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The mechanism underlying the enhancement of the Sommerfeld coefficient of quasiparticles

at the first-order metamagnetic transition in UTe2, reported by Miyake et al. in J. Phys. Soc.

Jpn. 88, 063706 (2019), is discussed theoretically by taking into account the ferromagnetic

order-parameter fluctuations on the basis of the Landau theory of phase transition. We

find that the enhanced ferromagnetic spin fluctuation gives rise to the enhancement of the

effective mass of the quasiparticles or the Sommerfeld coefficient γ, which is consistent with

the experimental observations. At the same time, the Kadowaki-Woods type scaling around

the metamagnetic transition, reported by Imajo et al. in J. Phys. Soc. Jpn. 88, 083705 (2019)

and Knafo et al. in J. Phys. Soc. Jpn. 88, 063705 (2019), is also understood semiquantitatively

by assuming reasonable values of parameters of Landau-type free energy reproducing key

quantities characterizing the metamagnetic transition.

1. Introduction

The discovery of superconductivity in UTe2 reported in December 20181) gave a strong

impact in the heavy fermion community, and it was confirmed soon after by a subsequent ex-

periment,2) in which a number of intriguing physical properties other than the superconductiv-

ity were reported. In particular, unusual metamagnetic behaviors have attracted considerable

attention.3–5) Among them, it is a non-trivial phenomenon that the Sommerfeld coefficient

and the Aρ coefficient of the T 2 term in the resistivity exhibit sharp enhancements around the

first-order metamagnetic transition.3, 4, 6) UTe2 is considered to be located in the normal phase

near the ferromagnetic quantum critical point under the ambient conditions.1, 2, 7) Therefore,

it is natural to expect that such anomalous properties arise through the effect of ferromagnetic

spin fluctuations of one kind or another, which is enhanced by the first-order metamagnetic

transition. It is remarked that this first-order metamagnetic transition should be conceptu-

ally different from the first-order ferromagnetic transition with the tricritical wings in the

T − P −H phase diagram, which was discussed in Ref. 8.

In this paper, the origin of such a non-trivial behavior is clarified on the basis of an

extended phenomenological theory of the Landau type and the conventional theory of ferro-
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magnetic spin fluctuations. We are not so ambitious to explain the magnetic field dependence

at an arbitrary magnetic field strength and its anisotropic behaviors with respect to the di-

rection of the magnetic field, but to focus on the physical properties only at exactly the

metamagnetic field and ambient pressure in a region with sufficiently low temperatures on the

basis of a phenomenological uniaxial model for the magnetization, i.e., in the b-direction, as

observed in UTe2. The use of this phenomenological model may be justified by the fact that

the direction of the magnetic field (b-direction in UTe2), in which metamagnetic transition

occurs, and that corresponding to the maximum of the magnetic susceptibility (a-direction in

UTe2) are different in general as discussed in Sect. 2.

This paper is organized as follows. In Sect. 2, a theory for the first-order metamagnetic

transition is formulated on the basis of an extended Landau theory of phase transition. On this

basis, in Subsec. 3.1, the structure of ferromagnetic spin fluctuations around the first-order

metamagnetic transition is presented, which shows that such enhancements in the effective

mass and the Aρ coefficient are caused by effect of the flattening of the curvature of the free

energy F (M) around the local minimum corresponding to the lower magnetization at the first-

order transition. It is shown that such an effect is manifested also in the Aρ coefficient. On

this consideration, in Subsect. 3.2, the observed manner of enhancements of the Sommerfeld

coefficient and the Aρ coefficient is evaluated semiquantitatively. Throughout this paper, we

use units of energy, such that ~ = 1, kB = 1, and µB = 1, unless explicitly stated. In Sect. 4,

the results of this study are summarized, and their relevance to the re-entrant appearance of

the superconductivity at B >∼ Bm is briefly mentioned.

2. Extended Landau Theory for Metamagnetic Transition

In this section, we discuss the Landau theory for the first-order metamagnetic transition on

the basis of a uniaxial model for magnetization. First of all, let us discuss the validity of using

the uniaxial model for discussing the metamagnetic transition. If there exists an anisotropy

in the magnetic response, we have to introduce three order parameters corresponding to each

direction as long as we follow the Landau-type theory. However, a condition for the metamag-

netic transition to occur is generally determined independently of its magnetic field direction.

This is due to a general concept based on the crystal symmetry. Namely, the crystal structure

of UTe2 is body-centered orthorhombic and centrosymmetric1) so that the magnetization is in

the b-direction under the magnetic field in the b-direction because there is no coupling term

such as MaMb or McMb in the Landau-type free energy even when the effect of the spin-orbit

interaction is taken into account, in which magnetic space and real space are not indepen-

dent owing to the effect of the spin-orbit interaction. Therefore, the presence or absence of

the metamagnetic transition can be discussed independently of the magnetic field direction,

justifying the use of the uniaxial model. Therefore, on the basis of experimental facts reported

in Refs. 3–5, we start with the following free energy F0(M), with M being the magnetization
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in the b-direction per unit formula of UTe2 without the magnetic field (B = 0):

F0(M) = aM2 − bM4 + cM6 + · · · (1)

where the coefficients a, b, and c are assumed to be positive. Near B = 0, the magnetization

is given by

M ≈ B

2a
≡ χB, (2)

where χ is the magnetic susceptibility. The stationary condition under a general situation is

given by

0 =
∂

∂M
[F0(M)−BM ] ≈ 2aM − 4bM3 + 6cM5 −B. (3)

When the first-order metamagnetic transition occurs, the free energy has at least two de-

generate local minima at M = M− and M̄ as shown schematically in Fig. 1. Therefore, the

magnetization M̄ at the metamagnetic critical point at B = Bm is given by the following two

conditions: The stationary condition of the local minimum of [F0(M) − BmM ] for the lower

magnetization M− at B = Bm is

2aM− − 4bM3
−
+ 6cM5

−
−Bm ≈ 0, (4)

and that for the higher magnetization M̄ at B = Bm is

2aM̄ − 4bM̄3 + 6cM̄5 −Bm ≈ 0. (5)

In addition to these two conditions, the free energy of these two states should be the same:

aM̄2 − bM̄4 + cM̄6 −BmM̄ ≈ aM2
−
− bM4

−
+ cM6

−
−BmM−. (6)

Note that the anisotropy of a differential magnetic susceptibility around B = 0 and that

of the direction in which the metamagnetic transition occurs are generally independent, as

noted above. This is because the occurrence of the metamagnetic transition is determined by

the combination of the coefficients a, b and c of the extended Landau free energy F0(M) [Eq.

(1)], whereas the anisotropy in the magnetic susceptibility is determined only by the size of

coefficient a in each direction of the magnetic field. In this study, we did not touch on the

origin of the anisotropy in the magnetic susceptibility, but it is left for a future study.

Substituting Bm given by Eq. (4) into the r.h.s. of Eq. (6), and Bm given by Eq. (5) into

the l.h.s. of Eq. (6), we obtain the relation between M̄ and M− as

aM̄2 − 3bM̄4 + 5cM̄6 ≈ aM−

2 − 3bM−

4 + 5cM−

6. (7)

By introducing the parameter δ defined as δ ≡ M−/M̄ , we reduce Eq. (7) to the equation for

M̄ as

a∗M̄2 − 3b∗M̄4 + 5c∗M̄6 ≈ 0, (8)

where a∗ ≡ a(1 − δ2), b∗ ≡ b(1 − δ4), and c∗ ≡ c(1 − δ6). Solving Eq. (8), we obtain M̄2 for
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Fig. 1. Schematic behavior of free energies as a function of the uniform magnetization. The solid

curve and solid line represent the free energy F0(M) [Eq. (1)] without the magnetic field B and

the Zeeman energy at the metamagnetic field Bm, respectively. The dotted curve represents the

free energy F0(M)−BmM , which has two degenerate minima at M = M
−
and M̄ .

the local minimum of the free energy [F0(M)−BmM ] as

M̄2 ≈ 3b∗ +
√
9b∗2 − 20a∗c∗

10c∗
. (9)

Hereafter, to simplify the analysis, we search the case in which there exists a local minimum

of F0(M) at M = M0, although this is not a necessary condition for the occurrence of the

metamagnetic transition but slightly narrows the parameter space explored. Then, there arises

a constraint for the coefficient b obtained from the condition F0(M0) > 0, where M0 is the

magnetization corresponding to the stationary condition ∂F0(M0)/∂M0 = 0. The stationary

condition for M0 > 0 is explicitly given as

a− 2bM2
0 + 3cM4

0 = 0, (10)

so that M2
0 for the local minimum is given by

M2
0 =

b+
√
b2 − 3ac

3c
. (11)

Therefore, with the use of the relation Eq. (10), the condition for F (M0) > 0 is given explicitly

as

F0(M0) = aM2
0 − bM4

0 + cM6
0 =

M2
0

3
(2a− bM2

0 ) > 0. (12)

By a straightforward calculation, we find that the inequality 2a > bM2
0 gives the following
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condition:

3ac < b2 < 4ac. (13)

3. Effective Mass and Damping Rate of Quasiparticles at Metamagnetic Transi-

tion

3.1 Forms of spin fluctuation propagator around two local minima of free energy at metam-

agnetic transition

Under the assumption that the system is uniform in space at around the first-order meta-

magnetic transition, the enhancements of effective mass, i.e., the Sommerfeld coefficient γ,

and the damping rate of the quasiparticles are given by estimating the effect of ferromagnetic

spin fluctuations in the b-direction. Namely, hereafter, we discuss the effect of the longitudinal

spin fluctuations in the b-direction, which would be justified by the fact that the enhanced

magnetic fluctuations occur along the metamagnetic field around M = M− as shown below.

Note that the transverse spin fluctuations in the a- and c-directions are essentially unaltered

because the magnetic field in the b-direction does not affect the magnetization perpendicular

to the b-direction in the orthorhombic and centrosymmetric crystal systems such as UTe2 as

mentioned in the first paragraph of Sect. 2. To discuss the effect of the magnetic fluctuations,

we use the conventional form of the dynamical spin susceptibility of ferromagnetic fluctuations

discussed in Refs. 9 and 10 as

χs(q, iωm) =
qN∗

F/C

ωs(q) + |ωm| , for q < qc ∼ pF, (14)

where N∗

F is the density of states (DOS) of the quasiparticles per spin at the Fermi level,

which is renormalized only by the local correlation effect, and ωs(q) is defined as

ωs(q) ≡
q

C
(η +Aq2), (15)

where η parameterizes the closeness to the ferromagnetic criticality.11)

The static susceptibility around M = 0 at B = 0 is given by

χs(0, 0) =

[

∂2F0(M)

∂M2

∣

∣

∣

M=0

]−1

=
1

2a
≡ N∗

F

η0
. (16)

This is nothing but the relation Eq. (2). By generalizing this relation around M = 0, we

obtain the differential spin susceptibility around M = M̄ at B = Bm as

χs(0, 0) =

[

∂2F0(M)

∂M2

∣

∣

∣

M=M̄

]−1

≡ N∗

F

η̄
, (17)

which is based on the fact that the Zeeman term (−BmM) does not contribute to the curvature

of the free energy. Similarly, that around M = M− at B = Bm is given by

χs(0, 0) =

[

∂2F0(M)

∂M2

∣

∣

∣

M=M−

]−1

≡ N∗

F

η−
. (18)
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According to the expression for F0(M) [Eq. (1)], ∂2F0(M)/∂M2|M=M̄ is given by

∂2F0(M)

∂M2

∣

∣

∣

M=M̄
= 2a− 12bM̄2 + 30cM̄4. (19)

With the use of Eq. (8), this is reduced to

∂2F0(M)

∂M2

∣

∣

∣

M=M̄
≈ 2a− 12b∗M̄2 − 6c

c∗
(a∗ − 3b∗M̄2)

= 2

(

a+
3a∗c

c∗
− 4a∗

)

+

(

3c

c∗
− 2

)

3

5

√
9κ∗ − 20

[√
9κ∗ − 20 +

√
κ∗
]

a∗, (20)

where we have used the relation Eq. (9) and κ∗ ≡ b2/(a∗c∗) for obtaining the second equality.

With the use of the definitions of a∗, b∗, and c∗ [see below Eq. (8)],
(

a+
3a∗c

c∗
− 4a∗

)

= δ2a+
3aδ6

1 + δ2 + δ4
≃ δ2a, (21)

(

3c

c∗
− 2

)

= 1 +
3δ6

1− δ6
≃ 1, (22)

which is based on the fact that the experimental value for UTe2 is δ ≃ 0.4.3) Therefore,

∂2F0(M)/∂M2|M=M̄ is approximately given by

∂2F0(M)

∂M2

∣

∣

∣

M=M̄
≃ 2

[

δ2a+
9

5

√
9κ∗ − 20

(√
9κ∗ − 20 +

√
κ∗
)

a∗
]

. (23)

With the use of the inequality [Eq. (13)], the value of κ∗ is restricted in the following region:

3

(1− δ2)(1 − δ6)
< κ∗ <

4

(1− δ2)(1− δ6)
. (24)

Considering the smallness of δ4 ≃ 0.026 and δ6 ≃ 0.0041 for UTe2 because δ ≃ 0.4,3) this

restriction [Eq. (24)] is technically given by

3.6 <∼ κ∗ <∼ 4.8. (25)

On the other hand, ∂2F0(M)/∂M2|M=M−
is given by

∂2F0(M)

∂M2

∣

∣

∣

M=M−

= 2a− 12bM−

2 + 30cM−

4

= 2a− 12bδ2M̄2 + 30cδ4M̄4. (26)

With the use of the relation M̄4 ≈ (−a∗ + 3b∗M̄2)/5c∗, given by Eq. (8), and the definitions

of a∗, b∗, and c∗ [see below Eq. (8)], ∂2F0(M)/∂M2|M=M−
is reduced to

∂2F0(M)

∂M2

∣

∣

∣

M=M−

≈ 2a

(

1− 3δ4
1− δ2

1− δ6

)

− 6b

[

2δ2 − 3δ4(1− δ4)

1− δ6

]

M̄2 (27)

≃ 1.87(a − 0.78bM̄2), (28)

where we have used δ ≃ 0.4 to obtain the approximate equality of Eq. (28). Since

∂2F0(M)/∂M2|M=M−
should be positive, the coefficients a and b and the upper magnetic
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field M̄ should satisfy the following condition:

a− 0.78bM̄2 >∼ 0. (29)

Together with the condition [Eq. (24)], this gives the constraint for the parameter set of a, b,

and c, and the upper magnetization at B = Bm.

To conclude this subsection, it is crucial to note that the relation Eq. (28) generally

implies that the curvature of the free energy at M = M− is always smaller than 2a at around

M = 0 under the ambient condition (B = 0)l, which gives considerably larger ferromagnetic

fluctuations leading to the enhancements of the Sommerfeld coefficient γ and the Aρ coefficient

of the T 2 term in the resistivity than those under the ambient condition. The effect arising

from the fluctuations around M = M̄ at B = Bm is smaller than that under the ambient

conditions because η̄ is a few times larger than η0 under the ambient conditions. For example,

if we use the average value for κ∗ = 4.2 over the possible range of the condition [Eq. (25)], η̄

is given by η̄ ≃ 3.8η0.

3.2 Expressions for enhancements of effective mass and damping rate near first-order meta-

magnetic transition

On the basis of the the theoretical framework discussed in the previous subsection and the

formulae given in Appendices A and B, we show that the enhancements of the Sommerfeld

coefficient of the quasiparticles and the coefficient A of T 2 term in the resistivity, reported in

Refs. 3 and 6, can be evaluated semiquantitatively by taking a reasonable set of parameters,

a part of which is fixed using the physical quantities experimentally observed.

First of all, the magnetization ratio δ = M−/M̄ at the metamagnetic transition is fixed as

δ ≃ 0.4,3) which has already been used in the previous subsection. The upper magnetization

at the metamagnetic transition is also determined as M̄ ≃ 1.0.3) Therefore, the condition [Eq.

29] is reduced to

a− 0.78b >∼ 0. (30)

With the use of Eqs. (17) and (23), η̄ is given by

η̄ = N∗

F

∂2F0(M)

∂M2

∣

∣

∣

M=M̄
≃
[

2δ2a+
9

5

√
9κ∗ − 20

(√
9κ∗ − 20 +

√
κ∗
)

a∗
]

N∗

F. (31)

Similarly, with the use of Eqs. (18) and (28), η− is given by

η− = N∗

F

∂2F0(M)

∂M2

∣

∣

∣

M=M−

≃ 1.87(a − 0.78bM̄2)N∗

F. (32)

Note that, according to Eq. (16), the parameter η0 for the ambient condition (B = 0) is given

by

η0 = 2aN∗

F. (33)

According to Eqs. (A·9) and (B·4), the coefficient Aρ of the T 2 term in the resistivity is
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given as

Aρ ≃ Aρ0 +
m∗

Ne2
V N∗

Fg
2C

4π2Nv∗FkFA

(

1

η
− 1

η +Aq2c

)

, (34)

where Aρ0 is the coefficient without ferromagnetic spin fluctuations and is given by

Aρ0 ≈
m∗

Ne2
2

ǫ∗F
=

m∗

Ne2
8

3
N∗

F, (35)

where the damping rate 1/2τ∗ of quasiparticles at the Fermi level is assumed to be given by

1/2τ∗ ≈ sT 2/ǫ∗F = (4/3)sN∗

FT
2, with ǫ∗F being the Fermi energy of quasiparticles and s being

a constant of O(1). In deriving the equality in Eq. (35), the relation N∗

F = (3/4)ǫ∗F has been

used. Note that the second term in Eq. (34) is not given by Σ′′

kF
(0;T ) [Eq. (A·8)], but is given

by Σ′′

tr,kF
(0;T ) [Eq. (A·9)]. Note also that the mass m∗ in the Fermi energy ǫ∗F appearing

in Eqs. (34) and (35), and formulae hereafter, is the effective mass renormalized both by

local correlations among 4f electrons at the U site and the effect of spin fluctuations both

longitudinal (parallel to b-axis) and transverse (perpendicular to b-axis) under the ambient

condition (at B = 0).

Similarly, with the use of Eq. (A·12), the increase in the Sommerfeld coefficient due to the

ferromagnetic spin fluctuations, ∂ΣR
s (pF, ǫ)/∂ǫ|ǫ=0, leads to

γ ≃ γ0

{

1 +
V N∗

Fg
2

8π2Nv∗FA

[

log
Aq2c + η

η
− 1

2
log

Aq2c + (Cv∗F)
2

η2 + (Cv∗F)
2

]}

, (36)

where γ0 ≡ (2π2/3)N∗

F is the Sommerfeld coefficient without the effect of ferromagnetic spin

fluctuations or renormalized only by local correlations.

The coefficients of V N∗

Fg
2C/4π2Nv∗FkFA in Eq. (34) and V g2N∗

F/8π
2Nv∗FA in Eq. (36)

are estimated as

V N∗

Fg
2C

4π2Nv∗FkFA
≈ 3N∗

F(Cv∗F)g
2

16(Ak2F)ǫ
∗2
F

, (37)

and

V N∗

Fg
2

8π2Nv∗FA
≈ 3N∗

Fg
2

16(Ak2F)ǫ
∗

F

, (38)

respectively. In deriving Eqs. (37) and (38), we have assumed that the dispersion of quasipar-

ticles is given by the free dispersion, i.e., ǫk = k2/2m∗, so that v∗FkF = 2ǫ∗F and k3F = 3π2N/V .

In an analysis below, we estimate the coupling constant as g = 4ǫ∗F borrowing the the-

oretical result for effective interaction U∗ = 4TK in the single-impurity Anderson model in

the Kondo limit.12, 13) For simplicity, we assume Ak2F ≈ Aq2c ≈ 1 and Cv∗F ≈ 1. These ap-

proximations affect to some extent the numerical estimate of the increases in the Sommerfeld

coefficient γ and the Aρ coefficient. However, such an uncertainty will be absorbed in an am-

biguity of taking many other parameters characterizing the system. On this approximation

8/16



J. Phys. Soc. Jpn. Full Paper

scheme, the coefficients in Eqs. (37) and (38) are reduced to

V N∗

Fg
2C

4π2Nv∗FkFA
≈ 3N∗

F, (39)

and

V N∗

Fg
2

8π2Nv∗FA
≈ 9

4
, (40)

respectively. It is crucial to note that the factor N∗

F arises from the density of states per

quasiparticle (per spin) contained in the expression of the dynamical spin susceptibility [Eqs.

(14) and (A·1)].

One might wonder whether the magnetic field dependence of N∗

F (or m∗) cannot be ne-

glected because, at first sight, the conventional relation N∗

F = 3/4ǫ∗F implies that N∗

F is pro-

portional to the effective mass of the quasiparticles, which is affected by the magnetic field

of Bm ∼ 35T.3) However the size of the Zeeman energy (per formula unit) is estimated

as µeffBm/kB ≃ 9.2K, with the effective magnetic moment µeff ≃ 0.4µB at the metamag-

netic field B = Bm, which is only about 1/5 of the so-called Kondo temperature TK of

∼ 47K that is estimated from the Sommerfeld coefficient under the ambient conditions, i.e.,

γ0 ≃ 1.2 × 102 mJ/K2mole6) by comparing with γ ≃ 1.6 × 103 mJ/K2mole in CeCu6 whose

TK ≃ 3.5K.14)

Furthermore, there is a chance that the density of states N∗

F related to the magnetic sus-

ceptibility and the Sommerfeld coefficient is technically robust against the magnetic field if

the local spin fluctuations, which are the origin of mass enhancement under the ambient condi-

tions, originate mainly from the Van Vleck process through the renormalized c-f hybridization

in the system with the nonmagnetic (singlet) crystalline-electric-field (CEF) ground state in

the f2 configuration. That is, the Zeeman energy of the quasiparticles is essentially given by

∼ −µ2
B(NF)condB

2 because the magnetic susceptibility of the quasiparticles, χquasi, is given by

that of conduction electrons, χcond. Indeed, such a property was observed in the NMR Knight

shift measurements of UPt3,
15) and supported by theoretical discussions in Ref. 16–18. Namely,

N∗

F appearing in Eqs. (35) and (39), and γ0 in Eq (36) can be relatively robust against the

applied magnetic field. Although the CEF ground state of UTe2 has not been observed, we

assume that this case is realized as a working hypothesis.

Then, finally, the relations Eqs. (34) and (36) are respectively reduced to compact forms

as

Aρ ≈ m∗

Ne2
N∗

F

[

8

3
+ 3

(

1

η
− 1

η +Aq2c

)]

, (41)

and

γ ≈ 2π2

3
N∗

F

{

1 +
9

4

[

log
Aq2c + η

η
− 1

2
log

Aq2c + (Cv∗F)
2

η2 + (Cv∗F)
2

]}

. (42)
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3.3 Analysis of experiment of UTe2

On the parameterization discussed in the previous subsection, we focus on understanding

the enhancements of γ and Aρ at the first-order metamagnetic transition reported in Refs. 6

and 4. The ratios of the Sommerfeld coefficient and the Aρ coefficient at the metamagnetic

transition to those at the ambient (B = 0) state are γ(B = Bm)/γ(B = 0) ≃ 2.2,6) and

[Aρ(B = Bm)/Aρ(B = 0)]1/2 = 2.3± 0.1,4) respectively. We have these two experimental data

to explain and two adjustable theoretical parameters, η0 [Eq. (16)] and η− [Eq. (32)], that

essentially affect the enhancements of γ and Aρ, other than fundamental parameters, such

as Aq2c and Cv∗F in Eq. (36), at the ambient states, and experimentally fixed δ and M̄ as

mentioned above. On the other hand, η̄ is restricted to a relatively narrow region. Namely,

the range of κ∗ is restricted by Eq. (25) between 3.6 and 4.8 so that the value of η̄ is restricted

in the range

2.85 η0 <∼ η̄ <∼ 4.78 η0, (43)

where we have used Eq. (31) and the relation 2aN∗

F = η0 [Eq. (33)]. This relation implies that

the ferromagnetic fluctuations around M = M̄ are less important than those around M = 0

at the ambient conditions. To find one of the possible sets of parameters that reproduce the

observed values of enhancements in γ(B = Bm)/γ(B = 0) and [Aρ(B = Bm)/Aρ(B = 0)]1/2

mentioned above, let us fix κ∗ = 4.2, which is the average in the possible range [Eq. (25)].

Then, η̄/η0 is fixed as η̄/η0 ≃ 3.85, which is nearly equal to the average over its possible range

given by Eq. (43).

On the other hand, the ferromagnetic fluctuations around M = M− give the most dom-

inant contribution to the enhancements of γ and Aρ0, because η− [Eq. (32)], with M̄ ≃ 1.0,

can be considerably smaller than η0 = 2aN∗

F [Eq. (33)].

Although the numbers of enhancements of γ and Aρ given by Eqs. (41) and (42) depend

on those of Aq2c and Cv∗F other than the important parameter η characterizing the strength

of ferromagnetic fluctuations, we are interested in the ratio of those values under the meta-

magnetic field and the ambient condition. Therefore, we adopt the set Aq2c = 1 and Cv∗F = 1,

considering that such uncertainties are absorbed in some ambiguities for taking η0 and η−.

Furthermore, we adopt an approximation that a combination [8/3−3/(η+Aq2c )] in the bracket

of Eq. (41) can be safely neglected compared with 3/η, which is far larger than 1 near the

ferromagnetic critical point as expected in UTe2.

Then, it is shown by straightforward arithmetic that the experimental values, γ(B =

Bm)/γ(B = 0) ≃ 2.26) and [Aρ(B = Bm)/Aρ(B = 0)]1/2 = 2.3 ± 0.1,4) are reproduced by

taking, for example, η0 = 1/10 and η− = 1/50, which leads to

γ(B = Bm)

γ(B = 0)
=

γ̄ + γ−
γ0

≃ 2.19, (44)
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and
[

Aρ(B = Bm)

Aρ(B = 0)

]

=

[

Āρ +A−

ρ

A0
ρ

]

≃ 2.29, (45)

respectively. Here, γ0 and A0
ρ are those under the ambient conditions, γ− and A−

ρ are those

arising from fluctuations with η− around M = M−, and γ̄ and Āρ are those from fluctuations

with η̄ around M = M̄ . These values [Eqs. (44) and (45)] reproduce the observed values.

Of course, there are almost infinite sets of parameters η0, η−, and η̄ [or κ∗ through Eqs.

(17) and (20)] to reproduce the observed values of γ(B = Bm)/γ(B = 0) and [Aρ(B =

Bm)/Aρ(B = 0)]1/2 other than those we have adopted above. Furthermore, the ambiguity in

the above adopted coupling constant g = 4ǫ∗F between the quasiparticles and the ferromagnetic

spin fluctuations may affect the choice of the set of η0, η− and η̄. Nevertheless, it does not

considerably affect the result because the quantities in question are the ratios of values between

those at B = Bm and B = 0.

4. Conclusion and Perspective

Motivated by the experimental observation of the sharp enhancements of the Sommerfeld

coefficient γ and the coefficient Aρ of the T 2 term in the resistivity at the first-order metam-

agnetic transition in UTe2, we developed the extended Landau theory of the phase transition

on the basis of the uniaxial model. As a result, the enhanced ferromagnetic spin fluctuations,

caused by the flattening of the curvature of the free energy around the shifted local mini-

mum, give such enhancements of γ and Aρ around the metamagnetic field Bm. However, the

anisotropy in the magnetic response has not been discussed in this paper, although there

exists the pronounced anisotropy in UTe2. The effect of the anisotropy in the magnetic space

is left for a future study.

Another interesting aspect of the present theory is that superconductivity is expected to

be induced at around B <∼ Bm owing to the enhancement of ferromagnetic spin fluctuations

there, which was the origin of the enhancements of γ and Aρ around B = Bm. This mechanism

may have some relevance to the appearance of the re-entrant superconductivity around the

metamagnetic field,5) along with the discussions in the case of URhGe given in Refs. 19 and

20.
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Appendix A: Estimation of Self-energy due to Ferromagnetic Fluctuations

In this appendix, the self-energy of the quasiparticles due to the ferromagnetic fluctuations

is discussed. For this purpose, we adopt an exponentially decaying phenomenological form for

the spin fluctuation propagator (dynamical spin susceptibility) χs(q, iωm) in the Matsubara

frequency representation as

χs(q, iωm) =
qN∗

F/C

ωs(q) + |ωm| , for q < qc ∼ pF, (A·1)

where N∗

F is the DOS of the quasiparticles per quasiparticle, and ωs(q) is defined as

ωs(q) ≡
q

C
(η +Aq2), (A·2)

where η parameterizes the closeness to the ferromagnetic criticality.9, 10)

The retarded self-energy ΣR
s (p, ǫ+ iδ) gives a measure of the quasiparticle effective mass

and lifetime in its real and imaginary parts, respectively. It can be calculated using a simple

one-fluctuation mode exchange process (see Fig. A·1) and is given as

ReΣR
s (p, ǫ) = − N∗

F

2πCN

∑

q

q g2q

∫ +∞

−∞

dx
x

ωs(q)2 + x2

×coth x
2T + tanh

ξ∗
p−q

2T

−ǫ+ ξ∗p−q + x
, (A·3)

ImΣR
s (p, ǫ) = − N∗

F

2CN

∑

q

q g2q
ǫ− ξ∗p−q

ωs(q)2 + (ǫ− ξ∗p−q)
2

×
(

coth
ǫ− ξ∗p−q

2T
+ tanh

ξ∗p−q

2T

)

, (A·4)

where N is the number of U sites, gq is the coupling between quasiparticles and spin fluctua-

tion modes, and ξ∗p is the dispersion of the quasiparticle measured from the chemical potential.

Hereafter, for simplicity, gq is assumed to be constant without wavenumber dependence. be-

cause it can be essentially approximated as a constant.

Fig. A·1. Feynman diagram for the self-energy given by Eqs. (A·3) and (A·4). The solid line with an

arrow represents the Green function Ḡf of the f electron renormalized only by local correlations,

the wavy line represents the spin fluctuation propagator χs, and g is the coupling constant between

the localized 4f electron and the spin fluctuation mode.
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In typical limiting cases, (A·4) can be straightforwardly calculated on the approximation,

ξ∗p−q ≃ −v∗Fqx, where x ≡ cos θ with θ being the angle between p and q and v∗F being the

velocity of the quasiparticles at the Fermi level.

In the case T = 0, ǫ 6= 0,

ImΣR
s (pF, ǫ) ≃ − V g2N∗

FC

32πNv∗F
√
A

1

η3/2
ǫ2, (A·5)

where V is the system volume, and we have used the fact that the factor {coth[(ǫ−ξ∗p−q)/2T ]+

tanh(ξ∗p−q/2T )} is nonvanishing only in the region 0 < ξ∗p−q < ǫ, assuming the case ǫ > 0,

and performed integrations with respect to q ≡ |q| and x ≡ (p̂ · q̂). Here, we have retained

the most divergent term in 1/η with η → 0 and assumed η ≪ Aq2c .

It is shown by a straightforward calculation that the coefficient of the ǫ2 term for the

resistivity, Im[ΣR
s (pF, ǫ)]tr, is less singular owing to the extra factor (q/kF)[1 − (p̂ · q̂)] =

(q/kF)(1− x), which is necessary for taking into account the effect of the momentum change

p → p+ q contributing to the resistivity. Namely,

Im[ΣR
s (pF, ǫ)]tr ≃ − V g2N∗

FC

16π2Nv∗FkFA

ǫ2

η
+

V g2N∗

FC

12π2Nv∗2F

ǫ3

(η +Aq2c )
2
log

qcη

Cǫ

− V g2N∗

FC

32πNv∗2F kF
√
A

ǫ3

η3/2
. (A·6)

In the case ǫ = 0, 0 < T ≪ ǫ∗F,

ImΣR
s (pF, 0) ≃ − V g2N∗

F

8π2Nv∗FC

∫ qc

0
dq q2

∫ vq/T

−vq/T
dy ×

y

[ωs(q)/T )2 + y2]

(

coth
y

2
− tanh

y

2

)

, (A·7)

where y = v∗Fqx/2T . The integration with respect to y can be approximately performed,

leading to

ImΣR
s (pF, 0) ≃ − V g2N∗

FC

8πNv∗F
√
A

1

η3/2
T 2, (A·8)

where we have made the approximation that the range of integration is technically restricted

as −1 < y < 1, in which the last factor in (A·7) is approximated as 2/y. This is because

the factor (coth y
2 − tanh y

2 ) in Eq. (A·7) decreases rapidly in proportion to e−y in the region

|y| > 1, and v∗Fq ≫ T holds in the dominant region of q-space. Similarly to the case T = 0,

ǫ 6= 0 above, the imaginary part of the self-energy for the resistivity, Im[ΣR
s (pF, 0)]tr, is given

as

Im[ΣR
s (pF, 0)]tr ≃ − V g2N∗

FC

4π2Nv∗FkFA

(

1

η
− 1

η +Aq2c

)

T 2. (A·9)

Note that x in the extra factor (q/kF)(1−x) gives no extra contribution because the integrand

with respect to y = v∗Fqx/2T in Eq. (A·7) is an even function of y.

The real part of the self-energy, (A·3), can be calculated easily at T = 0 and ǫ ∼ 0, leading
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to

Re
[

ΣR
s (pF, ǫ)− ΣR

s (pF, 0)
]

≃ −ǫ
V g2N∗

F

4π2Nv∗F

∫ qc

0
dq q

1

η +Aq2

[

1− (η +Aq2)2

(Cv∗F)
2 + (η +Aq2)2

]

, (A·10)

where we have put the external momentum on the Fermi surface, and we also used the following

approximate relations ξ∗p−q ≃ −v∗Fqx and

∑

q

q

∫

∞

−∞

dw
w

w2 + [ωs(q)]2
[sign(w) + sign(ξ∗p−q)]

(

1

−ǫ+ ξ∗p−q + w
− 1

ξ∗p−q + w

)

≈ ǫV

2π

∫ qc

0
dqq3

1

v∗Fqωs(q)

{

1− [ωs(q)]
2

(v∗Fq)
2 + [ωs(q)]2

}

+O(ǫ2). (A·11)

Performing the q-integration, we obtain

Re
[

ΣR
s (pF, ǫ)− ΣR

s (pF, 0)
]

≈ −ǫ
V g2N∗

F

8π2Nv∗FA

[

log
Aq2c + η

η
− 1

2
log

Aq2c + (Cv∗F)
2

η2 + (Cv∗F)
2

]

+O(ǫ2). (A·12)

Note that the less singular terms in η in the logarithm have been retained.

Appendix B: Structure of Green Function of Quasiparticles

In this appendix, we briefly recapitulate the discussion on the relationship between the

resistivity and the self-energy of quasiparticles, which are strongly renormalized by the self-

energy. Let us start with the general expression of the retarded Green function GR(k, ǫ):

[GR(k, ǫ)]−1 = ǫ− ξ∗k − Σ′

k(ǫ)− iΣ′′

k(ǫ), (B·1)

where Σ′

k(ǫ) and Σ′′

k(ǫ) are the real and imaginary parts of the self-energy, respectively. In the

region ǫ ∼ 0, [GR(k, ǫ)]−1 is approximated as

[GR(k, ǫ)]−1 ≃
[

1− ∂Σ′

k(ǫ)

∂ǫ

]

ǫ=0

×
{

ǫ−
[

1− ∂Σ′

k(ǫ)

∂ǫ

]

−1

ǫ=0

ξ∗k − i

[

1− ∂Σ′

k∂(ǫ)

∂ǫ

]

−1

ǫ=0

Σ′′

k(ǫ)

}

. (B·2)

Therefore, the effective mass m̃∗ near the Fermi level and the damping rate 1/τ̃∗tr(ǫ;T ) with

energy ǫ are renormalized as

m̃∗ ≃
[

1− ∂Σ′

k(ǫ)

∂ǫ

]

ǫ=0

m∗, (B·3)

and

1

τ∗tr(ǫ;T )
≃ −

[

1− ∂Σ′

k(ǫ)

∂ǫ

]

−1

ǫ=0

Σ′′

tr,k(ǫ;T ), (B·4)

respectively. Here, Σ′′

tr,k(ǫ;T ) is the imaginary part of the self-energy in which the effect of

the momentum change is taken into account as mentioned in the discussion leading to Eq.
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(A·6). Then, it is immediately found that the approximate Drude formula for the resistivity

ρ ≃ (m̃∗/Ne2)[1/τ̃∗tr(0;T )] is not affected by the renormalization factor [1 − ∂Σ′

k(ǫ)/∂ǫ]
−1
ǫ=0.

21, 22) Here, we have made the approximation that 〈1/τ̃∗tr(ǫ;T )〉, where 〈· · · 〉 is the average

over ǫ with the weight of the ǫ-derivative of the Fermi distribution function [−∂f(ǫ)/∂ǫ], is

replaced by 1/τ̃∗tr(0;T ), considering that ǫ and T dependences appear through a combination

of [ǫ2 + (πT )2] as in the Fermi liquid state.23)

Namely, the resistivity ρ is given approximately as

ρ ≃ m̃∗

Ne2
1

τ̃∗kF,tr(0;T )
≈ m∗

Ne2
[

−Σ′′

tr,kF
(0;T )

]

. (B·5)
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