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Rare transitions between long-lived metastable
states underlie a great variety of physical, chem-
ical and biological processes. Our quantitative
understanding of reactive mechanisms has been
driven forward by the insights of transition state
theory. In particular, the dynamic framework de-
veloped by Kramers marks an outstanding mile-
stone for the field. Its predictions, however, do
not apply to systems driven by non-conservative
forces or correlated noise histories. An important
class of such systems are active particles, promi-
nent in both biology and nanotechnology. Here,
we trap a silica nanoparticle in a bistable poten-
tial. To emulate an active particle, we subject
the particle to an engineered external force that
mimics self-propulsion. We investigate the ac-
tive particle’s transition rate between metastable
states as a function of friction and correlation
time of the active force. Our experiments re-
veal the existence of an optimal correlation time
where the transition rate is maximized. This
novel active turnover is reminiscent of the much
celebrated Kramers turnover despite its funda-
mentally different origin. Our observations are
quantitatively supported by a theoretical analy-
sis of a one-dimensional model. Besides provid-
ing a deeper understanding of the escape dynam-
ics of active particles in multistable potentials,
our work establishes a new, versatile experimen-
tal platform to study particle dynamics in non-
equilibrium settings.

Transitions between long lives states are important for
the understanding of chemical reactions [1, 2], transi-
tions between bistable configurations [3, 4], protein fold-
ing [5, 6], motion of ligands in proteins [7], diffusion in
solids through different domains [8], nuclear fission [9]
and current switching in Josephson junctions [10]. The
transition rate, also called reaction rate, represents a cen-
tral measure in this context, quantifying the frequency of
transitions unfolding in meta- and multistable systems.

The first steps towards a quantitative understanding
of reaction rates date back to the nineteenth century
[1, 2, 11, 12], yet it was only in 1940 that Kramers devel-
oped the dynamic framework [13] widely used to this day.
He considered a Brownian particle moving in a bistable
potential and derived limiting expressions for high and
low friction. Kramers realized that the transition rate
constant disappears in both friction limits, and thus in-
ferred the existence of a global maximum at some inter-

mediate value of the damping, an aspect known today
as the Kramers turnover [14–17]. It was only recently
that the Kramers turnover has been measured in a single
experimental system [18].

Kramers’ framework and its extensions [19–22], how-
ever, are a result of equilibrium dynamics and thus no
longer apply in the presence of non-conservative forces.
A particularly interesting example in which such forces
are important is active matter. In active matter, the con-
stituents draw on internally stored or externally supplied
energy to propel themselves and drive the system out of
equilibrium. Self-propulsion gives rise to various intrigu-
ing collective phenomena, such as swarming and orienta-
tion phase transitions [23]. Even on an individual particle
basis, self-propulsion holds great potential for applica-
tions in microscopic transport and sensing. The perhaps
simplest model for active matter is the active particle—a
particle subjected to thermal noise, dissipation, and to a
self-propelling force of constant magnitude and Brownian
orientation [24–26]. These self-propelling agents arise in
various contexts such as Janus particles [25, 27], micro-
and nanorobots [28, 29], motion of bacteria [30, 31], and
active transport of biological macromolecules [27, 32, 33].
Understanding and controlling active particles represents
thus a challenge of great importance in nanotechnology
and medical sciences [34].

Previous attempts towards investigating the transi-
tion rates of active matter, crucial for their transport
through constrictions and interfaces, are constrained to
overdamped dynamics or to an activity induced by a
velocity-dependent damping [35–38]. Yet any type of
movement in low-density media, for instance dilute gases,
is heavily affected by inertial effects [39]. The Kramers
turnover in particular represents an interesting example
of inertial effects on transition phenomena. Furthermore,
advancements in nanotechnology require the examination
of automated and stochastic self-propulsion in various en-
vironmental conditions. The transition rate of active par-
ticles in the underdamped regime is thus a key question
which has remained surprisingly unexplored to date.

In this work, we experimentally investigate and theo-
retically analyze the transition rate of an active particle
in a bistable potential over a wide range of frictions. We
implement an active particle by applying an engineered
stochastic force to an optically levitated nanoparticle.
Our setup allows us to span both the overdamped and
the underdamped motional regimes. We observe a new
turnover as a function of the decorrelation time of the
propulsion’s orientation. The new turnover is of a differ-
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FIG. 1. Model under study and experimental setup. a,
Experimental setup. We create a bistable optical potential for
a charged silica nanoparticle by focusing two cross-polarized
beams through a 0.80 NA objective. We implement a which-
well measurement by collecting the laterally scattered light
with a photodiode (PD). Owing to the different polarizations
in the two wells, the intensity measured by the photodiode is a
binary signal that indicates in which potential well the parti-
cle resides. The particle carries a finite net electric charge and
is made active along x with an electrostatic force generated
by a voltage applied across lateral electrodes. This voltage is
generated by a field-programmable gate array (FPGA). b, A
two-dimensional active particle in a potential landscape that
is bistable along the x-direction and harmonic along y. The
active particle is propelled by a force of constant magnitude A
and Brownian orientation ϕ. The dimensions x and y are de-
coupled and the x motion is equivalent to a particle moving in
a one-dimensional bistable potential under a time-dependent
force n(t) = A cosϕ(t).

ent nature from its passive counterpart, and the two are
shown to coexist in a two-dimensional parameter space.
The experimental observations are in quantitative agree-
ment with theoretical results and numerical simulations.

EXPERIMENTAL SYSTEM

The experimental setup is shown in Fig. 1a. A charged
silica nanoparticle of nominal diameter 136 nm is trapped
in a bistable optical potential. The bistable potential is
realized by focusing two cross-polarized and frequency-
shifted Gaussian beams through a high NA objective
(wavelength λ = 1064 nm). The two foci lie along the
x-axis and their distance is controlled by a careful align-

ment of the relative angle between the beams. To im-
plement a direct which-well measurement, we introduce
a photodetector to monitor the light scattered by the
particle in a direction perpendicular to the optical axis.
Owing to the mutually orthogonal polarization of the
two beams, together with the radiation pattern of a lin-
ear dipole (which emits no radiation along its axis), the
recorded signal displays jumps as the particle transitions
from one well to the other. The traces recorded by the
photodetector are used for the study of the transition
rates presented throughout this work.

We apply an external electrostatic force that mimics
the behaviour of active propulsion parallel to the poten-
tial’s bistability direction. The voltage signal used to ap-
ply the active force is generated by a field-programmable
gate array (FPGA), see Methods. Throughout this work,
we study a particle actively propelled by a force of con-
stant magnitude A, called activity, with stochastically
changing direction ϕ. After projecting the active force
onto the bistability direction x, the motion of the par-
ticle is described by the following Langevin equations:

mẍ+mΓ0ẋ+ ∂xU(x) = A cosϕ+ Fth, (1a)

ϕ̇ =
√

2DRηR(t). (1b)

The position x evolves in time under the influence of
a frictional force proportional to the damping coefficient
Γ0, a conservative trapping force arising from the bistable
potential U(x), and thermal noise at temperature T re-
lated to the friction via the fluctuation-dissipation the-
orem Fth =

√
2mΓ0kBTηth(t) [40]. The two mutually

uncorrelated white noises ηth and ηR individually sat-
isfy the properties 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′).
The damping coefficient Γ0 can be tuned by changing the
pressure of the vacuum chamber [41]. The orientation
of the active force follows overdamped and purely diffu-
sive dynamics associated with the rotational diffusivity
DR. In the following, we use n = A cosϕ to refer to the
one dimensional active force. The system is illustrated
schematically in Fig. 1b.

Figure 2 shows the measured characteristics of
the active force, i.e., of the voltage output by our
custom-programmed FPGA (see Supplementary Mate-
rial). Specifically, in Fig. 2a we show an example time
trace of the active force for DR = 2π × 116 kHz. Fig-
ure 2b depicts the histogram of the trace in Fig. 2a, and
2c shows three examples of the power spectral density
(PSD) Snn for different rotational diffusivities. In stark
contrast to the thermal fluctuations induced by the sur-
rounding gas, the activity’s noise history is non-Gaussian
and coloured.
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FIG. 2. Statistical properties of the active force. The
values shown are electric signals which act on the particle
through the Coulomb force. a, Transformation of white Gaus-
sian noise through an FPGA into the active force n = A cosϕ
of equation (1) (DR = 2π × 116 kHz). b, Probability den-
sity of the realized active force in a. The arcsine distribution
(dashed line) is expected from the projection onto one dimen-
sion of a constant force with fluctuating direction. c, Example
spectra of active forces for three different values of DR. Pan-
els b and c highlight the non-Markovian and non-Gaussian
nature of active propulsion. We refer to the Supplementary
Information for a derivation of the theoretical curves shown
as dashed lines.

RESULTS

The central quantity of interest in the present study
is the transition rate constant k, i.e., the typical fre-
quency of transitions between the metastable states of
the potential. It is extracted from the decaying auto-
correlation of the which-well measurement (see Meth-
ods). Figure 3a showcases the transition rate constant
as a function of rotational diffusivity DR and transla-
tional damping Γ0. Each data point stems from a 30 s
long trajectory with fixed pressure and rotational dif-
fusivity. We observe two perpendicular lines of cross-
section maxima. The vertical line of maxima appears at
roughly Γ0 = 2π×20 kHz and corresponds to the Kramers
turnover [18]. The second, horizontal one emerges at
DR = 2π × 166 kHz and represents the central result of
this work: an activity-induced turnover. We additionally
depict four cross-sections highlighting the active turnover
at Γ0 = 2π× 523 Hz (Fig. 3c), its passive Kramers coun-
terpart at DR = 2π× 1.8 MHz (Fig. 3d), a cut along the
rotational diffusivityDR = 2π×166 kHz that corresponds
to the active turnover (Fig. 3e), and the Kramers-like

turnover at DR = 2π × 9 kHz (Fig. 3f). The prominence
of the active turnover decreases with increasing damping
Γ0, blends into the Kramers turnover and vanishes for
very high dampings.

In order to shed light on the nature of the active
turnover, we implemented a numerical reconstruction of
the observed transition rate landscape. The numerical
reconstruction, displayed in Fig. 3b, aims at recovering
the landscape’s key features using three fit parameters:
barrier height, activity, and distance between potential
wells. The numerical reconstruction is in quantitative
agreement with the experimental data throughout the
observed parameter space. In addition to the three fit
parameters, we introduce a calibration factor c for the ro-
tational diffusivity, needed to bridge the one-dimensional
simulation and the more complicated three-dimensional
reality: Generally, in higher-dimensional systems it is
possible for the particle to prefer different transition
channels when driven by the activity or by thermal fluc-
tuations. Such a multiplicity cannot occur in the one-
dimensional model of equation (1), it can however eas-
ily appear in the experiment, caused for instance by a
slight misalignment between potential minima and ac-
tivity axes. Additional details about the numerical re-
construction can be found in the Methods and Supple-
mentary Material.

DISCUSSION

The structure of the observed rate landscape in Fig. 3
is surprisingly rich. Nonetheless, its individual features
can be understood on the basis of a few intuitive ar-
guments stemming from a more rigorous analysis pre-
sented in the Supplementary Material. The existence of a
maximum along the Γ0-axis is analogous to the Kramers
turnover in passive systems. Its renewed emergence sup-
ports the continued validity of Kramer’s predictions even
in non-conservative setups, extending their range of ap-
plicability. Next, we focus on the novel aspects aris-
ing specifically due to the presence of active propulsion.
With the angle evolving according to Brownian motion,
equation (1), active propulsion can be interpreted as a
stochastic force characterized by an exponentially decay-
ing autocorrelation 〈cosϕ(t) cosϕ(t′)〉 = exp(−DR|t −
t′|)/2. This relation identifies the rotational diffusivity
as a measure of the characteristic timescale during which
the active force’s orientation does not change apprecia-
bly: the persistence time τA = D−1R . This property is
the key to reveal the mechanisms underlying the active
turnover. To this end, let us conduct a simple thought
experiment.

We start from the case of low rotational diffusivity: if
the particle’s orientation persists for a very long time, it
is possible to consider the barrier to be modified by an ad-
ditional tilt to the potential of −Ax cosϕ (with constant



4

100 102

0/(2 ) (kHz)

100

101

102

103

104

c
×
D
R
/(

2
) 

(k
H

z)

Simulated rates

0.1

1.0

3.0

100 101 102

0/(2 ) (kHz)

101

102

103
D
R
/(

2
) 

(k
H

z)

Experimental rates

1.0

0.6

2.0

a b

a

f

e

d

c d e f

101 102 103

DR/(2 ) (kHz)

1.0

0.3

0.4

0.6

2.0

Tr
a
n
si

ti
o
n
 r

a
te

 k
 (

kH
z)

Tr
a
n
si

ti
o
n
 r

a
te

 k
 (

kH
z)

Tr
a
n
si

ti
o
n
 r

a
te

 k
 (

kH
z)

calibrated simul.

experiment

100 101 102

0/(2 ) (kHz)

1.0

0.3

0.4

0.6

2.0

100 101 102

0/(2 ) (kHz)

1.0

0.3

0.4

0.6

2.0

100 101 102

0/(2 ) (kHz)

1.0

0.3

0.4

0.6

2.0

c

FIG. 3. Experimental and numerical transition rates. a, Experimental transition rate constant k as a function of
rotational diffusivity DR and translational damping Γ0. The dashed lines parallel to the arrows refer to the four cuts shown
in c, d, e, f. At low Γ0 we observe the novel active turnover along the DR axis. For fixed DR we recover a Kramers-like
turnover. b, Computationally obtained transition rate constant (activity A = 9.35 fN). The simulated DR-axis is rescaled by
the calibration factor c = 2.24, as described in the main text. The transition rate constant agrees within roughly 10% with the
calibrated numerical estimates. c, Active turnover. Vertical cut at Γ0 = 2π × 523 Hz of the experimental (blue circles) and of
the simulated (orange diamonds) transition landscapes. d, Horizontal cut at DR = 2π×1.8 MHz. High rotational diffusivity in
conjunction with sufficiently high friction leads to a recovery of inactive dynamics and of the Kramers turnover. e, Horizontal
cut at DR = 2π × 166 kHz, roughly the position of the active turnover. Starting at high Γ0 and moving towards lower values,
we initially encounter the Kramers-like turnover mainly arising from thermal transitions. Passing the local minimum, a further
steady increase in transition rate constant is induced by the active propulsion facilitated by a weaker damping. f, Horizontal
cut at DR = 2π × 9 kHz. As DR approaches zero the active force becomes a modification to the potential with an effectively
constant ϕ. The resulting Kramers-like turnover results from an average over the corresponding rate constants. Rate extraction
and error bars are described in the Methods.

ϕ). This modification to the barrier height facilitates the
transition in one direction while hampering the reverse
one. This trend becomes more apparent as A increases,
and at some point we would almost necessarily have to
wait for the active force to change its sign to observe the
next transition. For very large A and small DR we expect
to observe a single transition at best and remain stuck in
the temporarily (or practically eternally) favoured well.
The rate constant would need to effectively vanish in this
extreme scenario.

Very high values of DR affect the system in a funda-

mentally different manner: if the activity’s direction be-
comes completely decorrelated on the timescale of small
positional displacements, its presence only increases the
translational diffusivity in magnitude. In other words,
fast rotating active forces raise the particle’s effective
temperature. Over the course of a barrier transition the
orientation ϕ assumes all its possible realizations and can
no longer persistently push the particle over the barrier.
The transition rate constant is nevertheless enhanced
given that larger diffusivities allow to scale barriers more
easily in general. Specifically, as DR is decreased from
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infinity this effect becomes gradually stronger since the
random mean square displacements caused by the activ-
ity increase in size on average. This implies a higher ef-
fective temperature at lower DR and subsequently higher
transition rate constants k. The extreme scenario of in-
finitely fast rotation, on the other hand, will result in no
net change of the effective translational diffusion and a
recovery of inactive dynamics. Finally, it is reasonable
to expect a maximum in the transition rate constant if
the persistence time is similar to the characteristic du-
ration necessary to transverse the barrier, namely the
average transition path time. Then one typically retains
the active force’s aid during the whole transition, with-
out inhibiting the reverse reaction any longer than nec-
essary. Incidentally, this line of thinking closely follows
Kramers’ original argument for the existence of the pas-
sive turnover as a consequence of two opposing monotonic
trends. Here, the position of the maximum is closely
tied to the average transition path time as well, roughly
emerging when the energy dissipated during the transi-
tion is comparable to the thermal energy kBT . The par-
ticle’s trajectory then experiences thermal decorrelation
that is sufficiently fast to avoid subsequent recrossings
(which do not contribute to the rate) without losing the
benefit of a more persistent direction of the velocity.

With the timescales of energy dissipation and ori-
entation decorrelation determined by separate param-
eters, the location of the passive and active turnover
on their respective axis become practically independent
from changes in the remaining variable, i.e., DR or Γ0,
respectively. This results in the cross-section maxima
of Fig. 3 forming two approximately perpendicular lines.
The last novel prominent feature, the turnover’s gradual
disappearance at large Γ0, constitutes the property easi-
est to explain. Any sufficiently high friction can serve to
slow down and practically arrest the particle’s movement,
leading to the rate constant’s general decrease as one
steps farther into the overdamped regime. Conversely,
raising A allows the active noise to compete against
strong dissipative forces, making the phenomenon rele-
vant for overdamped dynamics as well.

CONCLUSION

We have extended the analysis of the kinetics of tran-
sitions in a bistable system to active particles covering
both the regimes of overdamped and underdamped mo-
tion. We have observed for the first time a novel turnover
that arises as the persistence time of the active particle
gradually increases from values much shorter to values
much longer than the dynamical timescales of the system.
A simplified one-dimensional description is sufficient to
replicate the rich phenomenology of our experimental
findings, and is capable of generating quantitatively con-
sistent predictions. A full closed-form description that

bridges the low with the high rotational diffusivity limits
remains an open question tied to the complexity of the
underlying Fokker-Planck equation.

Our experimental platform can be adapted in the
future to address various theoretical concepts arising
in stochastic thermodynamics involving non-equilibrium
systems and correlated noise histories. For instance, with
the inclusion of a linear position measurement across a
wide region of space, we can extend the model to a full
three-dimensional activity rather than a one-dimensional
projection. This setup would enable a rigorous investi-
gation on the statistics of transition path times and the
emergence of different pathways preferred by active and
thermal transitions as a function of the activity. With
the inclusion of a position feedback we can generate more
complex kinds of position- and time-dependent activities,
which have recently been shown to have intriguing tac-
tic properties [42]. Furthermore, our externally applied
stochastic force is not inherently constrained to mimic
active propulsion, but rather allows for the introduction
of any desired noise history into the system. This ver-
satility opens up experimental opportunities in the field
not tied to activity, such as fluctuation theorems in the
presence of coloured noise.

METHODS

Experimental setup. The frequency shift (80 MHz) between
the two beams is introduced by an acousto-optic modulator
(AOM) acting on a λ = 1064 nm wavelength laser. The AOM also
controls the power of the two beams, equal to 70±1 (110±1) mW
for the x- (y-) polarized beam. After the focus, the beams
are recollimated and separated with a polarizing beam splitter
(PBS). We use a standard homodyne position measurement on
the x-polarized beam to characterize the potential curvatures [43].
The curvatures are estimated through time-frequency analysis: the
estimated values are ω1 = 2π× (73.0±0.5) kHz for the x-polarized
well and ω2 = 2π × (82 ± 4) kHz for the y-polarized well. The
proportionality coefficient between damping and pressure is
inferred via the power spectral density (PSD) of the particle when
the y-polarized laser is turned off [44]. Specifically, the PSD of a
harmonic oscillator is given by a Lorentzian whose width equals
the damping coefficient.

Active force. The active force is realized with a field-
programmable gate array (FPGA) that takes as input a white
noise created by a function generator. The FPGA integrates
equation (1b) to generate the active force as output. We exploit
the net charge carried by the particle and apply the active
force electrostatically through two electrodes mounted along
the bistability direction [45]. The experimental value of the
activity can be determined from the response of the particle to a
known modulated voltage. Within 50% accuracy due to the mass
uncertainty, we estimated A = 6.8 fN. A potential barrier height
∆U of a few kBT and diffraction limited width ∆x ≈ λ/2 gives rise
to conservative forces with a typical magnitude of ∆U/∆x ≈ 8 fN.
In order to induce a measurable effect the activity needs to be of
the same order of magnitude, as is the case here.

Transition rate estimation. Rate coefficients appear within
the framework of the eponymous rate equations. This type
of differential equation aims to describe the evolution of local
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concentrations or population fractions in a set of states {A,B, . . . }
subjected to reactive transitions. Our case, a bistable system with
population fractions cA and cB , represents a particularly simple ex-
ample described by ċA = −kABcA+kBAcB = k(cA,eq−cA). With
the asymmetry between rate constants kAB and kBA attributable
to the stationary concentration cA,eq = kBA/(kAB + kBA), the
transition rate k represents the dynamical parameter governing
the speed of equilibration. Within the approximation of rate
equations, cA(t) = (cA(0) − cA,eq)e−kt + cA,eq approaches its
equilibrium value exponentially and the rate can be extracted
from sufficiently long sample trajectories [18]. The rates in Fig. 3,
more specifically, are extracted from 30 s long trajectories. We
split each trajectory in ten segments and compute the average rate
and its standard deviation.

Numerical reconstruction. The simulation results comple-
menting our experimental findings stem from the optimization of
an effective, one-dimensional potential along with the activity A.
We use a bistable, piece-wise parabolic potential, continuous up
to its first derivative and tune its barrier width/curvature ωB and
height h. Equation (1) is then numerically integrated for values of
Γ0 and DR spaced on a logarithmic grid. We employ the OVRVO
integrator devised by Sivak et al. for the particle’s propagation [46].
The curvatures of the well-parabolas respect the experimentally de-
termined particle frequencies. The obtained transition landscapes
are compared to the experimental reference w.r.t. a small number
of effective quantities related to the active and passive turnover,
respectively: maximum height, its position on the respective axis,
and turnover width at half maximum, all evaluated on a logarithmic
scale. We proceed to locate the parameter set of h, ωB , and A that
leads to the minimal deviation in the aforementioned measures on
a discrete, linearly spaced grid of desired resolution. Starting from
cautious a-priori estimates of these values, we rely on a bisection-
like approach to locate said minimum. To simplify this procedure,
note that at high DR one essentially recovers inactive dynamics,
allowing us to optimize h and ωB independently of A. Additional
details on the simulation and optimization procedure can be found
in the Supplementary Material.
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I. EXTRACTION OF RATE COEFFICIENTS

Let us explicitly consider a two-state system characterized by the concentrations/population
fractions cA and cB . In the context of single particle systems one can define cA(t) via an
ensemble of a large number of replicas. Then, cA(t) corresponds to the fraction of replicas in
state A at time t. Subjected to reactive dynamics, cA evolves according to the rate equation

ċA = −kABcA + kBAcB = kBA − (kAB + kBA)cA. (S1)

The rate constants kAB and kBA respectively prescribe the speed of the reaction from A to B
and from B to A. Population/particle conservation enforces a constraint of the form

∑
X cX = 1,

used above to arrive at the rightmost expression. It is straightforward to determine the solution
as

cA(t) = cA(0)e−(kAB+kBA)t +
kBA

kAB + kBA

[
1− e−(kAB+kBA)t

]
. (S2)

Hence, the populations approach their equilibrium values cA,eq and cB,eq exponentially with a
decay-time controlled by the sum of the rate constants k = kAB +kBA. We underline this point
by reformulating the above equation in terms of the equilibrium/stationary state concentration
cA,eq

cA(t) = [cA(0)− cA,eq] e−kt + cA,eq, (S3)

where the equilibrium population is given by cA,eq = kBA/(kAB + kBA). The rate constants
can therefore be extracted from the exponential decay/growth of the concentration. For the
initial condition cA(0) = 1, the population cA(t) can be interpreted as the probability of finding
the particle in well A at time t provided it was located there at time t = 0. Contact between
the phenomenological rate equation (S1) and the experimental time traces of the system can be
made by considering the indicator function hA, which is a function equal to unity inside well
A and zero otherwise. Then, the average 〈hA(t)〉 of the indicator function corresponds to the
population cA(t).

∗ These two authors contributed equally.
† e-mail: christoph.dellago@univie.ac.at
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In terms of the indicator function hA, the conditional probability to find the system in A at time
t, provided it was there at time t0 = 0, can be expressed using the time correlation function of the
population as 〈hA(0)hA(t)〉 / 〈hA〉. Here, the average is taken over a long (equilibrium/stationary
state) trajectory. Assuming that for sufficiently long times the kinetics of the system is described
by the rate equation, one obtains

〈hA(0)hA(t)〉 = cA,eq(1− cA,eq)e−kt + c2A,eq, (S4)

〈∆hA(0)∆hA(t)〉 =
〈
∆hA(0)2

〉
e−kt, (S5)

where ∆hA designates hA−〈hA〉 and we took advantage of the relations 〈hA〉 = cA,eq and h2
A =

hA. Consequently, one can extract the rate coefficient k by performing a single parameter fit to
the (normalized) autocorrelation function. In reality, however, the rate equation only represents
a convenient simplification of the system at hand and deviations from purely exponential decays
are expected, for instance due to short-time correlations. In order to avoid including short-time
correlations in the rate estimations, we fit equation (S4) only over time scales where their effect
has disappeared.

II. ACTIVITY AND EFFECTIVE BARRIER HEIGHT

To supplement the experimental findings delineated in the main part of the document, we provide
additional context by studying the transition dynamics theoretically and computationally. For
clarity, we direct our focus mainly on the phenomenology and select a particularly simple and
frequently used form of the potential, i.e.

U(x) = h

(
1− x2

σ2

)2

. (S6)

The parameter h gives the height of the barrier and the minima of the symmetric potential are
located at ±σ. All quantities with dimensions of inverse time are subsequently given in terms of
k0 = t−1

0 =
√
kBT/mσ2. We investigate the shape of the resulting transition rate landscape as

function of the translational damping Γ and rotational diffusivity DR. We generate and analyse
individual long trajectories for each set of Γ and DR on a logarithmically spaced grid, whilst all
other parameters remain fixed. Further details about the simulation are delineated in Sec. V.

Some illustrative examples of the resulting rate landscapes with various activity values are
depicted in Fig. S1. Starting our discussion from low (almost vanishing) activity, one observes
the standard Kramers turnover only. As one would expect in this case, the transition rate rises
to its maximum at some moderate value of Γ and remains virtually unaffected by the active
contributions. Stronger activities, however, lead to data exhibiting some interesting features: a
second line of maxima appears in the direction of the rotational diffusion axis DR. This line
seems to stop abruptly at the position of the standard Kramers turnover. Further increasing A
results in an evermore prominent active turnover, completely superseding its original counterpart
at its horizontal position. The Kramers turnover has not disappeared, yet its magnitude is far
too small to be seen on a linear scale. The newly found active turnover is unable to push past
the limit imposed by the passive one and disappears gradually as the damping is increased. For
even higher A, it becomes possible for the active turnover to stretch farther into the overdamped
regime, however, simultaneously becoming more prominent at lower Γ values.
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FIG. S1. Transition rate as a function of the translational damping and rotational diffusion for four
activity magnitudes Aσ/kBT = 0.25, 1.00, 4.00, 16.0. As A increases the active turnover appears and
becomes increasingly more prominent, whereas the Kramers turnover retains its magnitude. Simulation
parameters: barrier height h = 4kBT , time step 10−2t0, trajectory length per data point T = 2 × 104t0.

We have provided an intuitive motivation of the novel features arising due to active propulsion in
the main text. In the following, we proceed to investigate the active turnover more quantitatively.
Following Kramers’ example, we demonstrate the existence of a turnover by examining the limits
of high and low rotational diffusion individually. Instead of directly jumping to these limiting
scenarios, however, it is instructive to discuss the activity’s non-equilibrium nature.

Because it continuously feeds energy into the system, active propulsion constitutes an example
of a non-conservative force. As such, the system’s stationary state ps(x, v, ϕ) is not described by
the Boltzmann distribution. The stationary state becomes explicitly dependent on the damping
and rotational diffusion, distinctly setting the underlying physics apart from the properties
generating the Kramers turnover: In conservative settings, the rate exhibits a maximum at
moderate friction due to purely dynamical effects, while the probability density in phase space
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FIG. S2. Left: Free energy barrier height β∆F as a function of rotational diffusivity DR. Right:
Transition rate k as a function of free energy barrier height β∆F . The data points stem from trajectory
simulations in the quartic potential of equation (S6) with barrier height h = 6kBT , activity A = 3kBT/σ
and at a damping of Γ = 0.2k0. The trajectory length per point equals T = 106t0. The showcased data
encompass two separate sets of simulations for the high and low DR regime only differing in the size of
time step ∆t. We used ∆t = 0.01t0 for the low DR part (blue) and ∆t = 0.001t0 for the fast rotation
section (orange), as a finer discretization is needed to thoroughly resolve the evolution of the angle. The
two gray lines accompanying the generalized Arrhenius plot indicate the slope expected theoretically.
A switch in the rate’s prefactor seems to emerge around 4kBT - about a factor two in magnitude -
not attributable to stationary effects. Nonetheless, the data’s general consistency with the theoretical
approximation points to the barrier height’s central role in determining k.

is independent of the damping Γ.

While usually introduced in equilibrium thermodynamics and statistical physics, it is useful
to define the free energy F for non-conservative settings analogously as the negative natural
logarithm of the stationary state via βF = − ln ps(x, v, ϕ) [1]. Adopting the view of transition
state theory [2], the rate depends exponentially on the height of the free energy barrier ∆F , i.e.
it is proportional to the probability to reside atop the barrier

k ∝ e−β∆F . (S7)

Even small modifications of ∆F affect the rate landscape considerably. Studying the variation of
∆F as a function of A, Γ, and DR leads to a more quantitative understanding of the emergence
of the active turnover. The Arrhenius plot depicted in Fig. S2 serves to establish β∆F as the
key quantity in shaping the activity-dominated part of the rate landscape. The fact that only
comparatively small deviations from the postulated exponential decay arise suggests that most
relevant effects are indeed summarized into this single measure. This circumstance constitutes
the basis of the fairly simple quantification approaches laid out below.

Our physical model is described by a set of Langevin equations. Therefore the evolution of its
phase space density p(x, v, ϕ, t) is governed by the associated Fokker-Planck equation (we set
the mass to unity for notational simplicity)

∂tp(x, v, ϕ) = −v∂xp+ ∂v(Γv + U ′(x)−A cosϕ)p+D∂2
vvp+DR∂

2
ϕϕp. (S8)
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The stationary distribution ps and free energy F are in principle obtained by imposing ∂tp = 0.
Unfortunately, as of now a closed form solution of the resulting FPE remains elusive, forcing us
to resort to numerical or approximate treatments. The upcoming derivations for the high and
low DR limits are inherently based on the FPE, although some aspects are understood more
easily in the Langevin picture. The theories successfully reproduce the transition rates obtained
computationally, capturing the essential aspects to affect the free energy barrier height.

III. HIGH ROTATIONAL DIFFUSION LIMIT

Let us first consider the limit of large DR, in which the persistence time of the active force
is far shorter than all remaining physical timescales. This effectively implies that before the
particle changes its position in phase space by an appreciable amount, the direction of its active
propulsion completely decorrelates, allowing it to perform several stochastic rotations on the
spot. Therefore, at the timescale of physical motion the active noise behaves as if subsequent
realizations were statistically independent, effectively putting it into the same memory class as
white noise. Based on this reasoning, a modification of the diffusion constant or, equivalently,
the introduction of an effective temperature provides an adequate approximation of the impact
of the active force on the system. To justify this approximation quantitatively, let us quickly
consider the limit DR → ∞. For an orientation changing infinitely fast, the angle distribution
must be uniform at each point in reduced phase space (x, v). The effective dynamics in reduced
phase space then results from replacing all ϕ-dependent terms with their local averages. The
expectation value of the active force A cosϕ vanishes given a uniformly distributed angle, leading
us to the same equation of motion as in the absence of activity:

v̇ = −Γv − U ′(x) +
√

2mΓkBTη(t). (S9)

Next, we consider the equation of motion at the translational timescale for a finite (but still
very high) rotational diffusion. We emphasise that for fast rotational diffusion it is possible to
choose a duration ∆t that allows for substantial changes in ϕ whilst keeping x and v effectively
constant. The deterministic displacement in x and v throughout the time step ∆t should
then be virtually unaffected by the details of the noise history in-between. This allows us to
investigate the displacements attributed to the (active) noise terms without the presence of any
deterministic drifts due to potential forces and friction. Our argument should even work in the
presence of multiplicative noise as the current phase point, for all intents and purposes, turns
into a parameter.

The total velocity displacement due to stochastic forces ∆sv over ∆t can be expressed as

∆sv =

∫ ∆t

0

dt
(
A cosϕ(t) +

√
2Dη(t)

)
. (S10)

We consider velocity displacements because the active turnover resides primarily in the under-
damped regime. The present argumentation can be applied to the overdamped approximation
as well. We will do so when studying its disappearance for increasing Γ. We compute the mean
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square displacement associated with equation (S10) to obtain

〈
∆sv

2
〉

=

〈∫ ∆t

0

dt

∫ ∆t

0

dt′
(
A cosϕ(t) +

√
2Dη(t)

)(
A cosϕ(t′) +

√
2Dη(t′)

)〉
=

=

∫ ∆t

0

dt

∫ ∆t

0

dt′A2 〈cosϕ(t) cosϕ(t′)〉+ 2D 〈η(t)η(t′)〉 =

=

∫ ∆t

0

dt

∫ ∆t

0

dt′
(
A2

2
e−DR|t−t′| + 2Dδ(t− t′)

)
. (S11)

The expectation values of the mixed terms disappear due to statistical independence, splitting
them into a product of expectation values equal to zero. The autocorrelation of the white noise
yields a Dirac-delta by definition and the cosine term is derived in Sec. VI. The final result reads

〈
∆sv

2
〉

= 2D∆t+
A2

DR

(
∆t+

1

DR

(
e−DR∆t − 1

))
=

= 2

(
D +

A2

2DR

)
∆t+O(D−2

R ). (S12)

Comparing equation (S12) with inactive dynamics, we obtain an effective translational diffusion
equal to Deff = D + A2/(2DR), hereby neglecting the small terms of order D−2

R . These higher
order terms emerge from the fact that the active noise is inherently not a Gaussian white noise
even in the limit considered. For instance, white noise can induce arbitrarily large displacements
throughout ∆t, whereas active noise has an upper bound in magnitude at A∆t. Nonetheless,
these differences become negligible for very high DR. In terms of an effective temperature one
obtains (now including the mass for completeness)

Deff = mΓkBTeff = mΓkBT

(
1 +

A2

2mΓkBTDR

)
. (S13)

Attributing all relevant modifications between the active and inactive stationary distribution to
this effective temperature leads us to the relation

β∆F =
∆U

kBTeff
, (S14)

where ∆U denotes the energy barrier of the trapping potential.

At this point we are able to approximate the high rotational diffusion part of the landscape with
a single parameter fit of the form

k(DR) = c0e
−∆U/kBTeff(DR). (S15)

The applicability of our findings is highlighted in Fig. (S3). The average kinetic energy K shown
is related to the effective temperature via K = kBTeff/2 and is approximated extremely well
by equation (S13). It remains quite consistent even in close proximity to the active turnover,
where the assumptions of our simplification no longer apply. A similar quality is achieved in the
parameter-fit showcased by the right panel of Fig. (S3). The DR dependence beyond the active
turnover seems well-explained by an Arrhenius-like estimate along with the effective temperature
provided.
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FIG. S3. Average kinetic energy and transition rate constant as a function of the rotational diffusion.
The parameters used are the same as those of Fig. S2. The solid lines represent the theoretical approx-
imations of equation (S13), with the approximation for the kinetic energy being parameter-free. The
solid curve on the right is fitted to the range of high DR only, amounting to a vertical displacement on
the logarithmic scale. Both theoretical predictions are consistent with the data within their designated
regime. Fit parameter: c0 = 0.648k0.

Termination in the Overdamped Regime

The termination of the active turnover at higher dampings Γ shown in Fig. S1 can be derived
in a similar vein to what we discussed in the previous section. The central premise leading to
the activity’s inclusion in the diffusive term consists of the persistence time being far smaller
than the translational timescale. Whether this goal is achieved by speeding up the rotation
or inhibiting translational movement is irrelevant. Increasing the friction serves to gradually
arrest the dynamics and we end up with the same result as before even without considering the
Langevin equation’s overdamped limit explicitly. In what follows, the diffusivity still pertains
to velocity and not to the position (D = mΓkBT ). The expression for the effective temperature

kBTeff = kBT

(
1 +

A2

2mΓkBTDR

)
(S16)

gives a quantitative estimate about the influence of the active forces on the overall rate landscape
at high Γ, gradually decaying as A2/Γ approaches zero. Irrespective of the activity A, one can
always select a sufficiently high damping for the active turnover to effectively disappear. On
the other hand raising A necessitates a quadratic increase of Γ to suppress its effects to the
same extent in this approximation. This aspect supports the further expansion of the active
turnover into the overdamped regime with increasing A as well as the rate’s overall increase,
clearly visible in the final panel of Fig. S1.
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IV. LOW ROTATIONAL DIFFUSION LIMIT

Infinitely Slow Rotation

In the extreme case in which the rotational diffusion is infinitesimal, we can consider the angle ϕ
as a parameter and the active force as a modification of the potential equal to −Ax cosϕ. This
new, effective potential exhibits different left and right barrier heights that are functions of ϕ -
we denote them with ∆UL(ϕ) and ∆UR(ϕ) for the left and right well respectively. Analogously,
we define the left and right transition rate as kL(ϕ) and kR(ϕ).

First of all, let us introduce an expression for the effective transition rate derived from an
ensemble containing all possible modified potentials: For a fixed angle the probability to stay in
the left well decays per definition like e−kL(ϕ)t. The long-time decay of a cumulative measure or
population that has components individually decaying exponentially is dominated by the slowest
rate present. Nonetheless, we need to extract an effective rate that circumvents addressing these
individual components directly - a point of view that summarizes all potential tilts into a single
rate equation.

To this end, consider the average transition probability pL,cm at low waiting times ∆t (i.e. the
probability to observe a jump between wells within this duration)

pL,cm =

∫ 2π

0

dϕ
(

1− e−kL(ϕ)∆t
)
pL(ϕ) =: 1− e−keff∆t, (S17)

where pL denotes the probability density to find the particle in orientation ϕ under the constraint
that it currently resides in the left well. The integral introduces an effective rate keff that
generally depends on ∆t. Nonetheless, at ∆t much smaller than the multiplicative inverse of all
rates present, one can conveniently expand the above expression to obtain

keff =

∫ 2π

0

dϕ kL(ϕ)pL(ϕ), (S18)

equalling the standard expectation value. The short time behaviour (i.e., shorter than any rate
and of course diffusion timescales) of the left and right well concentrations is then consistently
represented by the original ODE as

ċL = −kL,eff cL + kR,eff cR. (S19)

In the case of infinitely slow rotational diffusion we are in the fortunate position to know a closed
form of the marginal angular distribution. Under this condition each angle can be treated as a
separate case, allowing us to recycle the result shown in Eq. (S2). Up to a normalization factor
it reads

pL(ϕ) ∝ kR(ϕ)

kL(ϕ) + kR(ϕ)
. (S20)

In its current form, our result is unfortunately independent of DR. In the next section we
introduce a straightforward variant of the above model that amends this shortcoming and discuss
the conditions for its applicability.
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Reaction-Diffusion Model

Rate equations are typically not concerned with details about the velocity and position beyond
classifying the current state, allowing us to discard spurious details. We can thus integrate
the irrelevant variables over the phase space portion corresponding to the state. Proceeding
with this line of thought transforms the FPE into a reaction-diffusion equation as shown in the
following.

Without loss of generality, we place the boundary between the two wells at x = 0 and define
the left-well population as

cL(ϕ, t) :=

∫ ∞

−∞
dv

∫ 0

−∞
dx p(x, v, ϕ, t). (S21)

We apply the same integrations to the FPE in (S8) to obtain:

∂tcL = DR∂
2
ϕϕcL +

∫ ∞

−∞
dv

∫ 0

−∞
dx
[
−v∂xp+ ∂v(Γv + U ′(x)−A cosϕ)p+D∂2

vvp
]

=

= DR∂
2
ϕϕcL −

∫ ∞

−∞
dv vp(x = 0, v, ϕ, t). (S22)

Under the reasonable assumption that the probability distribution decays faster than any linear
(typically polynomial) function, all terms containing a derivative of the velocity drop out. A
similar idea was applied to the lower limit of the position integral. Alternatively, one can
assume a confined/compact initial condition, which generates a time-dependent distribution that
vanishes at infinity anyhow. Our expressions are still exact at this point under these conditions.
We shall now proceed to apply physically motivated approximations for the remaining integral
term of equation (S22), which describes the net probability flux through the dividing surface.

We exclude stochastic recrossings where the particle velocity changes its sign in the immediate
proximity of the dividing surface. These cover a very small fraction of all reactive paths and con-
tribute practically nothing to the integral for one of two reasons: Either the velocity multiplied
to the local distribution is already very small or the sign reversal becomes extremely unlikely.
From this standpoint, almost all instances of negative velocities on the barrier come from the
right well and vice versa, splitting the integral into two terms associated with the particle origin
and thus proportional to the respective local concentration cL or cR.

In the next step, we use the fact that since the rotational diffusion is small, one can treat the angle
as constant at least over the duration of the average transition path time. The probability to
visit the barrier top is then approximately proportional to the Boltzmann factor of the effective
potential including its linear tilt due to active propulsion Ueff(x, ϕ) = U(x) − Ax cosϕ. In the
context of this conservative-like dynamics, the velocity part of the distribution should factorize as
usual and appear in terms of the kinetic energy. The velocity integral thus becomes an additional
prefactor, similar to the normalization of the local Boltzmann distribution. Therefore we arrive
at

∂tcL(ϕ, t) = DR∂
2
ϕϕcL − zLe−β∆Ueff,LcL + zRe

−β∆Ueff,RcR

= DR∂
2
ϕϕcL − kL(ϕ)cL + kR(ϕ)cR. (S23)
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FIG. S4. Left: Example of a ϕ distribution under the condition that the particle sojourns in the right
well (DR = 1.35 × 10−2k0). Right: Comparison of transition rates extracted from the autocorrela-
tion method (blue circles) against Boltzmann-factor averages using the observed distributions (orange
crosses). The same simulation parameters were used as in the high DR investigation, but the time step
was increased to obtain longer trajectories at the same expense (each by a factor ten). Additional esti-
mates computed via the reaction diffusion model are included as well, depicted as solid orange lines in
the distributions and rate estimates. Using a constant prefactor zL = zR = 0.3k0 as the only parameter
in the model, we attempt to reproduce the real angle distributions and therefrom estimated rates. The
assumption of constant prefactors zL, zR appears to hold within the regime of validity of the averaging
approximation.

The velocity parts and normalizations are absorbed into the dynamic prefactors zL, zR. In
a symmetric potential these quantities become equivalent and once again constitute the only
parameter(s) of the model. Together with the Boltzmann factor we can identify their product as
angle-dependent rates, resulting in a reaction diffusion equation much simpler than the original
FPE as it depends on only two variables instead of the original four.

Deriving the analogous expression for the right well and using the constraint of an overall uniform
marginal angle distribution in the interval [0, 2π), we end up with a single equation governing
the stationary state

DR∂
2
ϕϕcL = [kL(ϕ) + kR(ϕ)]cL −

1

2π
kR(ϕ). (S24)

In presence of the boundary conditions of positivity and periodicity, this ordinary linear differ-
ential equation has, in principle, a unique solution. It can even be further simplified to a system
of first-order ODEs by defining wL = ∂ϕcL

d

dϕ

(
cL
wL

)
=

(
0 1

kL + kR 0

)(
cL
wL

)
− 1

2π

(
0
kR

)
. (S25)

For finite (and low) rotational diffusivity, the solution of Eq. (S25) represents the stationary
distribution to calculate the effective rate as seen in Eq. (S18). To reiterate, the central require-
ment for the validity of our effective model is only a matter of the rotational diffusion’s relative
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FIG. S5. Side-by-side depiction of the high and low DR data and plots. Outside the regime of the
turnover itself, our models make very accurate predictions about the landscape’s shape, capturing its
key features.

smallness and our expressions finally include DR explicitly. Unfortunately, even this simplified
model does not seem to have an easily accessible closed solution due to the complex form of
our rate function. The theory’s performance can be checked by means of computational data,
however, highlighted in Fig. (S4). The showcased example of an angle distribution is fully in
line with our expectations, with angles favouring transitions into the respective well becoming
increasingly more prominent at lower DR.

Furthermore, the right panel depicts the slow rotation part of the rate landscape from last
section. Besides increasing the time step and trajectory length by a factor ten, the simulation
parameters have been left they as were. The angular distributions along the active modification
of the potential are used to compute the rate up to a common prefactor (amounts to a simple
displacement in logarithmic scale, the value of the lowest point is made to coincide with the
autocorrelation data). Our predictions turn out to be very accurate for an extensive regime of
rotational diffusivity values and capture the rate’s initial increase up until the theory reaches
its high DR plateau. At that point we are faced with a situation where our initial premises
and conditions fall apart, making this discrepancy fully expected. The theory seems like an
adequate approximation up until one to two orders of magnitude before reaching the active
turnover, falling short of the fast rotation limit in terms of accurate coverage.

Finally, Fig. S5 showcases the results of both models alongside another, accurately replicating
the landscape over all possible DR safe for the immediate proximity of the active turnover.
Both approaches only rely on the dynamic prefactor as parameter, corresponding to simple
displacements of the curves on a logarithmic scale. The good consistency between theory and
data hints at both theories capturing the essential details affecting the rate.
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FIG. S6. Segment of a trajectory in a bistable trap (left) and corresponding full-length histogram
(right), belonging to the data shown in Fig. S3 at DR = 4.64 × 102k0. The dashed line demonstrates
the dividing surface’s location.

V. NOTES ON THE SIMULATION

In this section, we summarize the general outline of the simulations conducted. We propagate
trajectories in one spatial dimension by using the OVRVO integrator first devised by Sivak et al.
[3] and based on the well-known Liouville framework for symplectic integrators. Compared to a
standard velocity Verlet integrator, this method additionally encompasses appropriate Ornstein-
Uhlenbeck steps placed at the beginning and the end of each iteration to act as the system’s
thermostat. Each data point in the transition landscapes results from a trajectory of duration
T generated with time step ∆t, specified in the description of the respective figures. As all
rate coefficients shown were extracted from long trajectories and reflect the stationary state, the
initial condition becomes irrelevant. For completeness, however, let us note we generally start
in one of the minima with a velocity drawn from the Maxwell distribution. Next, we proceed to
delineate the analysis methods applied to both numerical and experimental trajectories.

The first step of any rate extraction algorithm consists in the selection of an appropriate dividing
surface. Let us direct our attention to Fig. (S6), showcasing a segment of a simulated trajectory.
The peaks in the distribution corresponding to the metastable states are separated by a range
of low probability. For signals of this kind, the extracted rate does not depend sensibly on the
dividing surface’s exact location. Shifting it slightly to the left or right influences our results only
negligibly, which is why a straightforward selection method fully serves our purposes. We locate
the approximate position of the maxima left and right by generating histograms with a prescribed
bin width and place our surface in the minimum between those points. This approach relies on
sufficiently smooth histograms to yield appropriate results, which all investigated trajectories
(experimental or computational ones) were able to provide.

Having placed the dividing surface, our signal is converted into an indicator function to sub-
sequently evaluate its normalized autocorrelation, an example of which is shown in Fig. (S7).
We invoke the Wiener-Khinchin theorem and compute all autocorrelations via FFTs for com-
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FIG. S7. Normalized autocorrelation functions for five values of the rotational diffusion. The fits
(dashed lines) exhibit an excellent agreement with the computational data (gray lines). At very short
timescales deviations from the predicted exponential decay occur, which are excluded from the fitting
regime.

putational efficiency. The initial behaviour of our autocorrelations is very well-represented by a
simple exponential decay except a very brief period at the very beginning attributed to short-
time correlations. The curves’ roughness increases as the autocorrelation approaches zero as a
consequence of fewer uncorrelated indicator pairs, but can be diminished by analyzing longer
trajectories (i.e., gathering more statistics). Excluding the initial non-exponential deviation,
we fit an exponential of the form c0e

−kt to these curves, limiting the regime to the part of
the normalized autocorrelation larger than a prescribed threshold, here 0.10. The parameter k
should then correspond to the sum of left and right transition rates, completing the extraction.

Uncertainties have only been computed for the data presented in the main text, evaluated by
splitting the trajectories in ten segments each. We extract the rate for each segment and compute
the standard deviation of the mean results as our error estimates.

Replication Study

In this section we describe how we computationally replicated the experimental findings seen in
the main text, specifically the rate landscape visualized in Fig. 3. Such an endeavour provides
additional insight by unearthing differences and physical contributions not captured by the
simple Langevin model. Since the signal mainly serves to distinguish between wells rather than
providing an accurate position at any point of time, it is not inherently well-suited to infer the
experimental potential. Unable to directly extract the shape of the physical potential from the
signals, we opt for a model that allows to prescribe all well-known information along with the
remaining parameters to be optimized.

The key quantities of interest are the approximate widths of the two wells and of the barrier
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(or alternatively their frequencies) to account for entropic effects, the barrier height ∆U , and
the activity A. The two well-frequencies have been measured experimentally, amounting to
ωL = 2π × (73.0 ± 0.5)kHz and ωR = 2π × (82 ± 4)kHz. The remaining three parameters,
i.e. activity, well-separation, and barrier height are tuned to find the best replication of the
experimental landscape as presented in the main text (Fig. 3). Initial guesses for the activity
and barrier height have been extracted directly from the rate landscape by means of parametric
fits. The rate approximation in the regime of high rotational diffusion directly contains both A
as well as ∆U within the expression for the expected rate Eq. (S16). As the experimental data
does not indicate a significant difference between left and right barrier height, we assume them
to be equal.

As for the conservative trapping/barrier force we employ a piecewise parabolic potential con-
sisting of three segments, straightforwardly allowing us to prescribe the well frequencies:

U(x) =





mω2
L

2
(x− aL)2 for x < bL,

−mω
2
B

2
x2 + ∆U for bL ≤ x ≤ bR,

mω2
R

2
(x− aR)2 for x > bR.

(S26)

Imposing the aforementioned parameters and additionally demanding continuity of the potential
and its first derivative fully determines the location of minima aL, aR and connection points
between segments bL, bR. The expressions for aL, bL read

aL = −
√

2∆U(ω2
L + ω2

B)

mω2
Bω

2
L

,

bL =
ω2
LaL

ω2
B + ω2

L

. (S27)

The expressions for the right side are obtained by replacing the respective index and changing
the sign for aR.

As this approximate one-dimensional potential represents a simplification of the experimental
system, we aim to locate a point in parameter space that generates a rate landscape as consistent
as possible in selected key aspects. The key aspects considered include the general magnitude
of rates, the height, position and width (at half height) of the passive and active turnovers on a
logarithmic scale. To this end we apply a bisection-like approach on a discrete grid of parameter
values. We consider A, ωB , and ∆U in steps of 0.05 fN, 0.05ωL, and 0.01kBT , respectively. Since
the Kramers turnover in the regime of fast rotation is largely independent of A, the respective
experimental data can be used to infer the barrier height and frequency/well-separation sepa-
rately. Leaving the range of potential values more liberty than would be necessary from these
initial estimates, we limit the search intervals to ∆U/kBT ∈ [1.9, 2.3] and ωB/ωL ∈ [0.5, 2.].
The permissible activity values are restricted by the experimental estimate in conjunction with
its symmetric uncertainty. We find excellent agreement between simulation and experiment
in terms of turnover heights and widths with the parameter set A = 9.35 fN, ωB = 0.60ωL
(translating into a minima separation of 0.66µm), and ∆U = 2.065kBT .

The position of the calculated Kramers turnover coincides with the experimental result within
its resolution and uncertainties as well, leaving the position of the active turnover in terms of DR
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as the only clear discrepancy despite the ad hoc nature of the potential’s functional form. The
ratio of the simulated and the experimental position of the turnover on the DR-axis amounts to
approximately 0.447, with the simulation placing it at a lower diffusivity. Simulations performed
in- and outside the delineated optimization range do not hint at the possibility of situating the
two lines of maxima at their targeted positions simultaneously. It appears that the ratio between
the active and passive turnover positions remains roughly constant over an extensive regime of
parameter values. A possible explanation of this phenomenon lies in both being closely tied
to the average transition path time. The Kramers turnover occurs when the particle loses
energy on the scale of one kBT throughout a transition. Similarly, the active turnover stems
from the propulsion decorrelating over the duration of a typical transition. Both turnover
locations are thus expected to be inversely proportional to the average transition path time in
good approximation. In one dimension it becomes therefore difficult to change the position of
one maximum independently from the other. Multidimensional potential landscapes, on the
other and, offer additional freedom by allowing for a multitude of transition paths that differ
already in position space. Transitions induced purely by thermal fluctuations as captured and
collected in the Kramers phenomenology typically look for paths crossing the lowest point in
the barrier as preferred transition channels, even if this point does not lie on a straight line
with the minima. On the contrary, activity-induced transitions events are likely to follow a
more ”direct” approach, offsetting an increased barrier height in proportion to the magnitude
of A. The different channels associated with active and passive transitions generally translate
in distinct transition path times and thus location of the turnover maxima. As the experiment
naturally unfolds in a three-dimensional setup, and not all coupling effects between dimensions
can be erased in practice, it seems sensible to assume that the lowest energy paths would neither
follow a straight line nor perfectly coincide with the active force axis. Any small misalignments
of the active force, well- and barrier minima, major axes of the trapping forces in their parabolic
approximation etc. could induce this effect.

Finally, it is important to once again underline the consistency of the simulation results with the
experimental rates despite the usage of an ad hoc potential. Even the most strongly deviating
property, the active turnover’s position, only does so by a factor of c = 0.447, residing in
the same order of magnitude. Given a rotational diffusion axis rescaled by this calibration
factor, the obtained replicated landscape becomes quantitatively consistent with the experiment
everywhere, supporting the models discussed in this document.

VI. ACTIVE NOISE

Statistical properties

In a reduced phase space consisting of only position x and velocity v (but not the angle ϕ), active
propulsion is treated as a source of colored noise with persistence time τA. In this section, we
derive the most central properties of the active force n(t) = A cos(ϕ(t)) from equation (1). These
also serve as consistency tests for the experimentally implemented noise source.

We start by computing the stationary distribution p(n) of n(t). Noting that ϕ evolves randomly
according to Brownian motion on the interval [0, 2π) with periodic boundary conditions, the
stationary distribution of φ must be uniform, p(ϕ) = 1/(2π). Applying a change of variable
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from ϕ to n yields

p(n) =

∫ 2π

0

dϕ
1

2π
δ(n−A cosϕ) =

1

Aπ| sinϕ(n)| =
1

π
√
A2 − n2

. (S28)

Next, we direct our attention to the autocorrelation Rnn(t) and to the power spectral density
Snn(ω). As the angle evolution represents a Wiener process rescaled by the prefactor

√
2DR,

increments of the angle throughout a time step ∆t are independently distributed according to
a Gaussian with variance DR∆t

∆ϕ = ϕ(t+ ∆t)− ϕ(t) ∝ 1√
2π∆tDR

e
− ∆ϕ2

4∆tDR . (S29)

In equation (S29), the periodicity of ϕ has not been taken into account yet. We impose without
loss of generality ∆t ≥ 0. For any real stochastic process, we recover the negative time intervals
from the property Rnn(∆t) = Rnn(−∆t). The activity’s autocorrelation can be evaluated as

Rnn(∆t) := 〈n(t+ ∆t)n(t)〉 = A2

∫ 2π

0

dϕ

∫ ∞

−∞
d∆ϕ cos(ϕ) cos(ϕ+ ∆ϕ)p(ϕ)p(∆ϕ). (S30)

Applying Euler’s relation cosx = (eix + e−ix)/2 and

〈
eiϕ
〉

= 0,
〈
ei∆ϕ

〉
= e−DR∆t,

leads us to an exact expression for the autocorrelation

Rnn(∆t) =
A2

2
e−DR|∆t|. (S31)

Consequently invoking the Wiener-Khintchin theorem we obtain the power spectral density
Snn(ω) (the shorthand c.c. denotes the complex conjugate):

Snn(ω) =
1

2π

∫

R
dt Rnn(t)e−iωt =

A2

2π

∫

R+

dt e−(DR+iω)t + c.c. =
A2

π

DR

ω2 +D2
R

. (S32)

Experimental Characterization

Figure 2b in the main text depicts a histogram of the active force signal at the output of the
FPGA. The output range of the FPGA is [−1 V, 1 V], meaning that A = 1 V. The histogram
in Fig. 2b agrees very well with equation (S28) for A = 1. Figure 2c shows the power spectral
density Snn of the active force for three different values of the rotational diffusion DR. We
fit Snn with Eq. (S32) and extract the cutoff frequency fc. The cutoff frequency allows us to
calibrate the physical value of the rotational diffusion using DR = 2π × fc. The value of A
measured in Newton is estimated from the position response of a particle to a known modulated
voltage. The experimental value of A equals (6.8± 3.4) fN. The uncertainty in the estimation of
the activity is limited by the uncertainty in the calibration factor of the position measurement
[4]. Specifically, in order to determine a force in Newton, we make use of the mass-dependent
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transfer function of the particle. An uncertainty up to 50% in the mass of the particle, the
main precision bottleneck of the position calibration, translates into the same uncertainty for
the estimation of the activity. Note, however, that the estimate of A/m does not suffer from
such uncertainty.
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