theorem to the 1D lattice
systems. For topological solitons, the class I operators en-
dow equivalent relations and cyclic group structures while
the class II and III operators do particle-hole relations. Us-
ing these operators, we systematically described three distinct
types of topological charge pumping and soliton chirality in
the SSH, RM, and DC models. Our work can be easily ap-
plied in various condensed matter systems as well as photonic
crystal and cold atomic systems.

Appendix A: Class I, II, and III operators

In Appendix A, we explicitly present the class I, II, and III
operators. The class I, II, and III operators are constructed
using the nonspatial and spatial operators which are listed in
Table V and VI. The explicit representations of the class I,
II, and III operators are listed in Table VII and VIII. Using
these explicit forms, one can easily prove the symmetry trans-
formation properties of both Hamiltonians and their ground
states under the class I, II, and III operators shown in Table II.

TABLE VII. Class I, II, and III operators for the SSH and RM
models in the Bloch basis and low-energy continuum theory. Ĝ ≡
{E|a0

2
} is the half-translation operator, ĜPT ≡ ĜP̂T̂ is the

PT-symmetric half-translation operator, Γ̂PT ≡ Γ̂P̂T̂ is the PT-
symmetric chiral operator, and ĈPT ≡ ĈP̂T̂ is the PT-symmetric
charge-conjugation operator. Îk ≡ (kx → −kx) and Îx ≡ (x →
−x).

Model Class Operator Bloch Continuum

ÔI Ĝ e−i
kxa0

2 σx ei
π
2 σx

Γ̂II ĜΓ̂ −ie−i
kxa0

2 σy σy

SSH ĈII ĜĈ −ie−i
kxa0

2 σyK̂ ⊗ Îk ei
π
2 σxK̂

Γ̂III Γ̂ σz σz
ĈIII Ĉ σzK̂ ⊗ Îk K̂

ÔI ĜPT −e−i
kxa0

2 K̂ −K̂ ⊗ Îx
Γ̂II ĜΓ̂ −ie−i

kxa0
2 σy σy

RM ĈII ĜĈ −ie−i
kxa0

2 σyK̂ ⊗ Îk ei
π
2 σxK̂

Γ̂III Γ̂PT iσyK̂ −σyK̂ ⊗ Îx
ĈIII ĈPT iσy ⊗ Îk −iσx ⊗ Îx

Appendix B: Proofs of the transformation properties of
topological solitons under class I, II, and III operators

In Appendix B, we explicitly prove the transformation
properties among topological solitons under the class I, II, and
III operators using the low-energy effective Hamiltonians.

1. Single-chain model

Consider a soliton solution having a wave function Ψ(x),
a dimerization profile ∆(x), and an energy eigenvalue E.
Because the soliton solution can be obtained using the low-
energy effective continuum Hamiltonian [17, 34–36], the so-
lution satisfies the following eigenvalue equation:

HSSH(−i∂x,∆(x))Ψ(x) = EΨ(x). (B1)

On the other hand, the low-energy effective Hamiltonian HSSH

transforms under an operator Ô as

ÔHSSH(−i∂x,∆(x))Ô−1 = ηHSSH(−i∂x,∆′(x)) (B2)
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TABLE VIII. Class I, II, and III operators for the DC model in the Bloch basis and low-energy continuum theory.

Model Class Operator Bloch Continuum

ÔI Ĝy ei
kxa0

4

(
0 σx
1 0

)
e−i

π
4

(
0 σx
1 0

)
Γ̂

(1)
II Ĝ(1)Γ̂D

(
−ie−i

kxa0
2 σy 0

0 σz

) (
σy 0
0 σz

)
Γ̂

(2)
II Ĝ(2)Γ̂D

(
σz 0

0 −ie+i
kxa0

2 σy

) (
σz 0
0 −σy

)
Ĉ(1)

II Ĝ(1)ĈD

(
−ie−i

kxa0
2 σy 0

0 σz

)
K̂ ⊗ (kx → −kx) i

(
σx 0
0 −1

)
K̂

DC Ĉ(2)
II Ĝ(2)ĈD

(
σz 0

0 −ie+i
kxa0

2 σy

)
K̂ ⊗ (kx → −kx)

(
1 0
0 −σx

)
K̂

Γ̂
(1)
III Γ̂

(1)
II Ĝy ei

kxa0
4

(
0 −e−i

kxa0
2 σz

σz 0

)
e−i

π
4

(
0 e−i

π
2 σz

σz 0

)
Γ̂

(2)
III Ĝ−1

y Γ̂
(2)
II −ie−i

kxa0
4

(
0 σy

ei
kxa0

2 σy 0

)
ei
π
4

(
0 −σy
−iσy 0

)
Ĉ(1)

III Ĉ(1)
II Ĝy ei

kxa0
4

(
0 −e−i

kxa0
2 σz

σz 0

)
K̂ ⊗ (kx → −kx) iei

π
4

(
0 1
−1 0

)
K̂

Ĉ(2)
III Ĝ−1

y Ĉ
(2)
II −ie−i

kxa0
4

(
0 σy

ei
kxa0

2 σy 0

)
K̂ ⊗ (kx → −kx) ei

π
4

(
0 −σx
σx 0

)
K̂

as shown in Table II. Therefore, the transformed wave func-
tion Ψ′(x) ≡ ÔΨ(x) is also a solution that satisfies the fol-
lowing eigenvalue equation:

HSSH(−i∂x,∆′(x))Ψ′(x) = E′Ψ′(x), (B3)

where ∆′(x) and E′ = ηE with η = ±1 are the dimerization
profile and energy spectrum of the transformed soliton. De-
pending on the transformed dimerization profile and energy
spectrum, the transformed soliton can be determined either as
a soliton or an antisoliton.

Let us see the role of the class I, II, and III operators on the
topological solitons in the SSH model. First, under the class I
operator Ĝ, the transformed soliton has ∆′(x) = −∆(x) and
E′ = E. Since the sign of the dimerization displacement
profile ∆(x) is reversed, Ĝ transforms S into S̄ with the same
energy eigenvalue, and vice versa; symbolically, ĜS = S̄ and
ĜS̄ = S with ES = ES̄ . Therefore, the class I operator
endows an equivalent relation between solitons in the SSH
model. Moreover, if we repeatedly apply Ĝ two times to a
soliton, it returns to itself: Ĝ2S = S and Ĝ2S̄ = S̄. Thus, the
soliton and antisoliton form an irreducible representation for
the Z2 group of which the generator is Ĝ.

Next, under the class II operator ĈII (or Γ̂II), the trans-
formed soliton has ∆′(x) = −∆(x) and E′ = −E. Then
ĈII transforms S into S̄ with the reversed energy eigenvalue,
and vice versa: symbolically, ĈIIS = S̄ and ĈIIS̄ = S with
ES = −ES̄ . In particular, the wave functions of the soliton
and antisoliton form a particle-hole pair under ĈII. Mathemat-
ically, ΨS̄(x) ∝ ĈIIΨS(x) = iσxΨ∗S(x).

Finally, under the class III operator Ĉ (or, equivalently, Γ̂),
the transformed soliton has ∆′(x) = ∆(x) and E′ = −E.
Thus, a soliton transforms into itself with the opposite en-
ergy eigenvalue, which allows the zero energy state: sym-
bolically, ĈS = S and ĈS̄ = S̄ with ES = −ES = 0 and
ES̄ = −ES̄ = 0. In this sense, the class III operator Ĉ (or,
equivalently, Γ̂) endows the self-duality (or, equivalently, the
particle-hole symmetric spectra) to each soliton and antisoli-
ton.

Similar arguments can be applied to the transformation
properties of topological solitons for the RM model. Let a
wave function Ψ(x) be a soliton solution that has a dimer-
ization profile ∆(x) and an energy eigenvalue E. As shown
in Table II, the low-energy effective Hamiltonian HRM trans-
forms under an operator Ô as

ÔHRM(−i∂x,∆(x),mz)Ô
−1 = ηHRM(−i∂x,∆′(x),mz).

Thus, the transformed wave function Ψ′(x) ≡ ÔΨ(x) is also
a solution that satisfies the following eigenvalue equation:

HRM(−i∂x,∆′(x),mz)Ψ
′(x) = E′Ψ′(x), (B4)

where ∆′(x) and E′ = ηE are the dimerization profile and
energy spectrum of the transformed soliton. Depending on
the dimerization profile, the transformed soliton can be either
a soliton or an antisoliton.

First, under the class I operator ĜPT, the transformed soli-
ton has ∆′(x) = −∆(−x) = ∆(x) and E′ = E, where
the dimerization profile is explicitly inverted in real space due
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to the inversion operator P̂ . Since the dimerization displace-
ment profile ∆(x) does not change, ĜPT transforms a soliton
into itself having the same energy eigenvalue: symbolically,
ĜPTS∗ = S∗ and ĜPTS̄∗ = S̄∗. In this sense, the class I
operator endows equivalent relations to solitons for the RM
model.

Next, the class II operator ĈII (or Γ̂II) acts in the same
way as it does for the SSH model, endowing the particle-
hole duality. Symbolically, ĈIIS

∗ = S̄∗ and ĈIIS̄
∗ = S∗ with

ES∗ = −ES̄∗ .
Finally, under the class III operator ĈPT (or, equivalently,

Γ̂PT), the transformed soliton has ∆′(x) = −∆(x) and E′ =

−E. Thus, ĈPT transforms a soliton into an antisoliton with
the opposite energy eigenvalue, and vice versa: symbolically,
ĈPTS∗ = S̄∗ and ĈPTS̄∗ = S∗ with ES∗ = −ES̄∗ . Therefore,
the class III operator in the RM model gives the particle-hole
duality unlike the class III operator in the SSH model. Note
that the difference of the role of the class III operators in the
SSH and the RM model is attributed to the sublattice sym-
metry breaking; the sublattice symmetry breaking in the RM
model gives distinct energy spectra to the soliton and the anti-
soliton, which prohibits the self-duality.

2. Double-chain model

The solutions of the chiral solitons in the DC model can
be obtained using the low-energy effective Hamiltonian. Let
us consider the wave function of a chiral soliton Ψ(x) that
satisfies the following eigenvalue equation:

H(∆(1)(x),∆(2)(x))Ψ(x) = EΨ(x), (B5)

where ∆(1)(x) and ∆(2)(x) are dimerization displacement
profiles and E is the energy eigenvalue for the chiral soliton.
As shown in Table II, the low-energy effective Hamiltonian
HDC transforms under an operator Ô as

ÔHDC(∆(1)(x),∆(2)(x))Ô−1 = ηHDC(∆′(1)(x),∆′(2)(x)).

Then the transformed wave function Ψ′(x) ≡ ÔΨ(x) is also
a soliton solution that satisfies the following eigenvalue equa-
tion:

HDC(∆′(1)(x),∆′(2)(x))Ψ′(x) = E′Ψ′(x), (B6)

where (∆′(1)(x),∆′(2)(x)) and E′ = ηE are the dimeriza-
tion profiles and energy spectrum of the transformed soliton.
Here η = ±1. Depending on the dimerization profile, the
transformed chiral soliton can be RC, LC, or AC solitons.

First, under the class I operator Ĝy , the transformed soliton
has ∆′(1)(x) = −∆(2)(x), ∆′(2)(x) = ∆(1)(x), and E′ = E.
Thus, Ĝy transforms a chiral soliton into another chiral soli-
ton of the same chirality having the same energy eigenvalue.
Symbolically, we find that

Sk1 = ĜyS
k
4 = Ĝ2

yS
k
3 = Ĝ3

yS
k
2 = Ĝ4

yS
k
1 (B7)

for k = R,L,A. Thus, Ĝy endows the equivalence relation to
the chiral solitons of the same chirality and hence we denote

the energy eigenvalues as ERC, ELC, and EAC for RC, LC,
and AC solitons, respectively.

Next, under the class III operator Ĉ(i)
III (or, equivalently,

Γ̂
(i)
III ), the transformed chiral soliton has the following dimer-

ization profiles and energy eigenvalue:

∆′(1)(x) = (−1)i+1∆(2)(x),

∆′(2)(x) = (−1)i+1∆(1)(x),

and E′ = −E. From this, one can find two types of transfor-
mations. First, an AC soliton can transform into itself under
Ĉ(i)

III [or, equivalently, Γ̂
(i)
III ]. For example, consider the AC

soliton SA1 having ∆(1) = ∆(2) and energy eigenvalue EAC.
Under Ĉ(1)

III , this AC soliton transforms into itself with the op-
posite eigenvalue −EAC, which implies the AC soliton has
a particle-hole symmetric spectra ±EAC, leading to a self-
duality. In this sense, the class III operator Ĉ(i)

III endows the
self-duality to each AC soliton.

On the other hand, under the class III operator, an RC soli-
ton can transform to an LC soliton with the opposite energy
eigenvalues, and vice versa. For example, the RC soliton SR1
transforms into the LC soliton SL3 under Ĉ(1)

III : symbolically,
SL3 = Ĉ(1)

III S
R
1 with ERC = −ELC. In this sense, the class III

operator Ĉ(i)
III endows the particle-hole duality. Therefore, the

class III operator endows the self-duality to AC solitons as it
does in the SSH model and the particle-hole duality to RC and
LC soliton pairs as it does in the RM model.

Finally, under the class II operator Ĉ(i)
II [or Γ̂

(i)
II ], the

transformed chiral soliton has ∆′(1)(x) = (−1)i∆(1)(x),
∆′(2)(x) = (−1)i+1∆(2)(x) and E′ = −E. From this, one
can find two types of transformations: An RC soliton trans-
forms into an LC soliton with the opposite energy eigenval-
ues, and vice versa. On the other hand, an AC soliton trans-
forms into another AC soliton with the same energy spectra
because an AC soliton has the particle-hole symmetric en-
ergy spectra. For example, under Ĉ(1)

II , the RC soliton SR1
transforms to the LC soliton SL2 and the AC soliton SA2 trans-
forms to the AC soliton SA1 : symbolically, Ĉ(1)

II SR1 = SL2 with
ERC = −ELC and Ĉ(1)

II SA2 = SA1 . For both cases, the original
and transformed wave functions [ΨO(x) and ΨT(x)] satisfy
the particle-hole relation under Ĉ(1)

II . Therefore, the class II
operator endows the particle-hole duality between chiral soli-
tons.

Appendix C: Topological charges of solitons

In this section, we explicitly prove the roles of the class I,
II, and III operators in the soliton charges for the SSH, RM,
and DC models using the corresponding adiabatic evolution
and the corresponding partial Chern number [15, 20, 39].

The corresponding adiabatic evolution can be generated by
transporting solitons very slowly and is represented by the
time-dependent phase-space Hamiltonian. For the single- and
double-chain models, the phase-space Hamiltonians are given
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by

Hsingle[kx, t] = Hsingle[kx,∆(t),mz(t)], (C1)

HDC[kx, t] = HDC[kx,∆
(1)(t),∆(2)(t)], (C2)

where ∆(t)’s and mz(t) are time-dependent functions that
satisfy the periodic boundary condition H[kx, t + T ] =
H[kx, t] with a period T .

Basically, the topological charge of a topological soliton
can be calculated through the generalized Goldstone-Wilczek
formula or the phase-space Chern number [15, 20, 39]. That
is, the partial phase-space Chern number Cpartial under an adi-
abatic process is equal to the topological charge Q carried by
the corresponding topological soliton (or Q = − |e|Cpartial).
The partial phase-space Chern number from the initial time ti
to the final time tf is defined as

Cpartial =
i

2π

∑
n=occ

∫
BZ
dkx

∫ tf

ti

dt Ωn, (C3)

where the summation is done over the occupied bands and
Ωn = 〈∂kxun | ∂tun〉 − 〈∂tun | ∂kxun〉 is the phase-space
Berry curvature. From now on, we will omit dkx in the in-
tegral and use following notation for simplicity:

Ωn(Ô, t) ≡
〈
∂kxÔun(kx, t)

∣∣∣ ∂tÔun(kx, t)
〉

(C4)

−
〈
∂tÔun(kx, t)

∣∣∣ ∂kxÔun(kx, t)
〉
,

where Ô is an operator. Note that the total Chern numberCtotal
is defined for one full cycle.

1. Single-chain model

Let us see consider the roles of the glide operator Ĝ (class I)
and the nonsymmorphic chiral operator Γ̂II (class II) on the
topological charges of solitons in the SSH model. Because
the topological number does not depend on the details of the
adiabatic process, without loss of generality, we choose the
adiabatic process along the straight lines in the order param-
eter space as shown in Figs. 4(f) and 7(a1). This adiabatic
process respects the transformation properties which are im-
posed by Ĝ and Γ̂II. Therefore, the phase-space Hamiltonian
satisfies the following relations:

HSSH

[
kx,

T

2
+ t

]
= ĜHSSH[kx, t]Ĝ

−1 (C5)

and

HSSH

[
kx, (2m− 1)

T

4
+ t

]
(C6)

= −Γ̂IIHSSH

[
kx, (2m− 1)

T

4
− t
]

(Γ̂II)
−1,

where m ∈ Z, t ∈ [0, T4 ]. Note that we choose such that
HSSH[kx, t = 0] and HSSH[kx, t = T/2] correspond to the A
and B phases, respectively.

If |un(kx, t)〉 is an eigenstate with an energy eigenvalue
En(kx, t), then the wave function Ĝ|un(kx, t)〉 is also an
eigenstate of the Hamiltonian at time t + T

2 with the same
energy eigenvalue En(kx, t) due to Eq. (C5):

HSSH

[
T

2
+ t

]
Ĝ|un(kx, t)〉 = En(t)Ĝ|un(kx, t)〉, (C7)∣∣∣∣un(kx, T2 + t

)〉
∝ Ĝ|un(kx, t)〉. (C8)

Similarly, if |un(kx,
T
4 − t)〉 is an eigenstate with an

energy eigenvalue En(kx,
T
4 − t), then the wave function

Γ̂II|un(kx,
T
4 − t)〉 is also an eigenstate of the Hamiltonian at

time T
4 + t with the opposite energy eigenvalue−En(kx,

T
4 −

t) due to Eq. (C6):

HSSH

[
kx,

T

4
+ t

]
Γ̂II

∣∣∣∣un(kx, T4 − t
)〉

(C9)

= −En
(
kx,

T

4
− t
)

Γ̂II

∣∣∣∣un(kx, T4 − t
)〉

.∣∣∣∣u3−n

(
kx,

T

4
+ t

)〉
∝ Γ̂II

∣∣∣∣un(kx, T4 − t
)〉

. (C10)

Now, we prove the relation between soliton charges using
the class I operator Ĝ. Let us consider the partial adiabatic
process from t = 0 to t = T

2 that corresponds to the soliton
S interpolating from A to B phases. Then the corresponding
partial Chern number CS is given by

CS =
i

2π

∑
n=occ

∫
BZ

∫ T
2

0

dt Ωn(Î , t), (C11)

where Î is an identity operator. Similarly, the partial adiabatic
process from t = T

2 to t = T corresponds to an antisoliton S̄
interpolating from B to A phases. Then one can show that the
corresponding partial Chern number CS̄ is equal to CS using
the glide operator Ĝ:

CS̄ =
i

2π

∑
n=occ

∫
BZ

∫ T
2

0

dt Ωn

(
Î , t+

T

2

)
,

=
i

2π

∑
n=occ

∫
BZ

∫ T
2

0

dt Ωn(Ĝ, t),

= CS ,

where Eq. (C8) is used from the first to the second lines and
Ĝ†Ĝ = 1 and 〈un(kx, t) |un(kx, t)〉 = 1 are used from the
second to the last lines. Thus, QS = QS̄ .

Next, we prove the relation between soliton charges using
the class II operator Γ̂II. In this case, let us consider the partial
adiabatic process from t = T

2 to t = 0 that corresponds to an
antisoliton S̄ interpolating from B to A ground states. Then
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the corresponding partial Chern number CS̄ is equal to −CS :

CS̄ =
i

2π

∑
n=occ

∫
BZ

∫ −T4
+T

4

dt Ωn

(
Î , t+

T

4

)
,

=
i

2π

∑
n=unocc

∫
BZ

∫ −T4
+T

4

dt Ωn

(
Γ̂II,−t+

T

4

)
,

=
i

2π

∑
n=unocc

∫
BZ

∫ +T
4

−T4
dt Ωn

(
Î , t+

T

4

)
,

= −CS ,

where Eq. (C10) is used from the first to the second lines and
(Γ̂

(1)
II )†Γ̂

(1)
II = 1, 〈un(kx, t) |un(kx, t)〉 = 1, and t → −t are

used from the second to the third lines. From the third to the
last lines, we use the fact that the total sum over the occupied
and unoccupied states is zero. Thus, QS = −QS̄ . In a similar
way, one can prove QS = −QS , QS̄ = −QS̄ using class III
operator.

Similarly, for the RM model, the soliton chargeQS∗ and the
antisoliton chargeQS̄∗ can be obtained from the adiabatic pro-
cesses A∗ → B∗ and B∗ → A∗, respectively [see Figs. 4(f)
and 7(b1)]. The results are summarized in Table IV.

2. Double-chain model

Like the single-chain model, we show the role of the glide
reflection operator Ĝy (class I) and the nonsymmorphic chi-
ral operator Γ̂

(i)
II (class II) on the topological charges of chi-

ral solitons in the DC model. For the DC model, there are
three types of the cyclic adiabatic evolutions depending on the
type of chiral solitons as shown in Figs. 4(g)–4(i) and 7(c1)–
7(e1). Without loss of generality, we choose the adiabatic pro-
cesses along the straight lines in the order parameter space.
These adiabatic processes respect the transformation proper-
ties which are imposed by Ĝy and Γ̂

(i)
II . For example, the

phase-space Hamiltonians for the successive four RC and LC
solitons satisfy the following relations:

HDC

[
kx,

T

4
+ t

]
= ĜyHDC[kx, t]Ĝ

−1
y (C12)

and

HDC

[
kx,

4m− 3

8
T + t

]
(C13)

= −Γ̂
(1)
II HDC

[
kx,

4m− 3

8
T − t

]
(Γ̂

(1)
II )−1,

HDC

[
kx,

4m− 1

8
T + t

]
(C14)

= −Γ̂
(2)
II HDC

[
kx,

4m− 1

8
T − t

]
(Γ̂

(2)
II )−1,

where m ∈ Z, t ∈ [0, 1
8T ].

If |un(kx, t)〉 is an eigenstate with an energy eigenvalue
En(kx, t), then the wave function Ĝy|un(kx, t)〉 is also an

eigenstate of the Hamiltonian at time t + T
4 with the same

energy eigenvalue En(kx, t) due to Eq. (C12):

HDC

[
kx, t+

T

4

]
Ĝy

∣∣∣∣un(kx, t+
T

4

)〉
(C15)

= En(kx, t)Ĝy

∣∣∣∣un(kx, t+
T

4

)〉
.

Similarly, if |un(kx,
T
8 − t)〉 is an eigenstate with an en-

ergy eigenvalue En(kx,
T
8 − t), then the wave function

Γ̂
(1)
II |un(kx,

T
8 −t)〉 is also an eigenstate of the Hamiltonian at

time T
8 + t with the opposite energy eigenvalue−En(kx,

T
8 −

t) due to Eq. (C13):

HDC

[
kx,

T

8
+ t

]
Γ̂

(1)
II

∣∣∣∣un(kx, T8 − t
)〉

(C16)

= −En
(
kx,

T

8
− t
)

Γ̂
(1)
II

∣∣∣∣un(kx, T8 − t
)〉

.

Now, we prove the relation among soliton charges using
the glide reflection operator Ĝy . Let us consider the partial
adiabatic process from t = 0 to t = T

4 that corresponds to the
RC soliton SR1 interpolating from AA to BA phases. Then
the corresponding partial Chern number CSR1 is defined as

CSR1 =
i

2π

∑
n=occ

∫
BZ

∫ T
4

0

dt Ωn(Î , t), (C17)

where Î is an identity operator.
Next let us consider the partial adiabatic process from t =

T
4 to t = T

2 that corresponds to the RC soliton SR2 interpolat-
ing from BA to BB phases. Then the corresponding partial
Chern number CSR2 is equal to CSR1 :

CSR2 =
i

2π

∑
n=occ

∫
BZ

∫ T
4

0

dt Ωn

(
Î , t+

T

4

)
,

=
i

2π

∑
n=occ

∫
BZ

∫ T
4

0

dt Ωn(Ĝ, t),

= CSR1 ,

where Eq. (C15) is used from the first to the second lines and
Ĝ†yĜy = 1 and 〈un(kx, t) |un(kx, t)〉 = 1 are used from the
second to the last lines. Thus, QSR1 = QSR2 . Similarly, one
can prove that topological charges for the chiral solitons of the
same chirality are the same:

QSk1 = QSk2 = QSk3 = QSk4 , (C18)

where k = R,L,A.
Next, we prove the relation among soliton charges using the

nonsymmorphic chiral operator Γ̂
(i)
II . Let us consider the par-

tial adiabatic process from t = 0 to t = T
4 that corresponds to

the RC soliton SR1 interpolating fromAA toBA phases. Then
the corresponding partial Chern number CSR1 can be written
as

CSR1 =
i

2π

∑
n=occ

∫
BZ

∫ +T
8

−T8
dt Ωn

(
Î , t+

T

8

)
.
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Let us consider the partial adiabatic process from t = T
4 to

t = 0 that corresponds to the LC soliton SL4 interpolating
fromBA toAA phases. Then the corresponding partial Chern
number CSL4 is equal to −CSR1 :

CSL4 =
i

2π

∑
n=occ

∫
BZ

∫ −T8
+T

8

dt Ωn

(
Î , t+

T

8

)
,

=
i

2π

∑
n=unocc

∫
BZ

∫ −T8
+T

8

dt Ωn

(
Γ̂

(1)
II ,−t+

T

8

)
,

=
i

2π

∑
n=unocc

∫
BZ

∫ +T
8

−T8
dt Ωn

(
Î , t+

T

8

)
,

= −CSR1 ,

where Eq. (C16) is used from the first to the second lines and
(Γ̂

(1)
II )†Γ̂

(1)
II = 1, 〈un(kx, t) |un(kx, t)〉 = 1, and t → −t

are used from the second to the third lines. From the third
to the last lines, we use the fact that the total sum over the
occupied and unoccupied states is zero. Thus, QSR1 = −QSL2 .
Similarly, one can show that the other pairs of RC and LC
solitons have the opposite topological charges:

QSRi = −QSL5−i (i = 1, 2, 3, 4) for Γ̂
(1)
II , (C19)

QSRi = −QSL
i+(−1)i+1

(i = 1, 2, 3, 4) for Γ̂
(2)
II . (C20)

Also, one can show that the other pairs of two different AC
solitons have the opposite topological charges:

QSAi = −QSAi+1
(i = 1, 3) for Γ̂

(1)
II , (C21)

QSAi = −QSA5−i (i = 2, 4) for Γ̂
(2)
II . (C22)

In a similar way, one can prove the other relations using class
III operators.

Appendix D: Wannier charge center

In this appendix, we discuss the relations between the Wan-
nier charge centers [40] and the Berry phases in the quasi-1D
systems. Based on the relations, the Wannier charge centers
are numerically calculated for the SSH, RM and DC models
[see Figs. 7(a1)–7(e1)]. The Wannier state localized at the jth
unit cell is given by

|Wn(j)〉 =
1√
N

∑
kx

e−ikxj |ψn(kx)〉, (D1)

where n is the band index, |ψn(kx)〉 is a Bloch state, and the
summation is done over kx = m 2π

Na0
withm = 1, . . . , N . For

the single-chain model, the position operator x̂ is given by

x̂ =

N∑
m=1

2∑
n=1

m (|m, an〉〈m, an|) , (D2)

where |m, an〉 is the state localized at atom an in the mth unit
cell. Here an = (a, b). Then the Wannier center of the jth

cell is given by

〈Wn(j) | x̂ |Wn(j)〉 = j +
i

2π

∫ 2π
a0

0

dkx 〈un(kx) | ∂kxun(kx)〉 ,

= j +
γ

2π
, (D3)

where γ is the Berry phase.
However, for the DC model, the normalized position oper-

ator x̂ is given by

x̂ =
1

2

N∑
m=1

4∑
n=1

m (|m, an〉〈m, an|) , (D4)

where |m, an〉 is the state localized at atom an in the mth unit
cell. Here an = (a, b, c, d). In this case, the Wannier center
of the jth cell is given by

〈Wn(j) | x̂ |Wn(j)〉 = j +
i

4π

∫ 2π
a0

0

dkx 〈un(kx) | ∂kxun(kx)〉 ,

= j +
1

2

γ

2π
. (D5)

Appendix E: 2D Effective Hamiltonians

1. Tight-binding Hamiltonian

To understand the topological properties and chiral nature
of the chiral solitons, we take into account an cyclic adiabatic
evolution of a 1D Hamiltonian H1D(kx, t) and we extend the
1D system into a 2D system by substituting the time-evolution
as momentum ky in an extra dimension. Then we construct
the 2D Hamiltonian H2D(kx, ky) such that H2D(kx, ky =
0) = H1D(kx, t = 0) and H2D(kx, ky = 2π) = H1D(kx, t =
T ).

For the single-chain model, the 2D tight-binding Hamilto-
nian Hsingle

2D is given by

Hsingle
2D = t0

∑
nx,ny

c†nx+1,ny
cnx,ny + H.c.

+mz

∑
nx,ny

(−1)nx+1c†nx,nycnx,ny +Hadiabatic,

Hadiabatic =
∆0

4

∑
nx,ny

(−1)nx+1
(
c†nx,nycnx+1,ny+1

+c†nx,nycnx−1,ny−1

)
+ H.c.,

where nx and ny indicate the lattice sites along the original
chain direction and the cyclic direction for the phase evolu-
tion, respectively. When mz = 0 (mz 6= 0), the tight-binding
Hamiltonian corresponds to the adiabatic evolution for the
SSH (RM) model.

For the double-chain model, the 2D tight-binding Hamilto-



18

nian HDC
2D is given by

HDC
2D = H

(1)
2D +H

(2)
2D +Hcoupling,

H
(i)
2D = t0

∑
nx,ny

[
c
(i)†
nx+1,ny

c(i)nx,ny + H.c.
]

+H
(i)
adiabatic,

H
(i)
adiabatic =

∆̃i

4

∑
nx,ny

(−1)nx+1
[
c(i)†nx,nyc

(i)
nx+1,ny+1

+c(i)†nx,nyc
(i)
nx−1,ny−1

]
+ H.c.,

Hcoupling = δt0
∑
nx,ny

[
c(1)†
nx,nyc

(2)
nx,ny + c(1)†

nx,nyc
(2)
nx+1,ny

]
+ H.c.

For the cyclic evolution of AA → BA → BB → AB →
AA, (∆̃1, ∆̃2) is set to be ∆0(1 + i, 1 − i). For the reversed
path, (∆̃1, ∆̃2) = ∆0(1−i, 1+i). For the evolution ofAA→
BB → AA, (∆̃1, ∆̃2) = ∆0(1, 1).

2. Bloch Hamiltonian and time-reversal symmetry for the
single-chain model

From the tight-binding Hamiltonian, we construct the 2D
Bloch Hamiltonian H2D

single(kx, ky) for the SSH and RM mod-
els, which is given by

H2D
single(kx, ky) = 2t0 cos

(
kxa0

2

)
σx

−∆0 cos(kyb) sin

(
kxa0

2

)
σy +mzσz.

This Hamiltonian satisfies the time-reversal symmetry regard-
less of the sublattice symmetry breaking:

T̂ H2D
single(kx, ky)T̂ −1 = H2D

single(kx, ky), (E1)

where T̂ = K̂ ⊗ (k → −k) is the 2D time-reversal operator.
Therefore, the total Chern number is zero.

3. Bloch Hamiltonian and time-reversal symmetry for the
double-chain model

From the tight-binding Hamiltonian, we construct the 2D
Bloch Hamiltonian H2D

DC(kx, ky) for the double-chain model,

which is given by

H2D
DC(kx, ky) =

(
H1 H12

H21 H2

)
, (E2)

with

Hi = (2t0 cos(kxa0/2),−∆(i) sin(kxa0/2), 0) · σ,
H12 = H†21 = δt0(e−ikxa0/412×2 + eikxa0/4σx).

For the RC and LC solitons,

∆(1) = ∆0(cos ky − sin ky), (E3)

∆(2) = ±∆0(cos ky + sin ky), (E4)

where + and− correspond to the RC and LC solitons, respec-
tively. Therefore, the time-reversal symmetry is broken:

T̂ H2D
DC(kx, ky)T̂ −1 6= H2D

DC(kx, ky). (E5)

Therefore, the 2D effective Hamiltonians for the RC and LC
solitons have non-zero total Chern numbers.

On the other hand, the 2D Bloch Hamiltonians for the AC
solitons have the time-reversal symmetry. For example, for
the evolution of AA→ BB → AA,

(∆(1),∆(2)) = ∆0(cos ky, cos ky). (E6)

Then the Hamiltonian has the time-reversal symmetry:

T̂ H2D
DC(kx, ky)T̂ −1 = H2D

DC(kx, ky). (E7)

Therefore, the 2D Bloch Hamiltonians for the AC solitons
have a zero total Chern number.
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