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Abstract

We review recent progresses in the study of flat band systems, espe-

cially focusing on the fundamental physics related to the singularity of the

flat band’s Bloch wave functions. We first explain that the flat bands can

be classified into two classes: singular and non-singular flat bands, based

on the presence or absence of the singularity in the flat band’s Bloch

wave functions. The singularity is generated by the band crossing of the

flat band with another dispersive band. In the singular flat band, one can

find special kind of eigenmodes, called the non-contractible loop states and

the robust boundary modes, which exhibit nontrivial real space topology.

Then, we review the experimental realization of these topological eigen-

modes of the flat band in the photonic lattices. While the singularity of

the flat band is topologically trivial, we show that the maximum quan-

tum distance around the singularity is a bulk invariant representing the

strength of the singularity which protects the robust boundary modes.

Finally, we discuss how the maximum quantum distance or the strength

of the singularity manifests itself in the anomalous Landau level spread-

ing of the singular flat band when it has a quadratic band-crossing with

another band.
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1 Introduction

A flat band indicates a type of band structures with constant energy independent
of the crystal momentum. The key feature of the flat band is that the charge
carriers in it have a zero group velocity and an infinite effective mass. Due to
the suppressed kinetic energy, flat band systems have been considered intriguing
in various research areas [1–6]. In condensed matter physics, flat bands are
considered ideal to study many-body phenomena such as the ferromagnetism [7–
11], superconductivity [12–16], and Wigner crystal formation [17–19] because
the kinetic energy of the carriers in the flat band is quenched and dominated
by the electron-electron interaction. In bosonic systems such as the photonic
crystals, the realization of the slow light via a flat band has gotten a great
attention because it can be applied to enhance the light-matter interaction [20–
26].

Usually, we need a fine tuning of the system parameters to have a flat band,
and it has hampered the experimental realization of such flat band. However,
there have been considerable experimental efforts to synthesize real materials or
artificial systems with a nearly flat band. In the condensed matter physics com-
munity, nearly flat bands are discovered in various kagome-type materials such
as CoSn [27,28], Co3Sn2S2 [29], FeSn [30], Fe3Sn2 [31,32], and YCr6Ge6 [33,34],
as well as pyrochlore oxides [10, 35]. Also, by using the novel band structure
engineering technique, so-called twistronics, many nearly flat band systems have
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been realized in various Moire superlattice systems composed of misaligned two-
dimensional layers, such as the twisted bilayer graphene [36–41], twisted bilayer
transition metal dichalcogenides [42,43], and twisted multi-layer silicene [44]. In
particular, the twisted bilayer graphene at the magic angle [45] has attracted a
great attention due to its unconventional superconductivity [36,46–56] and Mott
insulating phases [36]. Furthermore, in artificial systems, such as the photonic
lattices [57–69], cold atom systems [70, 71], engineered atomic lattices [72], and
metamaterials [73–77], one can have more controllability of the system param-
eters than the fermionic systems, and indeed almost flat bands were realized.

To understand the condensed matter phenomena properly, we usually start
from the non-interacting physics of the given system in the band theory level,
and then examine the effects of various interactions, such as the electron-electron
interaction, based on the knowledge of the non-interacting electronic properties.
However, notwithstanding the rising interest in the interaction physics in flat
bands discussed above, the nature of flat bands has not been well-understood
even in the band theory level until recently.

In the view point of the topological band theory, the flat band is simply
considered trivial due to following reasons. First, if the flat band is isolated
from others and hopping processes are allowed within a finite range, the Chern
number is always zero because the Bloch wave function is enforced to be analytic
all over the Brillouin zone due to the flatness of the energy dispersion [78, 79].
Second, even if the flat band is semimetallic by having a band-crossing point
with another dispersive band, it cannot be a topological semimetal because the
Berry phase obtained along a path enclosing the band-crossing point is usu-
ally unquantized and, even if it is quantized, its value is always 2nπ (trivial)
due to the band-flatness condition. [80]. Therefore, the flat band cannot ex-
hibit the conventional bulk-boundary correspondence [81–87] such as the chiral
edge modes from the nonzero Chern number in Chern bands [88–91], the Fermi
arcs between two topological monopole charges with opposite signs in the Weyl
semimetal [92], and helical surface modes from Z2 bulk topological invariant of
topological insulators [93–97].

Although a flat band is topologically trivial, it was recently revealed that
it can exhibit intriguing geometric properties. To see what this means, let us
consider the Hilbert-Schmidt quantum distance, which is defined as

d2(ψ1, ψ2) = 1 − |〈ψ1|ψ2〉|2 , (1)

where ψ1 and ψ2 are normalized quantum states [80, 98–100]. The quantum
distance d, which takes a value between 0 and 1, measures how close the two
states ψ1 and ψ2 are. In the case of flat band systems, we consider the quantum
distance between Bloch eigenstates in momentum space. The quantum distance
between two different Bloch states at momenta k

¯1 and k
¯2 is usually becomes

zero when |k
¯1 − k

¯2| → 0 because the two states take the identical form in this
limit. However, when a flat band has a band crossing with another dispersive
band, the Bloch wave functions of the flat band around the band crossing point
develop a nonzero quantum distance even if their momenta are close to each
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other. [79, 80]. In this case, we call such a flat band the singular flat band.
Interestingly, it is recently shown that the maximum value of the quantum
distance among all the possible pairs of the Bloch eigenstates around the band-
crossing point is a bulk invariant measuring the strength of the singularity at
the band crossing point. [80]. Due to the singularity of the singular flat band,
intriguing eigenmodes dubbed the non-contractible loop state and the robust

boundary mode appear in systems with open boundaries and exhibit topological
robustness in real space [63, 79]. Moreover, the Landau levels of the singular
flat band with a quadratic band-crossing show anomlous behavior, which is
characterized by the maximum quantum distance [80].

These recent studies clearly demonstrate that the singular flat band is an
intriguing new platform where the geometrical properties of Bloch states can
be studied. In general, the most crucial notions consisting of geometry are the
curvature and metric (or distance). In solids, Berry curvature and the quantum
metric take the roles of the curvature and metric in the geometric description of
the Bloch wave functions respectively, in momentum space. While the curvature
part has been studied exhaustively in past decades related to the semiclassical
formulation of electron dynamics [101] and the topological classifications of ma-
terials [102], physical implications of the metric or distance part have been much
less investigated although there have been several studies on the physical roles
of them in the current noise [103], the orbital magnetic susceptibility [104], the
superfluid weight of a nearly flat Chern band [105], etc. To achieve a unified
understanding of the geometric nature of solids, further studies on the relations
between the quantum metric or distance and physical quantities in various con-
densed matter phenomena have to be perfomed. The singular flat band model
can be an ideal starting point of such research direction because this model’s
band-crossing point is characterized by the quantum distance instead of Berry
curvature.

In this article, we pedagogically review the recent progress in the study of
singular flat bands. In particular, we focus on the novel geometrical properties
arising from the fundamental relation between the singularity of the band cross-
ing and the maximum quantum distance of a singular flat band. In Sec. 2, we
explain the relation between the existence of the singularity and the complete-
ness of compact localized states, characteristic localized eigenstates of the flat
band. Here we show that the nonzero maximum quantum distance guarantees
the existence of non-local eigenstates, called the non-contractible loop state and
the robust boundary mode, which induce intriguing topological features in real
space. In Sec. 3, we briefly introduce the recent progress in the photonic lat-
tice research, and then describe how the novel real-space topology was probed
experimentally in the photonic lattices. In Sec. 4, we show how to define the
strength of the singularity of the singular flat band via the maximum quantum
distance or the psedospin structure. In Sec. 5, we explore how the maximum
quantum distance is manifested in the exotic Landau level structure of the sin-
gular flat band with a quadratic band-crossing, which will pave the way for the
measurement of the quantum distance of solids. Here we also discuss how this
phenomenon is related the the divergence of the orbital magnetic susceptibility.
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Figure 1: (a) A compact localized state (CLS) and two non-contractible loop
states (NLSs) of the nearest neighbor tight binding model on the kagome lattice.
The red dashed box represents the unit cell located at R

¯
= (0, 0). (b) The bilayer

square lattice. Hopping parameters corresponding to the black and green dashed
arrows are 1/2, and those for the red arrows are −2. (c) A compact localized
state and two non-contractible loop states of the Lieb lattice model with only
the nearest neighbor hopping processes. Band structures for the models in (a),
(b), and (c) are represented in the lower panels (d), (e), and (f) respectively.
All the figures are adapted from [79].

Then, we show several candidate realistic materials, where those results can be
observed. Finally, in Sec. 6, we give conclusions and outlook of the research on
the singular flat band systems.

2 Flat band and singuarity

2.1 Compact localized state

The group velocity, the first derivative of an energy dispersion with respect
to crystal momentum, represents the mobiility of the charge carriers in the
band. In the flat band, the group velocity is strictly zero for all momenta in the
Brillouin zone. This implies that charge carriers in the flat band are immobile or
localized. The localized nature of the flat band is explained by the existence of a
special localized eigenstate called the compact localized state, whose amplitude
is finite only inside a finite region in real-space, and exactly zero outside of
it [1, 4, 79, 106–109]. As a representative example, the compact localized state
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of the kagome lattice with the nearest neighbor hopping processes is shown in
Fig. 1(a). One can easily check that this compact localized state is an eigenstate
of the kagome lattice model by applying the corresponding Hamiltonian operator
to it. Due to the destructive interference provided by the special lattice structure
of the kagome lattice, which is also related to the geometrically frustrated lattice
structure, the amplitudes of the compact localized state do not leak from its
boundary, and the compact localized state recovers its original form after the
hopping processes. Note that the compact localized state is not unique, and one
can have various types of the compact localized states by linear combinations of
the smallest compact localized states centered at different positions. Although
the compact localized state looks similar to the Wannier function, they are quite
different in the sense that (i) compact localized states usually do not form an
orthonormal set while Wannier functions do, (ii) a compact localized state is an
eigenmode while Wannier function is not usually.

A compact localized state is guaranteed to exist when the system has a flat

band and the corresponding Hamiltonian is described by a tight binding model

with a finite hopping range [79]. If the hopping processes are allowed within a
finite range, each matrix element of the Bloch Hamiltonian H(k

¯
) of the tight

binding model of such system is in the form of the finite sum of Bloch phases,
which is given by

H(k
¯
)|lm =

qlm
1
∑

n1=plm
1

· · ·
qlmd
∑

nd=plm
d

hlm(n1, · · · , nd)ein1k1 · · · eindkd , (2)

where d is the dimension of the system described by d primitive vectors a
¯i

, ki =
k
¯
·a
¯i

, ni is an integer ranging from plmi to qlmi , and hlm(n1, · · · , nd) is a complex
coefficient of the Bloch phase ein1k1 · · · eindkd . In a simple manner, we denote

the Bloch phas as eik¯
·R
¯ = ein1k1 · · · eindkd , where R

¯
= (n1, · · · , nd) is the lattice

vector. Then, the eigenvector v
¯fb for the flat band with energy ǫfb is obtained by

solving coupled homogeneous equations given by [H(k
¯
)−ǫfb]v

¯fb
(k
¯
) = 0. Since all

the matrix elements of H(k
¯
)− ǫfb are also in the form of the finite sum of Bloch

phases, one can always find a unnormalized solution for the v
¯fb

(k
¯
) in the form

of the finite sum of Bloch phases. By using the fact that any arbitrary linear
combination of the Bloch wave functions in the flat band is also an eigenstate,
one can construct an eigenstate expressed by

|χR
¯
〉 = cχ

∑

k
¯
∈BZ

αk
¯
e−ik

¯
·R
¯ |ψfb(k

¯
)〉, (3)

where |ψfb(k
¯
)〉 is the Bloch eigenstate of the flat band, cχ is the normalization

constant for |χR
¯
〉. Here, αk

¯
is a mixing coefficient of the Bloch eigenstates

with different k
¯
’s, in the form of a multiplication between |v

¯fb(k
¯
)| and an arbi-

trary finite sum of Bloch phases. Note that the Bloch eigenstate is in the form

|ψfb(k
¯
)〉 = N−1/2

∑

R
¯

′

∑Q
j=1 e

ik
¯
·R
¯

′

ṽfb(k
¯
)|j |R

¯
′, j〉, where N is the total number

of the unit cells in the system, ṽfb(k
¯
)|j is the j-th component of the normalized
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eigenvector of the flat band given by ṽ
¯fb = v

¯fb/|v¯fb(k
¯
)|, |R

¯
′, j〉 represents the

j-th orbital in the unit cell located at r
¯

= R
¯
′, and Q is the size of the Bloch

Hamiltonian. As a result, the amplitude of the j-th orbital of |χR
¯
〉 in the unit

cell at R
¯
′ is obtained as

〈R
¯
′, j|χR

¯
〉 =

cχ√
N

∑

k
¯
∈BZ

e−ik
¯
·(R

¯
−R

¯
′

)
αk

¯
vfb,j

|v
¯fb(k

¯
)| . (4)

Since αk
¯

v
¯fb/|v¯fb(k

¯
)| is in the form of the finite sum of Bloch phases, the value

of 〈R
¯
′, j|χR

¯
〉 vanishes if (R

¯
−R

¯
′) is out of the range of the lattice vectors in the

Bloch phases in αk
¯

v
¯fb/|v¯fb(k

¯
)|. This implies that |χR

¯
〉 is a compact localized

state, and one can have various kinds of the compact localized state depending
on the choice of αk

¯
. This is also a systematic scheme to obtain the compact

localized states from the Bloch eigenstate of the flat band.
Let us consider the kagome lattice model as an example. Its Bloch Hamil-

tonian is given by

Hkagome(k
¯
) =





0 1 + e−ik3 1 + eik2

1 + eik3 0 1 + e−ik1

1 + e−ik2 1 + eik1 0



 , (5)

where a
¯1

= a(1, 0), a
¯2

= a(−1/2,
√

3/2), and a
¯3

= −a
¯1

−a
¯2

. If the unnormalized

eigenvector for the flat band of this model is chosen to be v
¯
kagome
fb = (eik1 −1, 1−

e−ik2 , e−ik2−eik1)T, a compact localized state centered at r
¯

= 0 is obatined from
(4) as





〈R
¯
, 1|χkagome

0 〉
〈R
¯
, 2|χkagome

0 〉
〈R
¯
, 3|χkagome

0 〉



 =
1√
6







−δR
¯
,(−1,0) + δR

¯
,(0,0)

−δR
¯
,(0,0) + δR

¯
,(0,1)

−δR
¯
,(0,1) + δR

¯
,(−1,0)






. (6)

This is the compact localized state with the smallest size in the kagome lattice
model as plotted in Fig. 1(a). The j-th element of the column vector on the
right-hand side of (6) represents the amplitude of the compact localized state
at the site-j, which is indicated by three colors in Fig. 1(a). For example,
the first element −δR

¯
,(−1,0) + δR

¯
,(0,0) of this vector means that the amplitudes

at the site-1 in the unit cells located at R
¯

= (−1, 0) and R
¯

= (0, 0) are the
coefficients of δR

¯
,(−1,0) and δR

¯
,(0,0), namely -1 and 1 respectively. In fact, these

coeffecients can be inferred from the unnormalized form of the Bloch eigenstate
v
¯
kagome
fb because there is an one-to-one correspondence between the coefficients

of e−ik
¯
·R
¯

′

in v
¯
kagome
fb and that of δR

¯
,R
¯

′ in (6). In general, one can easily derive

the compact localized state from the unnormalized Bloch eigenstate in this way.

2.2 Singular and non-singular flat bands

One fundamental question on the compact localized state is that can one find
a complete set of N compact localized states to span the whole flat band? [79,

7



106] We need to answer this question to understand the localized nature of the
flat band completely. It seems quite obvious that N compact localized states
centered at N different unit cells are linearly independent. Here N indicates
the total number of unit cells in the system with a periodic boundary condition.
However, it was noted that, under the periodic boundary condition, those N
compact localized states fail to form a complete set sometimes [106]. Later, it
was rigorously shown that one cannot find a complete set of compact localized

states if the Bloch eigenstate of the flat band is discontinuous at a momentum in

the Brillouin zone. [79] This singular point can only be generated by the band-
crossing of the flat band with another dispersive band, and the Bloch eigenstate
in an isolated flat band is always analytic over the whole Brillouin zone. This
is consistent with the fact that the Chern number of an isolated flat band is
always zero when the hopping range of the model is finite. [78]. A flat band
with the singularity is called a singular flat band, and otherwise, it is called a
non-singular flat band [79].

The flat band of the kagome lattice model in Sec. 2.1 is an example of the
singular flat band. First, note that the flat band has a quadratic band-crossing
at Γ point (k

¯
= 0). We check whether the corresponding Bloch eigenstate is

singular or non-singular at the band-crossing point as follows. The normalized
eigenvector of Hkagome(k

¯
) in (5) is given by

ṽ
¯
kagome
fb =

v
¯
kagome
fb

|v
¯
kagome
fb |

=
1

|v
¯
kagome
fb |





eik1 − 1
1 − e−ik2

e−ik2 − eik1



 , (7)

where |v
¯
kagome
fb | = {2(3 − cos k1 − cos k2 − cos k3)}1/2. Note that all the ele-

ments of the unnormalized eigenvector v
¯
kagome
fb vanish at Γ point simultaneously.

Since the normalization factor |v
¯
kagome
fb | is also zero at Γ point, every element of

the normalized eigenvector ṽ
¯
kagome
fb is in the form of zero over zero. Therefore

the value of limk
¯
→0 ṽ

¯
kagome
fb depends on the choice of the path approaching Γ

point. For instance, one can show that limk1→0 ṽ
¯
kagome
fb (k1, 0) = (i, 0,−i)/

√
2

and limk2→0 ṽ
¯
kagome
fb (0, k2) = (0, i,−i)/

√
2. This implies that ṽ

¯
kagome
fb is discon-

tinuous at Γ point, and therefore the flat band of the kagome lattice is singular.
Let us consider another example of the flat band with a band-crossing, the

bilayer square lattice model described in Fig. 1(b). In this model, only the
nearest neighbor hopping processes with amplitude 1/2 are allowed between the
sites in the same layer, and the inter-layer hopping parameters corresponding to
the red and green dashed lines are −2 and 1/2 respectively. The corresponding
Hamiltonian is given by

HBSL =

(

cos kx + cos ky cos kx + cos ky − 2
cos kx + cos ky − 2 cos kx + cos ky

)

. (8)

Although the flat band has a band touching at Γ point, it is a non-singular flat
band because its eigenvector ṽ

¯
BSL
fb = (1, 1)T/

√
2 is just a constant and therefore

analytic for all momenta.
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As shown by these two examples, in general, we have to investigate the Bloch
eigenstates of a flat band to determine whether the flat band is singular or not.
However, we note that a flat band of any one dimensional system is always
non-singular irrespective of the presence or absence of band crossings [79].

The most crucial result of the existence of the singularity in a flat band
is that one cannot find a complete set of compact localized states spanning a

singular flat band under the periodic boundary condition [79]. To show this, we
denote N number of different compact localized states (labeled by j) by

|χR
¯ j

〉 = c(j)χ

∑

k
¯
∈BZ

α
(j)

k
¯
e−ik

¯
·R
¯ j |ψfb(k

¯
)〉, (9)

which have different shapes and center positions depending on the choice of α
(j)

k
¯and R

¯ j respectively. Then, a determinant diagnosing their linear independence
or dependence is given by

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α
(1)
k1
e−ik1·R1 α

(2)
k1
e−ik1·R2 · · · α

(N)
k1

e−ik1·RN

α
(1)
k2
e−ik2·R1 α

(2)
k2
e−ik2·R2 · · · α

(N)
k1

e−ik2·RN

...
...

. . .
...

α
(1)
kN
e−ikN ·R1 α

(2)
kN
e−ikN ·R2 · · · α

(N)
kN

e−ikN ·RN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (10)

because the Bloch wave functions |ψfb(k
¯
)〉’s with different momenta in (9) form

a complete set. As noted in Sec. 2.1, to ensure the compact localization of

|χR
¯ j

〉, α(j)

k
¯

should be proportional to |v
¯fb(k

¯
)|, where v

¯fb(k
¯
) is a unnormalized

eigenvector of the flat band in the form of the finite sum of Bloch phases.
Therefore, one can note that

D ∝
N
∏

l=1

|v
¯fb

(k
¯l)|. (11)

As a result, if v
¯fb

(k
¯
) is zero at a crystal momentum, namely the Bloch eigenstate

ṽ
¯fb(k

¯
) is singular at that momentum, D also becomes zero implying that N

compact localized states are always linearly dependent of each other. As one
can note from (9), in this case, the Bloch wave function corresponding to the
singular momentum is always absent in constructing the compact localized state

because α
(j)

k
¯

is zero at that momentum. Namely, N compact localized states

of a singular flat band are made of a smaller (less than N) number of Bloch
wave functions, which implies that they cannot be linearly independent. For
example, in the kagome lattice, the N compact localized states obtained by
translating the minimal compact localized state in (6) by all the lattice vectors
are known to be linearly dependent of each other because a simple sum of all
of them vanishes. On the other hand, if the flat band is non-singular, namely
there exists a nonzero v

¯fb(k
¯
) for the flat band, one can obtain non-zero D by

choosing α
(j)

k
¯

= |v
¯fb

(k
¯
)| and {R

¯ j} to be N distinct lattice vectors. Therefore,

9



one can find a complete set of N compact localized states for a non-singular flat

band.

We note that there is a subtle issue related to the finite size effect. Let us
denote the number of unit cells along a

¯i
direction byNi, so that the total number

of the unit cells in the system is given by N =
∏d

i=1Ni. Then, the crystal
momentum discretized under periodic boundary condition along each reciprocal
lattice vector is ki = (2π/Ni)m, where m is an integer. Therefore, even though
the continuum expression of the band dispersion shows a singular band-crossing
at a certain crystal momentum k

¯0
, one can find a complete set of N compact

localized states if k
¯0 cannot be represented by the form ki = (2π/Ni)m for the

given system size Ni. Let us consider the Lieb lattice model as an example.
Considering only the nearest neighbor hopping processes, the Hamiltonian is
given by

HLieb =





0 1 + eikx 0
1 + e−ikx 0 1 + e−iky

0 1 + eiky 0



 . (12)

The eigenvector of its flat band is obtained as

ṽ
¯
Lieb
fb =

1
√

4 + 2 coskx + 2 cosky





1 + e−iky

0
−1 − e−ikx



 , (13)

which is singular at k
¯0

= (π, π). Note that this k
¯0 is allowed only when both Nx

and Ny are even numbers. If we choose a compact localized state for this model
as shown in Fig. 1(c), any linear combination of the N = NxNy translated
copies of this compact localized state is nonzero for odd values of Nx and Ny.
This implies that these compact localized states form a complete set. On the
other hand, if Nx and Ny are even integers, the same staggered sum of them
vanishes. In this case, these compact localized states are linearly dependent on
each other. Note that if the singular band-crossing is at k

¯
= 0, we are free from

this finite size issue in general.

2.3 Non-contractible loop and planar states

Since we cannot construct a complete set of basis wave functions for the singular
flat band from the compact localized states as discussed in Sec. 2.2, some non-
compact eigenstates should be included in addition to the compact localized
states to span the flat band completely. In the kagome lattice, as an example,
such non-compact modes were found to be the so-called non-contractible loop

states, which are shown in Fig. 1(a) [106]. They are extended at least along
one spatial direction while compactly localized along other directions. One can
check that there are two such extended eigenmodes in the kagome lattice under
the periodic boundary condition, which are independent of the compact local-
ized states. Any other non-contractible loop states at different positions and
shapes can be constructed by a linear combination of the given non-contractible
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loop states and the compact localized states. In the kagome lattice case, it
was noted that N − 1 number of compact localized states can be linearly in-
dependent of each other [106]. Therefore, the existence of these two additional
non-contractible loops states is consistent with the fact that there are N + 1
number of degenerate Bloch eigenstates at the energy of the flat band, which
indicates that the flat band should be touching with another dispersive band at
a momentum.

The non-contractible loop states exhibit intriguing topological aspects in
real space as follows. For a two-dimensional system under periodic boundary
condition, the two independent non-contractible loop states form two closed
loops encircling the torus geometry along the toroidal and poloidal directions,
respectively. Also, they are robust because a non-contractible loop state cannot
be cut in the middle by any linear combination between the non-contractible
loop state and compact localized states, which merely deforms the shape of the
non-contractible loop state.

In general, it was shown that such non-contractible loop states are guaran-
teed to exist in a two dimensional singular flat band [79]. If the band crossing
point is at k

¯
= k

¯0
, the Bloch wave function corresponding to this momentum

does not participate in constructing a compact localized state by the linear
combination of Bloch wave functions as discussed previously via the equation
(9). As a result, any kind of eigenmodes including the Bloch wave function at
k
¯

= k
¯0 is linearly independent of the compact localized states. While the Bloch

wave function at k
¯

= k
¯0

is extended along both directions a
¯1

and a
¯2

, one can
make it compactly localized along one of those two directions by a linear com-
bination of it with other Bloch wave functions as follows. Let H(k1, k2) be the
Hamiltonian under consideration. If we fix k1 to k0,1, where k

¯0 = (k0,1, k0,2),
we obtain an effective one dimensional flat band Hamiltonian H(k0,1, k2) with
momentum k2. Since any one dimensional flat bad is a non-singular flat band as
noted previously, one can always find a compact localized state for this effective
Hamiltonian localized along a

¯2
direction, which includes the Bloch wave function

at k
¯

= k
¯0

too. This is the non-contractible loop state of the full Hamiltonian
H(k1, k2) because it is still extended along a

¯1
direction with momentum k0,1.

In the similar way, one can find another non-contractible loop state extended
along a

¯2
direction too.

In three dimensional case, one can have different kind of partially extended
states with nontrivial real space topology, called the non-contractible planar
states (NPSs) [79]. If we denote a singular flat band Hamiltonian for this case
by H(k1, k2, k3), one should fix two components of k

¯
= (k1, k2, k3) to the corre-

sponding components of the singular momentum k
¯0 = (k0,1, k0,2, k0,3) to obtain

an effective one dimensional flat band Hamiltonian in this case. Let us assume
that those two fixed momenta are k1 = k0,1 and k2 = k0,2, for convenience.
Then, we can construct a planar eigenstate, namely a NPS, which is extended
along two directions a

¯1
and a

¯2
, and compactly localized along a

¯3
. By fixing

other pairs of momentum components, one can obtain other NPSs along differ-
ent directions.
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Figure 2: (a) The robust boundary mode of the kagome lattice model. This
can be obtained by adding all the compact localized states centered at all the
unit cells (from R

¯ 1 to R
¯9). If one subtract a compact localized state centered

at R
¯ 2 to try to cut the robust boundary mode, it cannot be cut but deformed

as illustrated in the right-hand side. (b) A boundary eigenmode on the bilayer
square lattice, which is obtained by adding compact localized states centered
at boundary sites. This boundary mode can be cut by subtracting a compact
localized state on the boundary as shown in the right-hand figure. In (c), it
is illustrated schematically how the non-contractible loop states are connected
to the robust boundary mode by deforming the periodic boundary condition to
the open boundary condition. All the figures are from [79]
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2.4 Robust boundary modes

Under the open boundary condition, the singularity of a singular flat band is
manifested by the existence of a boundary eigenmode, called the robust bound-
ary mode [79]. The robust boundary mode of the kagome lattice is shown in
Fig. 2(a) as an example. In fact, the robust boundary mode is closely related
to the non-contractible loop state because the non-contractible loop states can
transform to the robust boundary mode as we modify the periodic boundary
condition to the open boundary condition as follows. We first prepare four
non-contractible loop states on a torus geometry of the system respecting the
periodic boundary condition, two along the toroidal direction and the other
two along the poloidal direction. Then, we transform the torus into a finite
system with the open boundary condition by cutting the surface of the torus
between non-contractible loop states as illustrated in Fig. 2(c) In this process,
the four non-contractible loop states lead to the robust boundary mode. Since
the appearance of the non-contractible loop states is from the singularity of the
singular flat band, the existence of the robust boundary mode is also due to the
same singularity.

This is a new kind of bulk-boundary correspondence between the singularity
in the bulk system and the boundary mode of the finite system. The conven-
tional bulk-boundary correspondence in topological systems is the correspon-
dence between a bulk topological invariant and the in-gap boundary modes of
the finite system. Examples of the topological invariant are the Chern number
of the Chern bands or Landau levels [88–91], Z2 index in topological insula-
tors [93–97], the Zak phase of the one dimensional insulators with reflection
symmetry [86, 110–112], and so on. The robust boundary mode of the singular
flat band is distinguished from the topological boundary modes in the following
perspectives. First, the robust boundary mode is not in the bulk band gap but
at the same energy of the flat band. Therefore, one cannot detect the robust
boundary mode by electronic spectroscopy such as the angle-resolved photoe-
mission spectroscopy (ARPES) [113]. Instead, one should use other kinds of
experimental tools, which can access the wave function directly. The photonic
lattice set-up is appropriate for this because here wave functions can be prepared
as well as detected quite freely. Second, the robust boundary mode is protected
by the singularity and the flatness of the band while the topological edge states
are protected by the topological charge or certain crystal symmetries. Third,
robust boundary mode is linearly dependent of the compact localized states of
the bulk, while the topological edge modes are not. Note that compact localized
states are linearly independent of each other under the open boundary condi-
tion, and form a complete set spanning the flat band. It is worth noting that
the compact localized states of a singluar flat bands are linearly dependent so
that their linear combination becomes zero under periodic boundary condition,
whereas the same linear combination generates a robust boundary mode under
open boundary condition. Since the robust boundary mode is obtained from a
macroscopic number, corresponding to the system size, of the compact localized
states, it cannot be cut or destroyed by adding few number of compact localized
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(a)

(b) (c)

QBT

Non-singular Singular

or or

Line touching Point touching

Figure 3: (a) A two-dimensional flat band with a quadratic band touching
(QBT). (b) If the QBT is non-singular, one can gap out the QBT while main-
taining the band flatness. When the flat band is shifted upward in the energy
space, one obtains a line touching between the flat band and the parabolic band.
(c) If the band-crossing point is singular, one should break the flatness of the
flat band during the gap opening process of the QBT point. If the flat band is
mixed with the quadratic band, one obtain point touching between two bands.
This figure is adapted from [79]

states, and this is what we mean by the robustness. Even in the non-singular
flat band, one can construct a boundary eigenmode by collecting all the com-
pact localized states spanning the boundaries of the finite system. However,
such boundary mode is not the robust boundary mode because it can be cut
by just adding a compact localized state near the boundary as shown by the
square lattice bilayer example in Fig. 2(b). Let us note that the presence of
robust boundary modes is confirmed in a recent experiment in photonic lattices
as discussed in Sec. 3.

2.5 Flatness enforced band-crossing

Conventionally, a band-crossing is protected by crystalline symmetries or topo-
logical charge [114]. Interestingly, in the case of the singular flat band, the
protection mechanism of its singular band-crossing does not belong to any of
them. Instead, it was shown that it is protected by just the flatness of the flat
band. One can analyze the generic protection mechanism for the band-crossing
of the flat band by using a low energy continuum Hamiltonian [79]. For simplic-
ity, we consider two dimensional systems with two bands touching each other.
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If the flat band has a point touching with another band, the band-crossing
type should be at least parabolic, because the energy dispersion of the band
touching with the flat band becomes not differentiable in the case of the linear
band-crossing. The most general quadratic form of the two-band Hamiltonian
is given by

Hk
¯

=(t1k
2
x + t2kxky + t3k

2
y)σz + (t4kxky + t5k

2
y)σy + t6k

2
yσx

+ (b1k
2
x + b2kxky + b3k

2
y)σ0, (14)

where σx, σy, σz are Pauli matrices, and σ0 is the identity matrix. Any quadratic
Hamiltonian matrix can be unitarily transformed to the above form. The con-
dition for the existence of a flat band is given by

detHk
¯

= 0, (15)

where we assume that the flat band is at the zero energy without loss of gener-
ality. From this we obtain five constraints as follows.

t21 =b21, (16)

t1t2 =b1b2, (17)

t23 + t25 + t26 =b23, (18)

t22 + 2t1t3 + t24 =b22 + 2b1b3, (19)

t2t3 + t4t5 =b2b3. (20)

Under these constraints, the Hamiltonian Hk
¯

yields a flat band and a parabolic

band touching each other at k
¯

= 0. One can note that the flat band is a
singular flat band only when both t1 and t4 are nonzero. The non-singular
flat band and singular flat band show distinct features during the gap-opening
process as follows.

First, the non-singular flat band can be decoupled from the parabolic band
while maintaining the flatness of the energy dispersion. In this case, it was shown
that the Hamiltonian matrix Hk

¯
can be always transformed to H̃k

¯
= (t′1k

2
x +

t′2kxky + t′3k
2
y)(σz + σ0). Since H̃′

k
¯

has no off-diagonal terms, a perturbation

of the form H′ = δλ(σz − σ0) can control the energy of the flat band without
destroying its flatness. As a result, we obtain a flatness-preserved gap opening
or a line toughing between two bands when δλ 6= 0. This is summarized in
Fig. 3 (b).

On the other hand, in the case of the singular flat band, the flat band cannot
be detached from the parabolic band while maintaining its flatness when a mass
term of the form H′ = mxσx + myσy + mzσz + m0σ0 is added to the system.

From the flatness conditions, detHk
¯

= 0 and det
(

Hk
¯

+ H′
)

= 0, we always

obtain t4 = 0 if one of the mass parameters is nonzero. This contradicts with
the fact that t4 should be nonzero to have a singular flat band. Therefore it
is impossible to shift the energy of the singular flat band while preserving its
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flatness, which implies that the singular flat band’s band-crossing is enforced by
the band’s flatness. Depending on the choice of the mass parameters, one can
either have the gap-opening at the band-crossing point or observe the generation
of two Dirac points at different crystal momenta. These results are illustrated
in Fig. 3(c). Moreover, one can find a mass term, which results in a Chern
band separated from other bands. As an example, in the kagome lattice, if
we add a gap-opening perturbation H′ = δ(λ2 + λ7), where λi’s are the Gell-
Mann matrices, to Hkagome(k

¯
), we have a nearly flat band with a nonzero Chern

number. This can be a systematic route to obtain a nearly flat Chern band
starting from a singular flat band when one uses a simple scheme to design a
singular flat band model proposed in [79].

3 Observation of the real-space topology in pho-

tonic lattices

3.1 Flat bands in photonic lattices

One can fabricate a two dimensional periodic array of optical waveguides, so-
called the photonic lattice [115–130], in a three dimensional medium by using
the femtosecond laser writing technique [131,132]. A light beam propagating in
this system satisfies a wave equation given by

−i ∂
∂z
ψ(x, y, z) = − 1

2k0n0
∇2

⊥ψ(x, y, z) − k0n(x, y)ψ(x, y, z), (21)

within the paraxial approximaition [116,121,122], where ψ(x, y, z) describes the
electric field envelope of the light propagating along z-axis, n0 and n(x, y) are
the refractive indices outside and inside the waveguide of the medium, k0 is the
wavenumber in vacuum, and ∇2

⊥ = ∂2x + ∂2y . This can be regarded as a 2D
Schrödinger equation by substituting z with time, and n(x, y) with the periodic
potential. Namely, the 2D cross section of the medium perpendicular to the
z-axis corresponds to a 2D lattice model in solid state physics. In the photonic
lattice set-up, one can have more freedom to design lattice models, control band
parameters of them, and prepare an initial state compared with the conventional
condensed matter experiments. As a result, many flat band systems such as the
Lieb [57–60] and kagome lattice models [61–63] have been studied by using the
photonic lattice experimental set-ups [64–69].

In the photonic lattice, a flat band is probed indirectly by showing that a
compact localized state is an eigenmode because a compact localized state is
guaranteed to exist in a flat band system and represents the localized nature
of this dispersionless band. If the waveguides embedded in a medium extend
along z-direction from z = 0 to z = Lz, an incident light beam, whose am-
plitudes and phases correspond to those of the compact localized state, enters
into the waveguides at z = 0. As the light beam propagates along z-axis, it
would also spread along the transverse direction in general due to the coupling
between neighboring waveguides. However, the light beam corresponding to the
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Figure 4: (a) The kagome lattice in the Corbino geometry. (b) Experimental
realization of (a) in the photonic lattice. (c) Observation of the non-contractible
loop state. With the out-of-phase configuration, the initial state propagates
along z-direction without any transverse dissipation. (d) An initial state with
the in-phase condition is not an eigenmode. (e) A finite kagome lattice with the
open boundary condition. (f) Experimental realization of the robust boundary
mode. The robustness of the robust boundary mode is tested by adding (g) a
compact localized state, and (h) a defect. These figures are adapted from [79]

compact localized state remains same up to an overall phase factor during the
propagation because the compact localized state is an exact eigenstate of the flat
band system. As a result, what we observe at the other end of the waveguides
(z = Lz), is the same incident light beam only multiplied by a phase factor, and
this is how one demonstrate the existence of a flat band in the photonic lattice
experiments.

3.2 Observing non-contractible loop states and robust bound-

ary modes in photonic lattices

As described in the previous section, non-contractible loop states and robust
boundary modes should also be considered together with compact localized
states to understand the fundamental properties of a flat band completely. Prob-
ing one of those states is equivalent to the observation of the Bloch wave func-
tion’s singularity of the flat band. The first experimental attempt to observe
non-contractible loop states was done in the photonic Lieb lattice [60]. They
considered a finite Lieb lattice with an open boundary condition, and showed
that an extended state, called the line state is an eigenmode. Although the line
state looks similar to the non-contractible loop state, it is an indirect demon-
stration of the non-contractible loop state because the stability of the line state
relies on the shape of the boundary of the finite system. Moreover, in the case
of the kagome lattice, one cannot find a stable line state for such simple open
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boundary condition, and we need a more delicate decoration of the boundaries
for the line state to become an eigenstate [63]. In principle, it is impossible to
observe the non-contractible loop state directly in a finite system because the
non-contractible loop state is well-defined and independent of compact localized
states only under the periodic boundary condition.

The periodic boundary conditions in two dimensions are usually hard to be
implemented in real space simultaneously. However, we need just one periodic
boundary condition along one direction to stabilize one of the non-contractible
loop states of a flat band. This was realized experimentally by arranging the
waveguides of the photonic crystal in an annular disk, called the Corbino disk,
where the spatial periodicity is preserved along the azimuthal direction. The
kagome lattice in the Corbino geometry illustrated in Fig. 4(a) was realized in
the photonic lattice as shown in Fig. 4(b). Then, as in Fig. 4(c) and (d), only the
light beam under out-of-phase condition, corresponding to the non-contractible
loop state, propagates without dissipation along the transverse direction, while
the light beam under in-phase condition is destroyed after the propagation.
The demonstration of the stability of the light beam winding the whole system
with out-of-phase configuration is the first direct observation of the real-space
topology represented by the non-contractible loop state.

Another topological object manifesting the singularity of the flat band is
the robust boundary mode. The robust boundary mode only requires the open
boundary condition, which is more realistic than the periodic boundary condi-
tion. As shown in Fig. 4(e), a finite kagome lattice is synthesized in a photonic
lattice. Then, a state spanning the boundary of the system with out-of-phase
configuration is found to be an eigenmode corresponding to the robust boundary
mode as presented in Fig. 4(f). Moreover, the robustness of the robust bound-
ary mode is also checked by showing that the robust boundary mode cannot be
cut, although it is slightly deformed, when a defect is placed on the boundary
of the system.

4 Strength of the singularity

4.1 Maximum quantum distance

In topologically non-trivial bands, the bulk topological invariant is nonzero due
to a singular behavior of the corresponding Bloch wave function in momentum
space. For example, a Chern band yields a nonzero Chern number as a bulk
topological number because the Bloch wave function of this band cannot be
determined uniquely and smoothly over the whole Brillouin zone [133]. In the
case of the Weyl semimetal, the nonzero quantized monopole charge of the Weyl
point is from the discontinuity of the Bloch wave function at this point [92]. In
two dimensional band-crossings like the Dirac point of graphene, the Berry phase
given by

γ = i

∮

C

〈vk
¯
|∂k

¯
|vk

¯
〉, (22)
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is usually used to determine whether the band-crossing point is topological or
not, where C is a closed path enclosing the band-crossing point and |vk

¯
〉 is the

cell-periodic part of the Bloch wave function [134,135]. Here, the singularity of
the Bloch wave function at the touching point also plays a key role when gamma
is nonzero modulo 2π and quantized.

On the other hand, the band-crossing point of the singular flat band is
always topologically trivial due to the flatness condition of the band although
the Bloch wave function is singular there [80]. First, the generic singular flat
band with a quadratic band crossing does not have a quantized Berry phase
(22) because all the Pauli matrices are used in the generic Hamiltonian in (14).
Even though the Berry phase is quantized due to some symmetries such as C2zT
and PT , where C2z, P , and T are two-fold rotation about the z-axis, inversion,
time-reversal symmetries, respectively, the Berry phase of the singular flat band
reads γ = 2πn with integer n. These imply that the band-crossing point of the
singular flat band generally does not carry a quantized topological charge, and
it is considered topologically trivial.

It was recently proposed that the quantum distance can be used to define a
bulk number characterizing the singular band-crossing point of the singular flat
band, representing the strength of the singularity [80]. From (1), the quantum
distance between two Bloch states at momenta k

¯1
and k

¯2
is given by d2k

¯1
,k
¯2

=

1−|〈vk
¯1

|vk
¯2

〉|2. Then, the strength of the singularity is defined by the maximum

value of the quantum distance between all the possible pairs of Bloch eigenstates
of the flat band around the singular point. Namely,

d2max = max
[

d2k
¯1

,k
¯2

]

, (23)

where k
¯1 and k

¯2
are momenta close to the band-crossing point. By definition,

the strength of the singularity dmax is valued from 0 to 1. In the case of the
non-singular flat band, the Bloch eigenmode of (14) is always independent of
momentum, so that the quantum distance is zero between an arbitrary pair
of momenta. As a result, dmax = 0 for the non-singular flat band. On the
other hand, in the case of the singular flat band, dmax remains finite even if we
consider momenta extremely close to the band-crossing point. Note that the
eigenvector of the Hamiltonian (14) is independent of k, which is the magnitude
of the momentum displacement with respect to the band crossing point, because
all the dependencies on k can be factored out from this quadratic Hamiltonian.
The general form of the maximum quantum distance of the Hamiltonian (14) is
evaluated as

d2max =
t24

−t22 + 4t1t3 + 2t24
= 4m1m2t

2
4, (24)

where m1 and m2 are the minimum and maximum effective masses of the
quadratic band touching with the flat band.

The strength of the singularity, dmax, also represents how strong the inter-
band coupling between the flat band and parabolic band as explained below
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(a) (b) (c)

Figure 5: Pseudospin structures for various sets of the band parameters
{t1, t2, t3, t4, t5, t6}.

by a counting argument [80]. First, the number of independent parameters of
the Hamiltonian (14) is four because five parameters among nine parameters
in (14) are determined by others through the flatness conditions from (16) to
(20). Since we need three parameters to describe the dispersion relation of the
quadratic band of the form Equad(k

¯
) = a1k

2
x+a2kxky +a3k

2
y, and no parameters

for the flat band fixed at the zero energy, the remnant one parameter should be
related to the inter-band coupling. Indeed, it was shown that the general flat
band model (14) can be represented by four parameters Mxx, Mxy, Myy, and
dmax, where M−1

αβ = ∂kα
∂kβ

Equad(k
¯
) is the mass tensor for the parabolic band.

This implies that dmax is very natural inter-band coupling parameter of the two
dimensional flat band model with a quadratic band touching.

As an example, let us consider the kagome lattice. Its low energy effective
Hamiltonian around the quadratic band-crossing is given by

Heff
kagome =

(

k2x ikxky
−ikxky k2y

)

, (25)

where the flat band’s energy is shifted to zero [79]. The eigenvector of the flat
band of this model is evaluated as

v
¯fb

=
1

√

k2x + k2y

(

−iky
kx

)

=

(

−i sin θ
cos θ

)

, (26)

where θ is the polar angle with respect to the band-crossing point at k
¯

= 0.
Then, the quantum distance between two eigenvectors at θ1 and θ2 is obtained
as

d2θ1,θ2 = 1 − |〈v
¯fb(θ1)|v

¯fb(θ2)〉|2 = 1 − cos2(θ1 − θ2). (27)

This gives us the maximum quantum distance dmax = 1 when θ1 − θ2 = π/2,
which is consistent with the formula (24) because the band parameters for
Heff

kagome are given by t1 = b1 = −t3 = b3 = 1/2, t4 = −1, and zero for other
parameters. Since the quantum distance is ranging from 0 to 1 by definition,
the kagome lattice’s flat band corresponds to the maximally singular case.
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4.2 Maximum pseudospin canting angle

The singular band-crossing point of the flat band can be also characterized by
the canting structure of the pseudospin given by

s
¯
(k
¯
) = 〈vk

¯
|σ|vk

¯
〉 =

∑

α=x,y,z

α̂
fα(k

¯
)

√

fx(k
¯
)2 + fy(k

¯
)2 + fz(k

¯
)2
, (28)

where |vk
¯
〉 is the eigenvector of the flat band and fα(k

¯
) is the coefficient of

σα in (14) given by fx(k
¯
) = t6k

2
y, fy(k

¯
) = t4kxky + t5k

2
y, and fz(k

¯
) = t1k

2
x +

t2kxky + t3k
2
y [80]. One can represent the pseudospin on a surface of a unit

sphere because fx(k
¯
), fy(k

¯
), and fz(k

¯
) are all in quadratic order of k = |k

¯
| so

that the size of the pseudospin is constant. Pseudospin texture is drawn on a
circular path encircling the band-crossing point as illustrated in Fig. 5. Since
the eigenvector of (14) is independent of k, the pseudospin structure is also
independent of the size of circle. In the case of the non-singular flat band, the
pseudospins are aligned to each other as shown in Fig. 5(a). As a result, the
pseudospin is well-defined even at the band-crossing point. However, in the case
of the singular flat band, we have a canting structure of the pseudospins around
the band-crossing point as illustrated in Fig. 5(b) and (c). This implies that the
pseudospin cannot be fixed uniquely at the touching point, which is consistent
with the fact that the corresponding Bloch eigenstate is not uniquely defined
there.

It was shown that the quantum distance between two Bloch states at k
¯1 and

k
¯2 can be represented by the relative angle ∆θ between two pseudospins at the
same momenta as follows.

∆θ(k
¯1, k¯2) = 2 sin−1 dk

¯1
,k
¯2

, (29)

which represents the one-to-one correspondence between those two quantities.
Therefore, one can use the maximum canting angle ∆θmax = max∆θ(k

¯1, k¯2
) as

the strength of the singularity of the singular flat band instead of the maximum
quantum distance dmax. According to the maximum canting angle, the value
of the strength of the singularity ranges from 0 (non-singular flat band) to π
(maximally singular flat band). In general, due to the topological triviality,
the pseudospin texture of the singular flat band does not exhibit any winding
structure except the maximally singular case (∆θmax = π or dmax = 1), where
we have a winding number 2 of the pseudospin around the band-crossing point.
However, the singular flat band can be characterized by the pseudospin canting
structure or the finite maximum quantum distance, which can be manifested in
reality via Landau level structure as explained in the next section.

Let us consider again the kagome lattice as an example. For convenience,
we use a unitary transformed Hamiltonian H̃eff

kagome = U†Heff
kagomeU , where U =

(σ0 − iσy)/
√

2. Then, H̃eff
kagome is described by fx(k

¯
) = (−k2x + k2y)/2, fy(k

¯
) =

−kxky, fz(k
¯
) = 0, and f0(k

¯
) = (k2x +k2y)/2. As a result, the pseudospin formula

is given by

s
¯
(θ) = − cos 2θ x̂− sin 2θ ŷ, (30)
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which shows double winding around the band-crossing point, and ∆max = π.

5 Anomalous Landau levels of singular flat bands

5.1 Onsager’s semiclassical theory

In solids, the band structure of electrons under a magnetic field, namely the
Landau level structure, can be understood intuitively as well as quantitatively
by using the Onsager’s semiclassical quantization rule described by

S0(ε) =
2πeB

~

(

n+
1

2
− γε,B

2π

)

, (31)

where ε represents energy, S0(ε) is the area of a closed path at the energy ε
on a band, B is the magnetic field, e is the electric charge, h = 2π~ is the
Planck constant, n is an integer corresponding to the Landau level index, and
γε,B is the quantum correction due to Berry phase, magnetic susceptibility, and
higher order magnetic responses [134, 136–139]. Only the energy values of ε
satisfying the above equation are allowed as eigenenergies, and they are quan-
tized because the Landau level index n is discretized. The key idea of this
scheme is that one can predict the Landau level structure from the information
obtained before applying magnetic field such as the band dispersion and geo-
metric properties of the Bloch wave function. Conversely, one can extract the
geometric properties of the Bloch wave function, such as the Berry phase, from
the Landau level structure via the above formula. Let us consider graphene as
an example. Denoting the Fermi velocity around its Dirac point by vF , we have
S0(ε) = π(ε/~vF )2 and γε,B = π. This leads to the well-known Landau level
quantization ε = vF (2e~Bn)1/2.

5.2 Landau level spreading of the singular flat band with

a quadratic band-crossing

The Onsager’s scheme cannot be applied to the flat bands because S0(ε) is not
well-defined in this case. Namely, one can have infinitely many choices of the
closed path at the energy of the flat band, and therefore S0(ε) is not single-
valued. What we can naively infer from the fact that the effective mass m∗

is infinite in the flat band is that the cyclotron energy (~ωc = ~eB/m∗) is
vanishing and all the Landau levels are trivially developed at the same energy
of the flat band. However, it was recently shown that the Landau levels of
a flat band are nontrivial and determined by a completely different scheme
involving the quantum distance of the Bloch states of the flat band around the
singular momentum, where the flat band is touching with another quadratically,
as described below [80].

To consider the effect of the magnetic field on the flat band, the transforma-
tions kx → (a+a†)/

√
2lB and ky → i(a−a†)/

√
2lB are applied to the quadratic

band-crossing flat band Hamiltonian in (14), where a and a† are the annihilation
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Figure 6: (a) A flat band and a parabolic band crossing each other at a point.
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shape of the Landau level structure of (b) the non-singular flat band and (c)
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and creation operators, respectively satisfying [a, a†] = 1. To ensure the Her-
miticity, kxky is symmetrized by replacing it with (kxky + kykx)/2. Then, each
element of (14) becomes an operator. This Hamiltonian is solved by applying a
trial wave function of the form

|ψ〉 =

∞
∑

n=0

(

Cn

Dn

)

|un〉, (32)

where |un〉 is the normalized eigenstate of the harmonic oscillator satisfying
a|un〉 =

√
n|un−1〉 and a†|un〉 =

√
n+ 1|un+1〉, and Cn and Dn are complex

coefficients.
The generic structure of the Landau levels of the flat band model (14) ob-

tained by the procedure described above is shown in Fig. 6. The most intriguing
feature is that the Landau levels are developed at the energies, where the den-
sity of states was zero before applying the magnetic field. This behavior is
completely anomalous from the semiclassical point of view because the semi-
classical quantization equation (31) does not have a solution when the energy ε
is in the band gap region. This phenomenon is called the Landau level spreading

of a flat band [80]. In the case shown in Fig. 6(a), the energy of the flat band
is lower than that of the parabolic band, the energy difference between the flat
band and the lowest Landau level defines the magnitude of the Landau level
spreading. On the other hand, if the flat band is above the hole-like quadratic
band, the Landau level spreading is the energy of the highest Landau level with
respect to the flat band’s energy.

While the Landau level spreading appears only in the singular flat bands, its
magnitude can be shown to be determined by the maximum quantum distance
dmax of the Bloch eigenstate before applying magnetic field. More specifically,
as shown in Fig. 6(e), the ratio ∆/~ωc is a simple monotonic function of dmax

given by

∆

~ω
= ξ(d2max), (33)

where ∆ is the Landau level spreading and ωc = eB/
√
m1m2 is the cyclotron

frequency of the parabolic band. It is important to note that ∆/~ωc is only
a function of dmax regardless of an arbitrary choice of band parameters of the
model Hamiltonian in (14). This implies that the quantum distance plays the
key role in the Landau level structure of the flat band, and the strength of
the singularity of the band-crossing point manifests itself as the Landau level
spreading. In fact, it was rigorously shown that two Hamiltonians with distinct
sets of band parameters are equivalent to each other within a scale factor if
they share the same dmax. The scale factor is the ratio between the cyclotron
energies of the parabolic bands of those two Hamiltonians. Therefore, all the
singular flat band systems with the same dmax share the same value of ∆/~ωc.
Moreover, the Landau level spreading can be understood as a result of the level
repulsion between Landau levels originating from the flat band and the parabolic
band. Indeed, the coupling strength between Landau levels from the flat and
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the parabolic bands, which is relevant to the level repulsion, was shown to be
proportional to dmax in the weakly singular limit (dmax ≪ 1).

While the explicit form of ξ(x) is unavailable, its approximate form, which
fits the numerical data accurately, was found to be

ξfit(x) = c− c(1 − xr)s +
3

40
x, (34)

where c = 0.041, r = 2.344, and s = 0.487. This was obtained from several
analytic results such as ξ(d2max → 0) = (3/40)d2max and ξ(d2max → 1) = (2

√
3 −

3)/4. By using this formula, one can extract the geometric information, namely
the maximum quantum distance dmax, of the singular flat band around the
band-crossing point from the Landau level structure.

Another intriguing feature of the Landau level structure of the singular flat
band with a quadratic band-crossing is that the Landau levels are inversely
proportional to the Landau level index n close to the flat band’s energy as shown
in Fig. 6(d). Here, the energy of the flat band is assume to be zero without loss
of generality. As an example, in the case of the maximally singular (dmax = 1)
model in (25), the explicit formula for the Landau levels corresponding to the
singular flat band is given by

ELL
fb (n) =

1

2l2B

(

2n+ 3 − 2
√

(n+ 1)(n+ 2) + 1
)

, (35)

where lB =
√

~/eB is the magnetic length. Then, close to the flat band’s energy
(E = 0), namely for n≫ 1, the above formula is approximated to

ELL
fb (n) ≈ − 3

8l2B

1

n
. (36)

The same behavior appears in the weakly singular cases (dmax ≪ 1) too. One of
the simplest example of the weakly singular flat band models is obtained by the
band parameters t1 = b1 = t3, t2 = b2 = t5 = 0, t6 = t4

√

4t21 + t24/(2t1), and

b3 =
√

t21 + t24(4t21 + t24)/(4t21), where t1 and t4 are free parameters with t4 ≪ t1.
In this case, we have dmax ≈ t4/(2t1). According to the level repulsion mecha-
nism mentioned in the previous paragraph, it was shown that the approximate
formula for the Landau levels corresponding to the flat band is given by

ELL
fb (n) ≈ − 3t24

16t21l
2
B

1

n
. (37)

5.3 Lattice models

The results in Sec. 5.2 obtained from the continuum Hamiltonian (14) were suc-
cessfully applied to several lattice models such as the kagome and the checker-
board lattice models [80]. Such lattice models are described by the tight binding
Hamiltonians of the form

Hlattice =
∑

i,j

tijc
†
i cj, (38)
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where tij is the hopping parameter between the i-th and j-th sites, and ci
represents the annihilation operator at the i-th site. The effect of the magnetic
field on this system can be considered by the Peierls substitution given by

tij → tije
i2π 1

φ0

∫
j

i
A
¯
·dl
,̄ (39)

where A
¯

is the vector potential corresponding to the applied magnetic field,
and φ0 = h/e is the magnetic flux quantum [140]. Denoting the magnetic
flux penetrating the unit cell before applying the magnetic field by φ, we only
consider the cases, where φ/φ0 = p/q with natural numbers p and q.

The Landau levels of the kagome lattice with only the nearest neighbor
hopping processes are shown in Fig. 7(b), and those of the checkerboard lattice
model with the nearest and the next nearest hopping processes are plotted in
Fig. 7(f). Most importantly, the Landau level spreading phenomenon of the flat
band discussed in the continuum model analysis appears in the Landau level
structures of both lattice models too. According to the continuum result in
(33), the Landau level spreading should be ∆ = ~ωc(2

√
3 − 3)/4, where ~ωc

is the Landau level spacing of the parabolic band, because the singular flat
bands of the kagome and checkerboard lattices yield dmax = 1 around their
band-crossing points. As shown in Fig. 7(d) and (h), this continuum results
(solid lines) are consistent with the numerical data obtained from the lattice
models (circular symbols). Moreover, the 1/n behavior of the Landau levels of
the continuum model is clearly shown in the Landau levels of the lattice models
too as plotted in Fig. 7(c) and (g). However, this trend breaks down for large
n’s due to the lattice effect. A distinguishing feature of the results of the lattice
model is that there are finite number of Landau levels while there are infinite
ones in the continuum model. In the lattice model, after the Peierls substitution,
we have an enlarged unit cell, called the magnetic unit cell. Let us assume that
the magnetic unit cell is Q times larger than the original unit cell, where Q is
a natural number determined by the flux number φ/φ0. Then, to preserve the
total number of states before and after the application of the magnetic field, we
have Q magnetic bands, corresponding to the Landau levels, per each original
energy band. In those two lattice models under the magnetic field described by
φ/φ0 = 1/q, one can find a gauge choice where the magnetic unit cell is q times
larger than the original unit cell, and we have q magnetic bands corresponding
to their flat band. It was shown that only q − 1 magnetic bands are developed
in the band gap region below the flat band, and one remnant magnetic band is
above it.

5.4 Realistic systems

In real materials, one cannot have a perfectly flat band because the hopping
parameters of such systems cannot be fine-tuned as in the toy models treated in
the previous subsections. For instance, while a perfectly flat band appears in the
kagome lattice when we consider only the nearest neighbor hopping processes,
it becomes dispersive as soon as we include long range hopping processes or the
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spin-orbit coupling (SOC) which exist in the realistic situations. Let us denote
the first and second nearest neighbor hopping parameters by t1 and t2, and
the SOC strength by λ respectively. Then, we have a nearly flat band when
the later two processes are perturbatively small, namely t2, λ ≪ t1. There
are several candidate materials with kagome-like structures hosting nearly flat
bands belonging to different regimes in the parameter space of t2/t1 and λ/t1 as
follows. First, the carbon networks such as the cyclic graphene, cyclic graphyne,
and cyclic graphdiyne, belong to the case where λ ≈ 0 because the SOC can be
neglected due to the low atomic number of carbon [11, 18, 80]. In this case, the
gap opening at the band-corssing point is almost negligible while the flat band
obtains a small dispersion due to the finite value of t2/t1. Second, the nearly
commensurate-charge density wave (NC-CDW) phase of 1T-TaS2 corresponds
to the regime t2/t1 ≈ 0 because the second nearest neighbor hopping processes
as well as the longer range hopping parameters are exponentially suppressed
due to the large insulating domains [141]. Third, in the trans-Au-THTAP, both
t2/t1 and λ are non-negligible although they are small enough to have a nearly
flat band [142]. In the last two cases, the singularity of the unperturbed flat
band is completely removed by the energy gap induced by the SOC. However,
this singularity is still manifested in the Landau level structure of the nearly
flat band as shown in the following formula for the zeroth Landau level of the
nearly flat band:

E±
0 ≈ 2(t1 + t2) + a0

φ

φ0
±
√

a1
φ2

φ20
− 8λa0√

3

φ

φ0
+ 12λ2, (40)

where a0 = −
√

3π(t1/2 + 2t2), and a1 = π2(t21 + 8t22) [80]. Here, the zeroth
Landau level E+

0 (E−
0 ) corresponds to the lowest (highest) Landau level of the

flat band touching with an electron-like (hole-like) parabolic band. The electron-
like (hole-like) parabolic band can be obtained by the negative (positive) value of
t1. This formula can be applied to all the three cases discussed in the above, and
it was shown that the maximum quantum distance can be extracted successfully
from this in the strong magnetic field limit. More specifically, the Landau level
spreading of the unperturbed flat band competes with the energy scale of the
band width of the nearly flat band. As a result, under very weak magnetic field,
the band width of the nearly flat band dominates the landau level spreading so
that the Onsager’s semiclassical scheme can be successfully applied to obtain
the Landau levels. However, if the magnetic field is strong enough so that the
Landau level spreading is much larger than the band width, the Landau level
spreading of the nearly flat band can be clearly observed.

5.5 Diverging orbital magnetic susceptibility

At zero temperature, the orbital magnetic susceptibility is defined by

χorb = − lim
B→0

d2Etot

dB2
, (41)

28



where Etot is the total energy per unit area of the system under the magnetic
field. As a representative example, the diamagnetic divergence of the orbital
magnetic susceptibility of graphene can be understood from this definition as
follows. The Landau levels of graphene are proportional to

√
B. Since the

Landau level degeneracy is proportional to B, the total energy below the Dirac
point shows B

√
B dependence, which results in 1/

√
B divergence in the weak

magnetic field limit. Therefore, the peculiar divergence of the orbital mag-
netic susceptibility of graphene is due to the

√
B dependence of the Landau

levels [143].
On the other hand, the Landau levels of the singular flat band are propor-

tional to B as in the conventional cases. Instead, they show the intriguing 1/n
dependence [80]. As a result, the total energy for a fully occupied singular flat
band is given by

Etot ∝
1

2πl2B

q
∑

n=1

1

nl2B
∝ B2 lnB, (42)

where we assume that the parabolic band touching with the singular flat band at
the zero energy is electron-like, and the magnetic flux per unit cell is φ/φ0 = 1/q
with q ≫ 1. This form of the total energy leads to the logarithmically divergent
paramagnetism, namely χorb ∝ − lnB+const. On the contrary, if the parabolic
band is hole-like, the singular flat band gives the diverging diamagnetism. This
logarithmic divergence of the orbital magnetic susceptibility can be seen even
for the partially filled flat band.

The fate of the orbital magnetic susceptibility when the flat band gains a
small dispersion due to a finite SOC is also important [80]. In this case, the
singular flat band becomes an insulator due to the gap opening at the band-
crossing point. When the resulting nearly flat band is fully occupied, namely the
Fermi level is in the gap between the flat band and the parabolic band, it was
found that the orbital magnetic susceptibility is no more divergent. However,
the orbital magnetic susceptibility still remains finite even though there is no
state in the gap, and its value could be large for the small enough SOC.

5.6 Landau level broadening due to disorder

When the system is disordered, its Landau levels cannot be described by the
Dirac delta function type density of states anymore, and are broadened. It
was shown that the Landau level broadening appears differently in the non-
singular flat band and singular flat band, and the quantum distance plays a
central role [80]. Quantitatively, the Landau level broadening Γ is defined as
the energy width of the density of states of the broadened Landau level at its
half-maximum. In the recent work [80], an onsite disorder potential given by

Vdisorder = ρ
∑

i ǫic
†
i ci is considered, where i is the site index, ǫi is a random

number ranging from −0.5 to 0.5, and ρ is the disorder strength. First, in the
case of the non-singular flat band, where all the Landau levels corresponding to
the flat band are degenerate at the energy of the flat band, the Landau level
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broadening Γ is proportional to ρ, and almost independent of the magnetic field.
This is a different behavior from the usual Landau level broadening of parabolic
dispersions within the Born approximation given by Γ = (~2ωc/2πτ0)1/2 ∝

√
B,

where τ0 is the relaxation time in the absence of the magnetic field. On the
other hand, in the case of the singular flat band, all the Landau levels spread
into the energy gap are non-degenerate, and the Landau level broadening of each
of them should be investigated. In the weakly singular cases, it was found that
the Landau level broadening of the singular flat band is due to the inter-band
coupling between the singular flat band and the parabolic band touching with
it. Indeed, the approximate formula for the Landau level broadening is given
by

Γfb =
d2max

4

√

~2ωc

2πτ0
, (43)

where ~ωc is the cyclotron energy of the quadratic band. Note that dmax rep-
resents the strength of the inter-band coupling as discussed in Sec. 5.2. While
the

√
B behavior of the Born approximation is recovered, it is not the intrin-

sic property of the singular flat band. Instead, it arises from the Landau level
broadening (∼

√
B) of the parabolic band, which appears in Eq.(43) through

the inter-band coupling due to the singularity at the band crossing point. To ob-
serve the Landau level spreading in experiments, it should be much larger than
the Landau level broadening and it was shown in [80] that the critical magnetic
field and the disorder strength are within the experimentally accessible range.

6 Conclusions and outlook

We have reviewed the theoretical and experimental progress of the fundamental
understanding of singular flat band systems. A singular flat band has a quite
simple band structure, composed of a flat band crossing with another dispersive
band at a momentum. However, the singularity of the flat band’s Bloch states
gives unexpected physical outcomes. The presence of partially extended eigen-
states, such as the non-contractible loop states and the robust boundary modes.
More surprisingly, the singularity is deeply rooted from the quantum distance of
Bloch wave functions around the band crossing point. Such intriguing geometric
properties of the singular flat band eventually leads to the unusual Landau level
spreading, which goes beyond the paradigm of Onsager’s semi-classical theory.

We believe that singular flat bands are an ideal new platform where in-
triguing geometric properties of Bloch states associated with quantum metric
or quantum distance can be investigated. Although it is trivial in view of the
conventional band topology, it provides an avenue to explore the geometry of
quantum states from a different perspective, beyond the physics of Berry curva-
ture. In this respect, recent experimental discovery of various materials hosting
nearly flat bands, such as CoSn [27, 28] and FeSn [30], is quite encouraging.
We note that while the most actively studied flat band system recently is the

30



twisted bilayer graphene, the nearly flat bands of the twisted bilayer graphene
just belong to the non-singular flat band according to the classification scheme
in this review [80]. On the other hand, the flat band of CoSn and FeSn, arising
from the underlying kagome lattice structure, belongs to the category of singu-
lar flat bands. We propose that the flat band materials based on kagome lattice
structure would provide new opportunities to reveal the geometric properties
related to the nonzero quantum distance predicted in this paper. It is worth
noting that, unlike the physics of Berry curvature and Berry phase, which is
already well-established, relatively less attention has been paid to the physical
significance of the quantum metric and quantum distance. We believe that the
study of singular flat bands would pave the way for the complete understanding
of geometric properties of Bloch wave functions in condensed matter physics,
and it could lay groundwork to figure out the underlying mechanism of the
strongly correlated physics in flat band system, such as the superconducivity
and magnetism.
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