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It has recently been demonstrated that protected supersymmetry emerges on the boundaries of
one-dimensional intrinsically fermionic symmetry protected trivial (SPT) phases. Here we investi-
gate the boundary supersymmetry of one-dimensional fermionic phases beyond SPT phases. Using
the connection between Majorana edge modes and real supercharges, we compute, in terms of the
bulk phase invariants, the number of protected boundary supercharges.

Much recent interest has been paid to topological
phases of matter and their classification. Simplest among
them are invertible phases, which are essentially trivial
in their bulks but host topologically protected phenom-
ena on their boundaries [1].1 The notion of topological
phases may be enriched by considering systems invariant
under a global symmetry and restricting deformations
to symmetric ones. A large class of symmetry enriched
invertible phases is given by symmetry protected trivial
(SPT) phases – those which would belong to the trivial
phase in the absence of the protecting symmetry [3, 4].
Beyond SPT phases are invertible phases that remain
topologically distinct even without symmetry.
A particularly interesting class of invertible phases is

those of fermions in one dimension, which includes, for
example, the topological superconductor, whose bound-
ary Majorana modes distinguish it from the trivial super-
conductor [5]. The absence of noninvertible topological
order in one dimension means that every one-dimensional
indecomposable phase without symmetry breaking is in-
vertible. The problem of classifying and characterizing
these phases in the symmetry enriched context was solved
over a decade ago by Fidkowski and Kitaev in Ref. [6].
Roughly speaking, for the group Gb of symmetries mod-
ulo fermion parity, phases are described by three topo-
logical invariants: group cochains α ∈ C2(Gb;U(1)) and
β ∈ C1(Gb;Z2), subject to constraints and equivalences,
and a value γ ∈ Z2. The invariant γ measures whether a
phase supports an even or odd number of modes on each
boundary. Since even numbers of modes may be gapped
out by interactions that disrespect the symmetry, a value
of γ = 0 indicates that the phase is SPT. The invariants
α and β may also be understood in terms of protected
features of the boundary physics.
One such feature is the projectivity of the symmetry

action on the boundary. The 2-cochain α always mea-
sures the projectivity of the Gb action on the boundary,

1 Their name is due to invertible phases having inverses under
the operation of stacking [1, 2]. They have also been called
short-range entangled (SRE) phases, though there is disagree-
ment around the use of this term.

while the meaning of the 1-cochain β depends on the
value of γ. For an SPT phase, β(ḡ) encodes whether the
boundary action of a symmetry ḡ ∈ Gb commutes or an-
ticommutes with fermion parity. For a phase that is not
SPT, β(ḡ) instead encodes commutation of the ḡ action
with the central fermionic boundary mode Γ.

While the bulk phase invariants constrain the projec-
tive action of the symmetry on the boundary, they do not
fix it absolutely. In particular, the number and statistics
of the boundary degrees of freedom on which the symme-
try acts is not determined by the invariants. For example,
a system in the trivial phase may have zero energy de-
grees of freedom on its boundaries, yet it belongs to the
same phase as the trivial system obtained by gapping out
these degrees of freedom. This is true of k = 2 copies of
the nontrivial class D Majorana chain or k = 8 copies of
the class BDI Majorana chain, for example. For an ex-
ample of a system with nontrivial order, consider a stack
of k = 4 class BDI Majorana chains. This system has
four Majorana zero modes on each of its boundaries, yet
it belongs to the same phase as the system obtained by
partially gapping out the boundaries in a way that leaves
a Kramer’s doublet of bosonic zero modes. Despite the
collection of boundary modes of a system not being an
invariant of the system’s phase, it is still possible to make
statements about protected modes. If the constraint im-
posed by the phase invariants on the projective action of
the symmetry is such that a minimal collection of modes
is necessary to realize the constraint, these modes will be
present in every system belonging to the phase.

The perspective of characterizing a phase by its bound-
ary degrees of freedom is suited to studying the super-
symmetry that emerges on the boundary. Supersymme-
try is the existence of parity-odd operators called super-
charges that satisfy the relations of a supersymmetry al-
gebra [7]. Supercharges on a zero-dimensional space are
closely related to Majorana modes, and the supersymme-
try algebra to their Clifford algebra [8]. Supersymmetry
is especially interesting when it emerges on the bound-
aries of topological phases because its supercharges may
be protected by bulk topological invariants, meaning the
supersymmetry requires no fine-tuning. This occurs, for
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example, in a recent letter of Prakash and Wang [9],
which constructs two real supercharges on the bound-
ary of some one-dimensional SPT phases and argues that
they are protected by the SPT invariant β.
The purpose of the present Letter is to investigate the

possibility of protected supersymmetry on the bound-
aries of one-dimensional fermionic phases beyond SPT
phases. Ultimately, we are able to determine the number
of protected supercharges as a function of the bulk phase
invariants. These findings are stated as Result 1 and
Result 2 in the text. We find examples of phases that
protect arbitrarily many boundary supercharges. The
case of class BDI superconductors is also discussed in de-
tail. In an appendix, we discuss the distinct phenomenon
(also called “supersymmetry”) wherein a symmetry is
represented on a boundary or defect as a parity-odd op-
erator.

Symmetries and invariants: We begin by review-
ing the symmetry groups and topological invariants of
one-dimensional phases of fermions. The invariants are
understood in terms of the action of the symmetry on an
algebra of boundary operators. This algebra will feature
in later sections when we ask whether it contains modes
generating a supersymmetry algebra.
A fermionic symmetry group Gf has a central involu-

tion p called fermion parity. Centrality of p is the condi-
tion that there are no parity-odd symmetries in the bulk
realization of the symmetry. In general, the extension

Z
f
2 → Gf

b
−→ Gb (1)

of the quotient Gb = Gf/Z
f
2 by the subgroup Z

f
2 = {1, p}

does not split as a product group

Gf = Gb × Z
f
2 . (2)

However, in order for Gf to be realized as the symmetries
of a fermionic system that is not SPT, it must split as
a product group of this form [6, 10, 11].2 Whether a
symmetry of Gb is represented unitarily or anti-unitarily
on the physical state space is encoded by a map

x : Gb → Z
T
2 . (3)

The triplet (Gf , p, x) specifies the symmetry class.
Fermionic phases of symmetry class (Gf , p, x) have a

classification, originally due to Ref. [6] (see also Refs.
[10–12]) in terms of three invariants

α ∈ C2(Gb;U(1)) , β ∈ C1(Gb;Z2) , γ ∈ Z2 , (4)

subject to certain constraints and equivalences. In the
case of a product group, the invariants α and β represent

2 The realization of Gf as a product group requires a physically
meaningful choice of subgroup isomorphic to Gb.

classes in group cohomology twisted by the action where
ḡ ∈ Gb with x(ḡ) inverts the coefficient.
One way of understanding the invariants is in terms

of the action of the symmetries on the algebra of oper-
ators on the boundary. Here we briefly review how this
works, leaving detailed discussion to Refs. [10, 11]. The
invariant γ measures whether this algebra is of the form

A = End(Uf ) (γ = 0, even, SPT) or

A = End(Ub)⊗ Cℓ(1) (γ = 1, odd, not SPT) ,

where Uf , Ub are vector spaces, End denotes the algebra
of matrices on a space, and Cℓ(1) is the complex Clifford
algebra with one generator. An algebra (and its corre-
sponding system) is referred to as “even” when γ = 0 or
“odd” when γ = 1. For example, the algebra generated
by N Majorana modes is the Clifford algebra Cℓ(N),
which is isomorphic to an even or odd algebra depend-
ing on whether N is even or odd. Systems belong to the
same phase in the absence of symmetry if their algebras
are related by End(U) factors [10]; this means that γ en-
codes whether a system is SPT. The symmetries act on
the algebra as follows, according to the invariants:

γ = 0 : g ·M = Qf(g)MQf (g)
−1 (5)

γ = 1 : ḡ ·M ⊗ Γm

= (−1)β(ḡ)mQb(ḡ)MQb(ḡ)
−1 ⊗ Γm (6)

p ·M ⊗ Γm = (−1)mM ⊗ Γm , (7)

where Qf , Qb are projective representations of Gf , Gb,
and g ∈ Gf , ḡ = b(g) ∈ Gb. The cocycle measuring
the projectivity of Qb is simply α, while that of Qf is a
certain function of α and β [10, 11], such that β may be
extracted from Qf as the phase in the commutator

PQf(g)P = (−1)iπβ(ḡ)Qf (g) (8)

of the actions of g and fermion parity P = Qf (p).

Supercharges from zero modes: We now establish a
connection between Majorana zero modes and real su-
percharges. This connection has been noted previously
elsewhere, for example in Ref. [13].
Consider a system with Majorana zero modes γi, not

necessarily protected. Any set of N modes forms the
Clifford algebra Cℓ(N). Diagonalize the Hamiltonian of
the system as H =

∑
µ Eµ1µ, where 1µ projects onto

the eigenspace labeled by µ. Since the modes have zero
energy, they must commute with H and so also with the
1µ. We may define N real supercharges as

Qi =
∑

µ

√
Eµ1µγi . (9)

They satisfy the supersymmetry algebra

{Qi, Qj} =
∑

µ

Eµ1µ{γi, γj} = 2δijH . (10)
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Conversely, given an algebra of real supercharges Qi, a
Clifford algebra of Majorana zero modes is recovered as

γi =
∑

µ

1√
Eµ

1µQi . (11)

Now suppose the N modes are protected by virtue of
living on the boundary of a nontrivial phase. This implies
that the supersymmetry is protected as well.
It is worth mentioning a subtlety to the counting of su-

percharges that arises when N is odd. Given a fermion
parity P local to the system, the presence of a single
real superchargeQ1 implies there is a second supercharge
Q2 = iPQ1 [14]. A similar fact is true of any odd number:
fermion parity constructs one additional supercharge to
make the total count even. For this reason, systems in-
trinsic to zero dimensions, where there is a local fermion
parity, always have an even number of real supercharges.
This is why works like Refs. [15, 16] work with complex
– rather than real – supercharges as the basic unit. On
the other hand, the boundary of an odd one-dimensional
phase has no local fermionic parity, so it really has an odd
number of supercharges. A nonlocal fermion parity may
be constructed as P = iΓγ∞ by adding an extra mode
γ∞ to the odd Cℓ(N) [6, 13]. Physically, this “Majorana
mode at infinity” can be the Majorana mode at the op-
posite boundary of the Majorana chain [5, 6] or a Majo-
rana mode at a far-separated vortex in a two-dimensional
topological superconductor [17], for example. One may
then speak of the odd number of “local supercharges” and
the one additional “nonlocal supercharge” built from the
nonlocal P [13]. In this letter, we will count only the
supercharges of the local supersymmetry algebra.

Counting protected supercharges: We now investi-
gate when a phase protects N Majorana zero modes on
its boundary. As we just saw, this amounts to study-
ing protected boundary supersymmetry of N real super-
charges. The terms Majorana zero mode and real super-
charge are henceforth used interchangeably.
Recall from a previous section that a fermionic system

is characterized by an algebra A with a compatible action
of the symmetries Gf . This data may be interpreted
as the algebra of zero energy degrees of freedom on the
boundary and how they transform under symmetry. The
form of the algebra is constrained by the phase invariants:
γ determines whether the algebra is of the form End(U)
or End(U)⊗Cℓ(1), while α (and also β in the even case)
detects the projectivity of the group action on U .

Given an algebra A, we ask for the largest N , denoted
N(A), such that A has a tensor factor decomposition

A = B ⊗̂ Cℓ(N) , (12)

where the hat over ⊗ reminds us to use the tensor prod-
uct graded by fermionic parity, if neither factor is purely

even. The number N(A) represents the number of Majo-
rana modes, or real supercharges, present on the bound-
ary of the system. Since we are interested in fermionic
rather than bosonic modes, we require that the Cℓ(N)
factor is not purely even. If Cℓ(N) has at least one odd
generator γj , any even generator may be replaced by an
odd one by the graded isomorphism γ′

i ∼ γiγj .
Two systems belong to the same phase if they have the

same topological invariants, which is to say that their al-
gebras satisfy the same constraints. We are interested in
features protected by the phase; that is, in characteristics
of the class [α, β, γ] of algebras compatible with given val-
ues the invariants. The absence or presence of the Cℓ(1)
factor is a characteristic of the class because it is associ-
ated with γ. The invariants α and β provide more flexi-
bility: there may be multiple distinct irreducible projec-
tive representations U with the same projectivity class,
and so their algebras are associated with systems in the
same phase. This means the particular End(U) factor
is not a characteristic. In physical terms, a typical zero
energy boundary degree of freedom of a system is not a
protected feature of the phase, as only some of these are
present in every system in the phase. Here we ask, given
a phase, what the protected zero modes on its boundary
are. This amounts to looking at all of the algebras A in
the class and asking for the smallest value of N(A):

N (α, β, γ) = min
A∈[α,β,γ]

N(A) . (13)

In the following, we will compute the numbers N (α, β, γ)
of protected boundary Majorana zero modes. We begin
with odd phases before turning to SPT phases.

Odd case: Consider the algebra associated with a sys-
tem in an odd phase. It has the form

A = M(d)⊗ Cℓ(1) , (14)

where M(d) denotes the algebra of complex d× d matri-
ces. The Cℓ(1) factor is generated by an odd zero mode
Γ. Our question is whether there exist additional modes.
We claim that the number of odd zero modes is

N = 2k + 1 , (15)

where k is the largest whole number such that 2k divides
the degree d of the representation U .
To see this, let l = d/2k and note that

M(d)⊗ Cℓ(1) ≃ M(l2k)⊗ Cℓ(1)

≃ M(l)⊗M(2k)⊗ Cℓ(1)

≃ M(l)⊗ Cℓ(2k + 1) .

(16)

So far we have counted the modes on the boundary of
the system associated with the algebra A. But we are
interested only in the modes that are protected by the
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phase to which this systems belongs. Since the value d
is the degree of an irreducible representation with pro-
jectivity class α, the number of protected modes, given
abstractly by Eq. (13), is the following:

Result 1: The number of real supercharges N (α, β, 1)
protected by an odd phase with invariant α is exactly

2k + 1, where k is the largest number for which 2k di-

vides dα, the greatest common divisor of the degrees of

the irreducible representations with projectivity class α.

We cannot present a general, explicit formula for N
because no such expression for dα is known; however, the
mathematics literature contains some limited results that
hold at least when Gb contains only unitary symmetries.
Upper and lower bounds on N follow from the facts that
dα divides the order of Gb and is divided by the order
of α in cohomology (cf. Ref. [18], corollary VI.3.10 and
lemma VI.4.1). More can be said when Gb is a finite
Abelian group. In this case, every irreducible represen-
tation with projectivity class α has the same degree

dα =
√
|G|/|Kα| , (17)

where | · | denotes the order and Kα is the subgroup

Kα = {g ∈ G : α(g, h) = α(h, g) , ∀h ∈ G} (18)

(cf. Ref. [18], theorem VI.6.6, and Ref. [19]).
For an example that is common in studies of symmetry-

enriched phases, consider the group Gb = Zn × Zn. Its
irreducible projective representations are described by
clock and shift matrices on spaces of dimension the order
of α in H2(Gb;U(1)) = Zn [20].3 Let n = 2k and take
α to generate the cohomology group. Then N (α, β, 1) is
2k + 1. This class of examples can be used to obtain an
arbitrarily large number of protected supercharges.
Another important case is odd phases with trivial α,

for which the number N (0, β, 1) is exactly 1. To see this,
note that if α is trivial, it represents the projectivity class
of the trivial representation, which has degree d = 1 and
so k = 0, corresponding to one real supercharge. Since
this mode is protected (as in any odd phase) and is the
only mode in one system (the one with trivial represen-
tation), it is the only protected mode for the phase.
Let us also illustrate how our formula applies to phases

of symmetry class BDI – that is, Gf = ZT
2 × Z

f
2 . The

construction of supercharges for each ν = 0, . . . , 7, has
been carried out in Ref. [13], and we recover their count-
ing. Using the dictionary, given in Refs. [6, 11], between
the number of layers ν and the invariants α, β, γ, our
formalism recovers this count of supercharges:

3 We emphasize that the “generalized Clifford algebra” of the clock
and shift matrices has to do with the symmetry action protect-
ing the modes and is unrelated to the ordinary Clifford algebra
formed by the modes themselves.

• In the phases with γ = ν mod 2 = 1, there is at
least one protected supercharge.

• When ν = 1, 7, α is trivial and so there are no more
protected supercharges. We have a total of N = 1.

• When ν = 3, 5, α is nontrivial and the smallest
irreducible projective representation (the Kramer’s
doublet) has degree d = 2, for a total of N = 3.

We also could have recovered this counting from looking
at the “minimal” algebras given by the real superdivision
algebras: see the table in Ref. [11], and note that Cℓ1,0R
and Cℓ0,1R each have a single generator while H⊗Cℓ0,1R
and H⊗ Cℓ1,0R each have three.

Even case: Consider the algebra associated with a sys-
tem in an SPT phase. It has the form

A = M(a|b) , (19)

where M(a|b) denotes the graded algebra of matrices on
the graded vector space Ca|b.
We begin by arguing that, since the projective action

of Gf on U = Ca|b is irreducible (by assumption), the
grading is either purely even b = 0 (when β is trivial) or
equal a = b (when β is nontrivial). Recall the interpreta-
tion (8) of the invariant β in an SPT phase. It measures
whether a symmetry acts on U = Ca|b as an odd (invert-
ible) operator. Note that the grading is equal precisely
when such an operator exists. Therefore, a nontrivial β
implies that the grading is equal. On the other hand,
consider the case where β is trivial, meaning the symme-
try acts as even operators, i.e. within the even-even and
odd-odd blocks. By irreducibility, one of these (up to
isomorphism, the odd-odd block) must vanish; therefore,
the grading is purely even. This proves our claim.
Next observe that

M(a|a) ≃ M(a)⊗ Cℓ(2) . (20)

This means that, if M(a|b) has equal grading a = b, it
has at least two odd modes.4 Also note that, for k > 0,

M(c|d) ⊗̂ Cℓ(2k) ≃ M(c|d) ⊗̂M(2k−1|2k−1)

≃ M((c+ d)2k−1|(c+ d)2k−1) .
(21)

This implies the converse: that, if M(a|b) has unequal
grading a 6= b, it contains no odd modes.
From this we may conclude the following, which was

first proved by Prakash and Wang:

4 We emphasize that Cℓ(k) denotes the Clifford algebra without
the purely even grading. The algebra M(2|0) is Cℓ(2) only as an
ungraded algebra, and its generators are even modes, which are
unrelated to supercharges.
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Lemma (cf. Ref. [9]): If β of an SPT phase is trivial,

the number of protected real supercharges N (α, 0, 0) is 0,
while, if β is nontrivial, N (α, β, 0) is at least 2.

Next, we state an SPT analog of Result 1. As discussed
briefly in a previous section and more extensively in Refs.
[10, 11], the projectivity class of the group action on U
is a certain lift ω of α to from Gb to Gf that combines
the data of α and β.5 In terms of this class ω, we have

Result 2: The number of real supercharges N (α, β, 0)
protected by an SPT phase with invariants α, β is 0 if β
is trivial; if β is nontrivial, it is exactly 2k, where k is

the largest number for which 2k divides dω, the greatest

common divisor of the degrees of the irreducible represen-

tations with projectivity class ω.

The proof uses the reasoning from the odd case. If β
is nontrivial, the algebra has the form (20). Then

M(a|a) ≃ M(l)⊗ Cℓ(2m+ 2) , (22)

where a = l2m. The degree d of the representation is 2a,
so d = l2k for k = m − 1. This means that the number
of supercharges is 2k, where k is the largest number for
which 2k divides the degree of the representation. To
complete the argument, recall Eq. (13), which says that
the number of protected supercharges is the minimum of
the number of supercharges over all systems in the phase.
As an example, consider Gf = Z2k ×Z2k . By the argu-

ment presented in the odd case, we see that the number
of protected supercharges N (α, β, 0) is 2k for any phase
with α, β such that ω generates the cohomology group.
As before, this class of examples can be used to obtain
an arbitrarily large number of protected supercharges.
For SPT phases with trivial α, the number N (0, β, 0) is

0 if β is trivial and exactly 2 if β is nontrivial. To see this,
note that if α is trivial, the only projectivity in the action
of Gf comes from commutators of Qf (g) with P . There-
fore, P may be represented as σz and each Qf(g) with
β(ḡ) = 0, 1 as 1, σx, respectively. This representation has
degree d = 2, so the number of protected supercharges is
at most 2. Applying the lemma completes the proof.
Let us look again at the case of class BDI, this time for

the even phases. We recover the counting of Ref. [13]:

• When ν = 0, 4, β is trivial and so there are no
protected supercharges.

• When ν = 2, β is nontrivial while α is trivial, so
there are N = 2 protected supercharges.

5 On a technical note, readers familiar with Refs. [10, 11] will recall
that α is subject to an equivalence arising from the freedom
µ to change the splitting map. This, however, does not affect
our Result 2 because ω is invariant under this transformation.
Similarly, in the odd case, since N is independent of β, it is not
affected by µ.

• When ν = 6, both β and α are nontrivial. These are
compatible with a representation of degree d = 2
(given by the real graded algebra Cℓ0,2R), so there
are still only N = 2 protected supercharges.

Again, we could have looked at real superdivision alge-
bras, where R and H are purely even while Cℓ2,0R and
Cℓ0,2R each have two odd generators.

Summary and Outlook: We have found that super-
symmetry emerges without fine-tuning on the boundaries
of a broad class of one-dimensional symmetry-enriched
phases of fermions – both SPT and beyond. The lack of
fine-tuning is by virtue of its protection by the topological
invariants (α, β, γ) that characterize the bulk phase. For
each phase, we computed the number N (α, β, γ) of pro-
tected real supercharges. Our results extend the recent
discovery that intrinsically fermionic SPT phases support
at least N = 2 protected boundary supersymmetry [9].

This work opens a line of investigation into the conse-
quences of the emergent supersymmetry for the Sachdev-
Ye-Kitaev (SYK) models that arise on the boundaries of
one-dimensional fermionic phases that have been many-
body localized. The quantum chaotic eigenspectra of
these models have been shown to encode information
about the bulk topological invariants [21]. In the setting
of bulk phases of symmetry class BDI, which support the
eightfold way of SYK models on their boundaries, this
feature of the spectra and related properties of dynam-
ical correlation functions were shown to be constrained
by supersymmetry [13]. Our results raise the possibility
of understanding the connection between supersymmetry
and these phenomena in a much broader class of phases.
It would also be interesting to study how our work gener-
alizes to phases of quantum matter in higher dimensions.
We leave these questions and others for another day.
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Appendix: Parity-odd symmetries

A distinct phenomenon that also goes by the name “su-
persymmetry” is the existence of a parity-odd symmetry.
This can emerge in a topological phase when a symme-
try, despite commuting with fermion parity in the bulk,
is projectively represented as an odd operator on bound-
aries or defects. For P the (possibly non-local) fermion
parity operator, the condition reads

V (g)P = (−1)PV (g) . (23)

This phenomenon was previously explored in Ref. [22],
where authors Qi, Hughes, Raghu, and Zhang study a
two-dimensional class DIII superconductor and find that
time-reversal symmetry anticommutes with fermion par-
ity on vortices; they refer to this phenomenon as super-
symmetry. Supersymmetry of this sort has been known
since Fidkowski and Kitaev to occur in one dimension,
where the boundaries of certain phases are acted on by
parity-odd symmetries [6]. As we have already noted,
this is precisely what β measures in SPT phases.
This appendix is dedicated to understanding the extent

to which parity-odd symmetries, protected and not, are
present in one-dimensional invertible phases that are not
SPT. The odd number of modes complicates the struc-
ture of the boundary state space and changes the in-
terpretation of β. We find that, in contrast with SPT
states, for which the boundary condition is essentially
unique (and either hosts parity-odd symmetries or not),
invertible states that are not SPT may host multiple
distinct boundary conditions parametrized by 1-cocycles
δ ∈ Z1(Gb;Z2). Just like β in the SPT case, the new
datum δ encodes the commutation of symmetries with
fermion parity; the crucial difference is that δ is a choice
rather than a bulk phase invariant. When δ is nontrivial,
there exists a parity-odd symmetry. We also investigate
the action, given by stacking, of SPT phases on invertible
phases and their boundary conditions.

Boundary conditions for invertible phases: A
boundary condition is characterized by the action T of
the algebra, with a compatible projective action V (g) of
the symmetries, on a space of states H.
For an SPT phase, whose algebra is of the form A =

End(Uf ), the boundary condition is essentially unique.
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The only indecomposable action of the algebra with

T (M)T (N) = T (MN) , (24)

forM,N matrices in End(Uf ), is as matrices on the space
H = Uf . To see that the projective symmetry action is
also unique, apply the compatibility condition

T (g ·M) = V (g)T (M)V (g)−1 , (25)

which implies

V (g)T (M)V (g)−1 = T (g ·M)

= T (Qf(g)MQf(g)
−1)

= T (Qf(g))T (M)T (Qf(g))
−1 .

(26)

Therefore, up to an unphysical phase, the symmetry acts
as V (g) = T (Qf(g)) = Qf(g).
On the other hand, the algebra of boundary operators

of an odd phase is of the form A = End(Ub) ⊗ Cℓ(1).
This algebra also has a unique (graded) indecomposable
action – this time on the state space

H = Ub ⊗ C
2 , (27)

with the C2 factor acted on by Cℓ(1). One solution for
the projective symmetry action is given by

V (p) = P , V (ḡ) = P β(ḡ)T (Qb(ḡ)⊗ 1) (28)

where P is an involution on H that acts trivially on Ub

and anticommutes with the action of Γ on C2. Note that
P is not part of the algebra action but rather generates
End(H) together with the algebra action. But this is not
the only solution to the conditions (6) and (25): for each
1-cocycle δ ∈ Z1(Gb;Z2), a solution is given by

V (p) = P , V (ḡ) = P β(ḡ)T (Qb(ḡ)⊗ Γδ(ḡ)) . (29)

For example, in the simplest case of A = Cℓ(1) acting
on H = C

2, there is a binary choice for each ḡ ∈ Gb as
to whether it acts as P β(ḡ) or P β(ḡ)T (Γ). To see that
this is the complete solution, note that since P and T (A)
generate End(H), any map on H has the form

V (g) = P ǫ(g)T (N(g)⊗ Γδ(g)) . (30)

To condense notation, let t(g) ∈ {0, 1} denote the value
(ḡ, 0) 7→ 0, (ḡ, p) 7→ 1. Then impose compatibility:

(−1)(β(ḡ)+t(g))mT (Qb(ḡ)MQb(ḡ)
−1 ⊗ Γm)

= T (g ·M ⊗ Γm)

= V (g)T (M ⊗ Γm)V (g)−1
(31)

= (−1)ǫ(g)mT (N(g)MN(g)−1 ⊗ Γm) .

Assuming the algebra action T is faithful, it follows that
ǫ(g) = β(ḡ)+ t(g) and N(g) is related to Qb(ḡ) by an un-
physical phase; meanwhile, δ is so far unconstrained. To

see that δ is closed, require that V (g) forms a projective
representation. Finally, to see that δ reduces from Gf to
Gb, impose V (p) = P , which means δ(p) = 0. We have
recovered eq. (29) as a general boundary condition.
The commutator of boundary symmetry actions

PV (g)P−1 = (−1)δ(ḡ)V (g) (32)

means that parity-odd symmetries may occur and is mea-
sured by δ; in fact, the solution (28) with trivial δ is the
unique boundary condition without parity-odd symme-
tries. In contrast with the parity-odd symmetries on the
boundaries of SPT phases, those described here are not
an invariant of the phase, as they depends on the choice
of independent boundary datum δ. In other words, the
parities of V (g) are not enforced by the anomaly of the
boundary theory. Nevertheless, since the datum δ is dis-
crete, it is still the case that no fine-tuning is required,
under the physical assumption that smooth deformations
of the microscopic boundary Hamiltonian do not cause
the δ of the low energy state space H to jump. One ques-
tion is whether δ is detectable by a physical observable,
and the answer depends on which observables one allows.
Using fermion parity, which is not realized in terms of lo-
cal operators, the commutator (32) detects δ.

Stacking of boundary conditions: Two systems may
be stacked together to form a composite system. Since
the stacking operation is compatible with phase equiva-
lence, it gives an abelian group structure to the set of
fermionic invertible phases. This group has been de-
scribed in terms of the invariants α, β, and γ [10–12].
On the level of the invariant γ, the stacking law reads

γ12 = γ1 + γ2 . (33)

This means that SPT phases form an index two subgroup
of the invertible phases. A stack of SPT phases remains
an SPT phase, and stacking gives SPT phases a free ac-
tion on invertible phases, more generally.
In the case of SPT phases, the stacking law says that

the invariant β behaves under stacking as

β12 = β1 + β2 . (34)

Since parity-odd symmetries on the boundaries of SPT
phases are controlled by β, this rule may be interpreted as
computing whether a symmetry g is odd on the composite
boundary from whether it is on the parts. It may also
be observed directly from the commutator of p and g for
the composite symmetry action

V12(g) = V1(g) ⊗̂ V2(g) . (35)

An immediate consequence of this fact is that parity-odd
symmetry on the boundaries of two SPT phases with the
same β is destroyed by stacking the phases together.
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The law for stacking an SPT phase with an odd phase
reads the same as (34); however, in this context, β2 no
longer determines the odd boundary condition, nor does
it have the interpretation as measuring parity-odd sym-
metry. Determining the data of the composite boundary
requires looking at the composite action (35), which has6

δ12 = β1 + δ2 . (36)

Combined with the law for stacking the phase invariants
(realized on the boundaries as anomalies), this rule de-
fines a free action of boundaries of SPT phases on bound-
aries of phases that are not SPT. According to this ac-
tion, the anomaly β is shifted by the same cocycle β1 as
the parameter δ.
The stacking of boundaries of two odd phases requires

more care than the other cases. Näıvely computing the
commutator of the p and g boundary symmetry actions
defined by eq. (35) would suggest that β12 is given by
δ1 + δ2. However, this cannot be correct: the δ’s are
independent choices of boundary conditions, while β is
an invariant of the bulk phase subject to the stacking
law, which in the odd-odd case reads

β12 = β1 + β2 + x . (37)

This false paradox is dissolved by carefully accounting for
the assumptions underlying the definitions of the invari-
ants. The stacked algebra is the (graded) tensor product

A12 = A1 ⊗̂A2 = End(Ub,1 ⊗ Ub,2)⊗ Cℓ(2)

≃ End(Ub,1 ⊗ Ub,2 ⊗ C
2) .

(38)

It acts on the stacked boundary state space

H12 = H1 ⊗H2 = Ub,1 ⊗ Ub,2 ⊗ C
4 (39)

as two copies of its indecomposable action. These copies
are exchanged by the fermion parity operators P1 and
P2. Since A12 is an even algebra, the proper definition
of V12(g) is not V1(g) ⊗̂ V2(g), which is not contained
in T (A12) as it exchanges the copies; rather, V12(g) is
the element of T (A12) whose conjugation action agrees
with that of V1(g) ⊗̂ V2(g) on the subalgebra T (A12) ⊂
End(H12) fixing the copies. The solution [10, 11]

V12(g) = (−i)t(g)T (Qb,1(ḡ)⊗Qb,2(ḡ)

⊗ Γ
β2(ḡ)+t(g)
1 Γ

β1(ḡ)+t(g)
2 ) ,

(40)

is unique up to an unphysical phase. With the symmetry
action on the composite boundary in hand, the commu-
tator of g and p may be computed to recover the β12 of
eq. (37) on each copy. The parity-odd symmetry on the
full H12 vanishes for the simple reason that the minus
signs of the two copies cancel each other. Notably, the
odd boundary data δ1 and δ2 do not contribute to the
even composite boundary. This stacking rule means that
parity-odd symmetry can appear on (each half of) the
boundary obtained by stacking two boundaries that lack
parity-odd symmetry.

Because of the properties of odd-odd stacking, the rule
for stacking boundaries of arbitrary invertible phases is
nonassociative and there is no natural unit for the data δ.
This is unsurprising since one does not expect the anoma-
lous boundary systems to behave well under an opera-
tion that changes the anomaly. (From the perspective of
unwinding phases by symmetry extension, changing the
anomaly amounts to changing the symmetry class of the
boundary [23–25].) Nevertheless, the action of bound-
aries of SPT phases on boundaries of arbitrary invertible
phases, despite changing the anomaly, is well-behaved.

6 As an alternative to computing the commutator of the p and g

actions, one may rewrite V12(g) in the standard form (29), by
use of a certain (graded) isomorphism [10]. Then δ12 may be
read off from the exponent of Γ.


