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We investigate the impact of an Ohmic-class environment on the conduction and correlation prop-
erties of one-dimensional interacting systems. Interestingly, we reveal that inter-particle interactions
can be engineered by the environment’s noise statistics. Introducing a backscattering impurity to
the system, we address Kane-Fisher’s metal-to-insulator quantum phase transition in this noisy and
realistic setting. Within a perturbative renormalization group approach, we show that the Ohmic
environments keep the phase transition intact, while sub- and super-Ohmic environments, modify
it into a smooth crossover at a scale that depends on the interaction strength within the wire. The
system still undergoes a metal-to-insulator-like transition when moving from sub-Ohmic to super-
Ohmic environment noise. We cover a broad range of realistic experimental conditions, by exploring
the impact of a finite wire length and temperature on transport through the system.

One of the most fascinating manifestations of quantum
many-body physics occurs in one-dimensional systems.
There, irrespective of whether the interacting particles
are gapless fermions, bosons or spins, their low-energy
properties universally-exhibit Tomonaga-Luttinger liquid
(TLL) behaviour with well-defined bosonic excitations
[1–5]. Distinct signatures of TLL [6], include separa-
tion of spin and charge degrees of freedom [7–10], which
are experimentally verified as fractionalization of injected
charges [11–14]; power-law behavior of correlation func-
tions, also known as the zero-bias anomaly [15–17]; and
Kane-Fisher impurity physics [18, 19]. The latter con-
cerns the sensitivity of gapless excitations to local per-
turbations, that are microscopically rationalized in terms
of Friedel oscillations [20], and as a manifestation of or-
thogonality catastrophe [21]. Thus, the presence of a
backscattering impurity inside a TLL [18, 19, 22] en-
genders a quantum phase transition between a perfectly-
conducting phase and an insulating phase as a function
of interaction strength. Such TLL features have been
observed in a wide variety of experiments including nan-
otubes [16, 17, 23], quantum Hall edges [24, 25], cold-
atom platforms [26–28], circuit quantum simulations [22],
antiferromagnetic spin chains [29], and spin ladder sys-
tems [30, 31].

Recent technological advances in solid-state plat-
forms [12, 32, 33], as well as many-body quantum simu-
lators with cold atom experiments [27, 34–38], or quan-
tum circuits [22, 39], dynamics of open quantum sys-
tems [40]. Here, the competition between coherent quan-
tum processes and incoherent forcing induced by the en-
vironment leads to novel physics, with no counterpart
in isolated quantum systems [41–50], and raises funda-
mental question regarding the existence of universality
in open quantum systems. As a result, the interplay be-
tween TLL physics, dissipation, and drive is also revis-
ited, leading to novel effects, such as many-body quan-
tum Zeno effect due to localized loss [51–56], engineering
correlation with non-local two-body loss effects [57, 58],

exotic phases such as Zeno insulators, and dissipation-
induced spin-charge separation [59]. Similarly, the im-
pact of out-of-equilibrium scenarios have been exten-
sively explored [46, 60–64] highlighting further universal
open TLL physics.

A particularly-relevant instance of an open TLL in-
volves the presence of leads (reservoirs) attached to the
ends of a quantum wire. This setup is fundamental for
exploring quantum transport [27, 38, 65, 66]. However,
the presence of leads (and their resulting dissipative chan-
nels) unavoidably affect the wire’s transport properties,
where even the presence of non-interacting Ohmic leads
melts the insulating phase of dirty TLLs [63, 67–70], as
well as the aforementioned zero-bias anomaly [71]. Re-
alistic leads, however, are realized by distinctly-different
systems, ranging from metallic gates with an unscreened
Coulomb potential [72] or lattice vibrations [73], to super-
fluid ultracold gases [74], or to complex RC circuits [75].
Accordingly, these realizations bring about different open
system scenarios, with various environment densities of
states, coupling to the TLL, and fluctuations. This di-
versity can result in vastly different phenomena. Despite
its crucial role, to our knowledge, a unifying, low-energy
theory that is able to include the effect of arbitrary reser-
voirs coupled to a TLL is still missing.

In this work, we fill this gap by formulating a low-
energy theory for a quantum wire in contact with arbi-
trary Ohmic-class leads, and show how these dramati-
cally modify the low-energy properties of the wire. To
highlight the consequences of this open system interplay,
we analyze Kane-Fisher’s impurity problem as a concrete
setup. We show that while a super-Ohmic environment
(with fast fluctuations) localizes the particles akin to a
Zeno effect, sub-Ohmic noise (slow fluctuations) over-
whelm the low-energy properties of the TLL. The im-
purity, then, engenders the TLL–environment competi-
tion with a non-monotonous renormalization group (RG)
flow, leading ultimately to a conducting-to-insulating-like
transition in the TLL as a function of the noise statis-
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FIG. 1. (a) Sketch of a quantum wire containing a single
impurity, that back-scatters electrons, coupled to leads. (b)
The noise-power spectrum of the electronic leads as a function
of frequency, where ωc marks the environment bandwidth. (c)
The phase diagram of a two-level system (φ4-theory) coupled
to an Ohmic environment for varying dissipation strength α.
For small dissipation α < 1, the effective tunneling, Γ, between
two potential wells diverges, i.e., the particle is delocalized,
but for stronger dissipation α > 1 the particle is localized
Γ→ 0 [76]. (d) Phase diagram of the TLL hosting an impurity
coupled to Ohmic leads [cf. action (4), with effective scattering
potential V mapped to a Sine-Gordon potential] as a function
of the interaction strength in the wire Kw [cf. Eq. (4)].

tics in the environment. Furthermore, considering re-
alistic finite-size 1D systems, we predict that the non-
monotonous flow implies unusual temperature-dependent
scaling of the conductance coming out from the TLL–
environment competition.

Setup and microscopic model — We consider a sys-
tem of interacting spinless electrons confined in a single-
channel 1D wire of length L that is adiabatically con-
nected to metallic leads, see Fig. 1(a). The Hamiltonian
of the wire reads

Hw = ∫
x
[ ∑
η=L,R

{iαηνFΨ†
η(x)∂xΨη(x) +Uρη(x)ρη(x)} ] , (1)

with ∫x = ∫
L/2
−L/2 dx, where the first term represents

the kinetic energy of electrons with linearized disper-
sion εk = αηvFk, vF the electron velocity, and αL = 1

(αR = −1) corresponds to the left- (right-)moving elec-

trons with fermionic field operators ΨL (ΨR). The sec-
ond term describes local electron-electron interactions
inside the wire via (normal-ordered) density operators
ρη(x) =∶ Ψ

†
η(x)Ψη(x) ∶ with a constant magnitude U .

Many-body interactions in the wire modify the rel-
evant quasiparticles profoundly, resulting in the emer-
gence of collective bosonic excitations [1, 3, 4]. Us-
ing bosonization, we can write the fermionic fields
as Ψη =

√
Λ/(2π)F̂η exp[ikFx + iφη(x)], where Λ is

an ultraviolet cutoff, F̂η the Klein factor, and φη
represents bosonic fields with commutation relations,

[φη(x), φη′(y)] = −iπ αηδη,η′sgn(x − y). The den-
sity operator in terms of these bosonic fields reads
ρη(x) = ∂xφη(x)/(2π). Thereby, the bosonized Hamil-

tonian of the interacting wire takes the form Hw =

v

4π
∫x {

1

Kw

(∂xϕ)
2
+Kw (∂xθ)

2
}, where ϕ(x, t), θ(x, t) =

(1/
√

2) [φL(x, t) ± φR(x, t)] satisfy the commutation re-
lation [ϕ(x), θ(y)] = iπ sgn(x − y), ν = νF/Kw, and

Kw = 1/
√

1 +U/(πvF) is the so-called Luttinger Liquid
parameter, with Kw = 1 referring to a noninteracting
wire, and Kw < 1 (Kw > 1) indicating repulsive (attrac-
tive) interactions.

The wire is connected to electronic leads, which we
introduce by imposing appropriate boundary conditions
∂tφη(x = ±L/2) = 2πJη, where Jη(ω) is the current oper-
ator in the leads. The effect of the boundaries enter the
correlation functions of the wire via the noise power spec-
trum S(ω) = ⟨Jη(ω)Jη(−ω)⟩, where ⟨⋯⟩ denotes thermal
averaging with respect to the leads [71, 76–78]. We con-
sider an Ohmic-class noise power spectrum

S(ω) = ω ∣
ω

ωc
∣
s−1

e−∣ω/ωc∣ [1 + nb(βω)] , (2)

where ωc is the characteristic energy scale of the environ-
ment, indicating the exponential suppression of current-
current correlations for ω ≫ ωc. The parameter s ∈ (0,2)
distinguishes between different cases, i.e., s = 1 describes
an Ohmic lead, whereas s < 1 (s > 1) corresponds to
the sub- (super-)Ohmic case. The noise power exhibits a

bosonic distribution nb(βω) = 1/ [exp(βω) − 1] at inverse
temperature β.

To realize an Ohmic environment, it suffices to consider
free fermions with a well-defined Fermi-Dirac distribu-
tion. On the other hand, non-Ohmic environments with
s ≠ 1 can be realized, for example, by electron-phonon
coupling in the leads (s > 1) [73], or by complex RC
circuit architectures (s < 1) [75]. In Fig. 1(b), we plot
the frequency dependence of the noise spectrum for these
three cases. Comparing to the Ohmic case, the current-
current fluctuations in the sub- (super)-Ohmic leads are
more dominant at lower (higher) frequencies, i.e., envi-
ronmental fluctuations are slower (faster). Ohmic-class
environments have been extensively studied in the frame-
work of the spin-boson model [75, 76, 79–81], revealing
the profound influence of the environment fluctuations on
the nature of the ground state, as well as on the dynam-
ics of the system. In particular, it was shown that in the
Ohmic case, there exist a critical dissipation that distin-
guishes between a localized phase and a delocalized one,
see Fig. 1(c). In contrast, in the sub- (super)-Ohmic case,
the system is argued to be localized (delocalized) inde-
pendent of dissipation strength [76]. Analogously, in this
work, we investigate the impact of such current fluctua-
tions in the leads on the transport through a disordered
interacting wire.
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Environment-induced correlations — First, we con-
sider the limit of T = 0, and investigate the impact of
the noise-spectrum in the leads on the TLL physics. The
correlations between bosonic excitations of TLL are en-
tirely determined by the Hamiltonian (1) and the noise
power spectrum at the boundaries (2) [71, 78]. In par-
ticular, the wire’s bosonic greater Green’s function de-
fined as G>,0ϕϕ(x,x

′, ω) ≡ −i⟨ϕ(x,ω)ϕ†(x′, ω)⟩0, with ⟨⋯⟩0
referring here to the thermal average, is found to be
G>,0ϕϕ(x,x

′, ω) = −iS(ω)Fϕ(x,x
′, ω)/ω2, with

Fϕ(x,x
′, ω) = 2

( 1
K2

w
− 1) cos[ωτL(x+x

′)
L

] cos[ωτL] + ( 1
K2

w
+ 1) cos[ωτL(x−x

′)
L

]

(1 + 1
K2

w
)

2
− (1 − 1

K2
w
)

2
cos2[ωτL]

,

(3)
the structure function of a many-body Fabry-Pérot in-
terferometer that is formed due to the presence of the
leads reflecting the bosonic excitations at the bound-
aries [71, 78]. Detailed-balance holds G<,0ϕϕ(x,x

′, ω) ≡

−i⟨ϕ†(x′, ω)ϕ(x,ω)⟩0 = e
−βωG>,0ϕϕ(x,x

′, ω) as expected for
bosons in thermal equilibrium [82]. The finite length
of the wire introduces a characteristic time scale to the
system, namely, the time of flight for the collective ex-
citations τL = LKw/vF to cross the wire. At high fre-
quencies, ωτL ≫ 1, the system acts similarly to the in-
finite wire [83], whereas at small frequencies, ωτL ≪ 1,
Fϕ(x,x

′, ω) ≈ 1 such that the physics of the interacting
wire is washed out, and the system response is dominated
by the environment.

An impurity in the wire at zero temperature — To
reveal the consequences of the environment-induced cor-
relations, we consider a back-scattering impurity at x =

x0, leading to an additional Hamiltonian term, Hb =

V0 [Ψ†
L(x0)ΨR(x0) +H.c.]. The action of the bosonized

system at all positions x ≠ x0 is quadratic and can be
therefore integrated out, resulting in the following (lo-
cal Sine-Gordon) action in imaginary-time path-integral
formalism

A = ∫

β

0
dτ ϕ†

(τ) [G0
ϕϕ(τ)]

−1
ϕ(τ) + V0 ∫

β

0
dτ cos[

√
4πϕ(τ)] , (4)

where G0
ϕϕ(τ) = ∫

∞
−∞ dω G0

ϕϕ(iω)e
iωτ , with G0

ϕϕ(iω) =

∫
dω′
2πi

G0,>
ϕϕ(ω′)−G0,<

ϕϕ(ω′)
iω−ω′ the imaginary-time (Matsubara)

Green’s function of the clean wire at x = x0. Without loss
of generality, we assume x0 = 0 [84]. The action (4) and
its corresponding correlation functions describe physics
found in a variety of systems, including Brownian mo-
tion of a quantum mechanical particle in a periodic po-
tential [85], as well as in the dissipative two-level system
[76, 79, 86, 87]; our specific wire–environment compe-
tition manifests through the explicit functional form of
G0
ϕϕ.
The noise spectrum of Ohmic leads scales linearly

at low energies, S(ω) ∼ ω, and we commonly observe
G0
ϕϕ(k, iω) = Kw/∣2ω∣. More generally, however, we can

always define a similar structure G0
ϕϕ(iω) = K(ω)/∣2ω∣

10−5 10−4 10−3 10−2 10−1 100
ω/ωc

10−1

100

101

K
(ω

) Ohmic

sub-Ohmic

super-Ohmic

(a)

0.5 1.0 1.5
K(Λ)

10−1

100

101

V
(Λ

)

(b)

0.5 1.0 1.5
K(Λ)

(c)

0.5 1.0 1.5
K(Λ)

(d)

FIG. 2. Scaling and RG-flow of the scattering potential
V (ω) and effective Luttinger parameter K(ω) at zero tem-
perature, cf. Eqs. (4)–(6). (a) The frequency-dependence
of K(ω) for ω ≫ 1/τL for a range of interaction strengths
in the wire Kw ∈ [0.6,1.4] and different Ohmic-class cases,
s = 1.2,1.0,0.8. The solid lines depict the non-interacting
case Kw = 1, and the lighter (darker) shades mark Kw < 1
(Kw > 1). (b)-(d) The flow diagram (along the direction of
the arrows) of the scattering potential versus effective interac-
tion as we change the cutoff energy scale Λ from [∞,Λf ], with
Λf > 1/τL for (b) Ohmic (s = 1.0), (c) sub-Ohmic (s = 0.8),
and (d) super-Ohmic (s = 1.2) cases.

with an energy-dependent Luttinger parameter K(ω) in-
corporating the finite length of the wire, and the fluctu-
ations from the leads. At low frequencies ω ≪ ωc, we
have [83]

K(ω) ≈
Kw

sin (πs)/2
∣
ω

ωc
∣
s−1 1 +Kw + (1 −Kw)e−τL∣ω∣

1 +Kw − (1 −Kw)e−τL∣ω∣ , (5)

which is plotted in Fig. 2(a) for the long-wire limit
ω ≫ 1/τL. Equation (5), is one of the main results of
this work, showcasing how the presence of leads, at the
wire’s ends, modifies the effective strength of the inter-
particle interactions in the wire at different frequencies.
In particular, in the sub-Ohmic case (slow environmental
fluctuations), at sufficiently low-frequencies, the effective
interactions in the wire appear attractive [K(ω) > 1],
while for the super-Ohmic case, the interactions become
effectively repulsive [K(ω) < 1].

We employ a perturbative RG approach (due to the
presence of infrared divergences [75]), in which we inte-
grate out high energy fields and map the system (4) to
itself, but with a smaller ultraviolet cutoff Λ′ = Λ(1−dl),
i.e., dl = dΛ/Λ [18]. As a result, a renormalized scattering
potential V (Λ) (up to dl2) obeys the flow equation

dV

dl
= V0 (1 −K(Λ)) . (6)

Note that due to the noisy leads, the flow involves also
the renormalization of K(ω). The numerical solution
of the flow equation for the infinite wire limit is shown
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in Fig. 2, whereas impact of the finite wire is detailed
in the Supplemental Material [83]. For the Ohmic case
s = 1 [Fig. 2(b)], standard Kane-Fisher physics [18] is
observed, where the wire’s Luttinger parameter plays a
decisive role, i.e., for Kw < 1 (Kw > 1) the fixed point of
the RG, for Λ → 0, is V →∞ (V → 0) for the insulating
(metallic) case. The quantum critical point is at Kw = 1,
corresponding to non-interacting electrons, see Fig. 1(d).

Considering sub-Ohmic environment noise, see
Fig. 2(c), the low-frequency noise induces an effective
K(ω) that increases with Λ. Therefore, starting from
repulsive interactions in the wire, the renormalized
scattering potential exhibits a non-monotonic behaviour.
Specifically, defining Λ∗ such that K(Λ∗) = 1, we observe
that for Λ > Λ∗, the back-scattering potential increases
and transport through the wire is suppressed, while
for Λ < Λ∗, the potential decreases and transport is
unaffected by the impurity. The transition point Λ∗

strongly depends on the wire’s bare Luttinger Liquid
parameter Kw, cf. Eq. (5). Crucially, regardless of the
specific initial microscopic parameters of the wire, the
fixed point of the flow is K → ∞, V → 0. We compare
the sub-Ohmic case with the super-Ohmic one, where
the flow lines show an opposite trend, see Fig. 2(d). In
this case, the effective K(ω) is reduced and the fixed
point is realized at K → 0, V →∞.

Our perturbative RG analysis assumes an initially
small scattering impurity potential. In the opposite limit
of a strong impurity, we can formulate the problem in a
dual representation with Gθθ(iω) = 1/(2K̃(ω)∣ω∣) [83],
with K̃(ω) defined by changing (1 − s) → (s − 1) in
Eq. (5). Hence, the sub-Ohmic environment acts as
super-Ohmic one, and vice-versa [88]. As a result, tun-
neling, t, across the barrier satisfies the RG equation
dt/dl = t0(1 − [1/K̃(Λ)]), where t0 is the initial tunnel-
ing amplitude. We conclude that the metal-to-insulator
quantum phase transition that occurs for the Ohmic en-
vironment at the critical point, Kw = 1, is replaced for
non-Ohmic environments by a smooth cross-over with
characteristic energy scale Λ∗ that depends on the inter-
action strength in the wire.

Conductance at finite temperatures — We study
ac-conductance through the wire, and consider an ex-
ternal probe in the form of a potential U(x, t) =

U(x) cos(ωt), leading to an additional term in the Hamil-
tonian, δH = ∑η ∫ dxρη(x)U(x). Within linear re-
sponse theory [67, 68, 83, 89], the ac-conductance reads
G(ω) = −(e2/h)2iωGR

ϕϕ(ω), with the retarded plasmonic

Green’s function in the presence of the impurity GR
ϕϕ(ω) =

∫ D[ϕ]ϕ(ω)ϕ†(ω)e−A∣ω+i0+ = [(G0,R
ϕϕ )−1(ω) −ΣR(ω)]

−1
,

where the self-energy can be obtained by expanding the
partition function corresponding to the action (4) [83],
which up to V 2

0 reads

10−2 10−1 100

T/ωc

10−6

10−4

10−2

100

G
b/

[ω
2s
−2

]

(a) Kw

s = 1
0.4
0.6
0.8
1.0
1.4
2.0
3.0

10−2 10−1 100

T/ωc

(b)
s = 0.8

10−2 10−1 100

T/ωc

T 2(s−2) (c)
s = 1.2

FIG. 3. Temperature dependence of the impurity-
induced correction to conductance through a finite-length
wire [L = 100νF/(Kwωc)] for different interaction strengths
(Kw), cf. Eq. (7). (a) Ohmic, (b) sub-Ohmic (s = 0.8), and
(c) super-Ohmic case (s = 1.2). The dashed lines show in (a)
the expected power-law dependence Gb ∝ (T /ωc)

2Kw−2, (b)
the exponential dependence Gb ∝ exp[−αs(T /ωc)

s−1
], and (c)

Gb ∝ (T /ωc)
2s−4 [83]. The arrows in (b) and (c) marks Λ∗,

where K(Λ∗
) = 1.

Σ(iω) = iV 2
0 ∫

β

0
dτ [1 − eiωτ ]eE(τ), (7)

with

E(τ) = ∫
∞

0

dω

2π

⎧⎪⎪
⎨
⎪⎪⎩

1 − cosh(ωτ)

tanh(βω/2)
+sinh(ωτ)

⎫⎪⎪
⎬
⎪⎪⎭

G
0
ϕϕ(ω). (8)

Thereby, the ac-conductance can be written as G(ω) =

(e2/h) [G0 −Gb], where G0 = −2iωGR,0
ϕϕ (ω) corresponds

to the conductance through a clean wire, and Gb ≡

−2iωGR,0
ϕϕ ΣR(ω)GR,0

ϕϕ represents the correction to the con-
ductance due to the presence of the impurity. In the dc-
limit, limω→0G0(ω) = (ω/ωc)

s−1, which is independent
of temperature and interaction strength inside the wire.
For the Ohmic case, limω→0G0(ω) = 1, for sub-Ohmic
this limit diverges, and in the super-Ohmic case it van-
ishes.

In the following, we focus on the temperature-
dependence of the correction Gb, see Fig. 3. The temper-
ature mimics the RG flow of the renormalized scattering
potential (cf. Fig. 2): (i) In the Ohmic case [Fig. 3(a)],
for 1/τL ≪ T ≪ ωc, we obtain a power-law tempera-
ture dependence of the form Gb ∝ (T /ωc)

2Kw−2. Such a
power-law is characteristic for critical scaling close to a
quantum phase transition [83]. Specifically, for repulsive
interaction, Gb grows with decreasing temperature, while
it gets suppressed for attractive interactions. For a non-
interacting wire, Gb is independent of temperature. In-
terestingly, at small temperatures (TτL ≪ 1), we observe
a temperature-independent behaviour for all values of
Kw, corresponding to the cutoff of the critical scaling by
the finite length of the wire; (ii) For the sub- and super-
Ohmic case [Figs. 3(b) and (c), respectively], we observe
a characteristic energy-scale Λ∗ above which the system
qualitatively behaves as in the Ohmic case, i.e., with a
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power-law decrease governed by the noise scaling with ωc.
However, at T ≪ Λ∗, for the sub-Ohmic case, we obtain
an exponential suppression with exponents depending on
the interaction strength as Gb ∝ exp[−Kwαs(T /ωc)

s−1].
In contrast, in the super-Ohmic case for T ≪ Λ∗, the Gb

grows with decreasing temperature in a power-law fash-
ion with an exponent that is entirely independent of the
interaction strength in the wire T 2s−4. The finite length
effect at low temperatures is washed away by the noisy
environment.

Conclusion — We show that the specifics of charge
fluctuation at the boundaries of an interacting wire can
modify the transport through a dirty Luttinger liquid
beyond the Kane-Fisher description. We further outline
the physical implications of the wire–environment com-
petition for realistic transport measurements in a wide
variety of systems. Specifically, at low temperatures, the
impurity-induced correction to conductance (i) follows
the result of Kane-Fisher [18], and critically-scales with
an interaction-dependent power-law up to a finite length
cutoff in the Ohmic case, (ii) get washed out in the sub-
Ohmic case due to the dominant role of slow (viscous)
fluctuations in the environment, and (iii) is effectively
amplified as the fast charge-fluctuations (super-Ohmic)
at the boundary of the wire acts similarly to a Zeno ef-
fect [76]. Our results highlight bath-engineering as a tool
to design novel phases of matter, without the drawback
of inducing dissipation. Furthermore, we pave the way
toward analyzing, e.g., the interplay between non-Ohmic
reservoirs and a macroscopic number of in-wire impuri-
ties, where another type of metal-to-insulator quantum
phase transition is predicted to occur [3]; or the investi-
gation of bath-induced stabilization protocols for exotic
excitations, such as Majorana fermions.
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[77] M. Büttiker, Phys. Rev. B 46, 12485 (1992).
[78] Y. V. Nazarov, A. A. Odintsov, and D. V. Averin, Eu-

rophysics Letters (EPL) 37, 213 (1997).
[79] M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett.

94, 070604 (2005).
[80] F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett.

98, 210402 (2007).
[81] S. K. Kehrein, A. Mielke, and P. Neu, Zeitschrift für

Physik B Condensed Matter 99, 269 (1995).
[82] H. Bruus, K. Flensberg, and O. U. Press,

Many-Body Quantum Theory in Condensed Matter Physics,
Oxford Graduate Texts (OUP Oxford, 2004).

[83] See Supplementary Material for additional details.
[84] The generalisation to x0 ≠ 0 can be readily carried out in

an analogous ways, see for example Ref. [67].
[85] M. P. Fisher and W. Zwerger, Phys. Rev. B 32, 6190

(1985).
[86] S. Florens, D. Venturelli, and R. Narayanan, “Quan-

tum phase transition in the spin boson model,” in
Quantum Quenching, Annealing and Computation,
edited by A. K. Chandra, A. Das, and B. K. Chakrabarti
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp.
145–162.

http://dx.doi.org/ 10.1103/PhysRevLett.120.197701
http://dx.doi.org/10.1038/s41467-020-14383-0
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031214-014548
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1088/1361-648x/aa74a1
http://dx.doi.org/10.1088/1361-648x/aa74a1
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1103/PhysRevLett.79.4629
http://dx.doi.org/10.1103/PhysRevLett.97.076401
http://dx.doi.org/10.1103/PhysRevLett.97.076401
http://dx.doi.org/10.1103/PhysRevLett.101.016405
http://dx.doi.org/10.1103/PhysRevLett.101.016405
http://dx.doi.org/10.1103/PhysRevLett.108.136401
http://dx.doi.org/10.1103/PhysRevLett.108.136401
http://dx.doi.org/ 10.1103/PhysRevLett.120.183603
http://dx.doi.org/ 10.1103/PhysRevLett.122.040604
http://dx.doi.org/ 10.1103/PhysRevLett.122.040604
http://arxiv.org/abs/2101.12227
http://dx.doi.org/ 10.1103/PhysRevLett.110.035302
http://dx.doi.org/ 10.1103/PhysRevLett.110.035302
http://dx.doi.org/ 10.1103/PhysRevLett.116.235302
http://dx.doi.org/ 10.1103/PhysRevLett.116.235302
http://dx.doi.org/10.1103/PhysRevLett.122.040402
http://arxiv.org/abs/1910.10741
http://dx.doi.org/10.1103/PhysRevLett.109.020405
http://dx.doi.org/10.1088/1367-2630/abd124
http://dx.doi.org/10.1088/1367-2630/abd124
http://dx.doi.org/10.1126/science.1155309
http://arxiv.org/abs/https://science.sciencemag.org/content/320/5881/1329.full.pdf
http://dx.doi.org/ 10.1088/1367-2630/11/1/013053
http://dx.doi.org/ 10.1088/1367-2630/11/1/013053
http://arxiv.org/abs/2003.14202
http://arxiv.org/abs/2003.14202
http://dx.doi.org/10.1103/PhysRevLett.101.126802
http://dx.doi.org/10.1103/PhysRevLett.101.126802
http://dx.doi.org/10.1103/PhysRevB.80.045106
http://dx.doi.org/10.1103/PhysRevB.80.045106
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1103/PhysRevB.81.081306
http://dx.doi.org/10.1103/PhysRevB.81.081306
http://dx.doi.org/10.1103/PhysRevLett.109.126406
http://dx.doi.org/https://doi.org/10.1016/0038-1098(95)00102-6
http://dx.doi.org/https://doi.org/10.1016/0038-1098(95)00102-6
http://dx.doi.org/10.1103/PhysRevLett.73.468
http://dx.doi.org/10.1103/PhysRevLett.73.468
http://dx.doi.org/10.1103/PhysRevB.54.R5239
http://dx.doi.org/10.1103/PhysRevB.54.R5239
http://dx.doi.org/10.1103/PhysRevB.52.R14368
http://dx.doi.org/10.1103/PhysRevB.47.3827
http://dx.doi.org/10.1103/PhysRevB.47.3827
http://dx.doi.org/https://doi.org/10.1016/0921-4526(93)90167-5
http://dx.doi.org/ 10.1103/PhysRevLett.122.126802
http://dx.doi.org/10.1103/PhysRevLett.72.2235
http://dx.doi.org/10.1103/PhysRevLett.72.2235
http://dx.doi.org/10.1103/PhysRevB.25.5050
https://books.google.de/books?id=kqZclKUZdq0C
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1209/epl/i1997-00133-6
http://dx.doi.org/10.1209/epl/i1997-00133-6
http://dx.doi.org/10.1103/PhysRevLett.94.070604
http://dx.doi.org/10.1103/PhysRevLett.94.070604
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1007/s002570050037
http://dx.doi.org/10.1007/s002570050037
https://books.google.de/books?id=v5vhg1tYLC8C
http://dx.doi.org/10.1103/PhysRevB.32.6190
http://dx.doi.org/10.1103/PhysRevB.32.6190
http://dx.doi.org/10.1007/978-3-642-11470-0_6


7

[87] M. Vojta, Phys. Rev. B 85, 115113 (2012).
[88] M. Sassetti, H. Schomerus, and U. Weiss, Phys. Rev. B

53, R2914 (1996).
[89] M. P. A. Fisher and L. I. Glazman, “Trans-

port in a one-dimensional luttinger liquid,” in
Mesoscopic Electron Transport, edited by L. L. Sohn,
L. P. Kouwenhoven, and G. Schön (Springer Netherlands,
Dordrecht, 1997) pp. 331–373.

http://dx.doi.org/10.1103/PhysRevB.85.115113
http://dx.doi.org/10.1103/PhysRevB.53.R2914
http://dx.doi.org/10.1103/PhysRevB.53.R2914
http://dx.doi.org/ 10.1007/978-94-015-8839-3_9


1

Supplemental Material for

A Luttinger Liquid coupled to Ohmic-class environments
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BOSONIC GREEN’S FUNCTION OF A CLEAN WIRE

In this section, we outline the calculation details of the bosonic Green’s function for the interacting wire. We
elaborate on its crucial dependence on the environment through the boundary conditions. As mentioned in the main
text, we restrict the bosonization treatment to the interacting part of the system (wire), i.e., x ∈ [−L/2, L/2], and
account for the presence of the environment (leads) through the following boundary conditions (continuity equation):

∂tφL/R(x = ±L/2, t) = 2πJL/R(t) , (I.1)

where the boundary operators JL/R are the current operator in the leads

JL/R(ω) = ∫ dω′c†
L/R,ω+ω′cL/R,ω′ , (I.2)

with c
(†)
L/R,ω the fermionic (creation) annihilation operators for right/left-moving electrons.

We use the boundary condition (I.1) to solve the equations of motions

∂tθ(x, t) =
νF

K2
w

∂xϕ(x, t) , (I.3)

∂tϕ(x, t) = νF∂xθ(x, t) , (I.4)

for the bosonic fields ϕ(x, t), θ(x, t) = (1/
√

2) [φL(x, t) ± φR(x, t)]. We obtain a solution in the form of the original
right- (left-)mover fields that reads [1, 2]

φL,R(x,ω) =
2π

iω

⎧⎪⎪
⎨
⎪⎪⎩

JL/R(ω) [
4

Kw
cos[ωτL(x/L ± 1/2) ± 2i(1 +

1

K2
w

) sin[ωτL(x/L ± 1/2)]]

∓ JR/L(ω) [2i(1 −
1

K2
w

) sin[ωτL(x/L ∓ 1/2)]]

⎫⎪⎪
⎬
⎪⎪⎭

1
4
Kw

cos[ωτL] + 2i (1 + 1
K2

w
) sin[ωτL]

, (I.5)

with τL = LKw/νF the time-of-flight required for the bosonic excitations to cross the wire. Note that from the particle-

hole symmetry of the currents at the boundaries JL/R(−ω) = J†
L/R(ω), the following symmetry for the fields holds

φ†
L/R(x,ω) = φL/R(x,−ω).

Using the current-current correlations at the boundaries, we can define the environment noise spectrum S(ω) as

⟨Jη(ω)Jη′(ω
′
)⟩ = S(ω)δη,η′δ(ω + ω

′
) , η = L,R . (I.6)

Thus, we can fully determine the correlation functions of the bosonic fields (ϕ, θ) as

G
>,0
ϕϕ(x,x

′, ω) = −i⟨ϕ(x,ω)ϕ†
(x′, ω′)⟩ = −i

S(ω)δ(ω − ω′)

ω2
Fϕ(x,x

′, ω) , (I.7)

G
>,0
θθ (x,x′, ω) = −i⟨θ(x,ω)θ†(x′, ω′)⟩ = −i

S(ω)δ(ω − ω′)

K2
wω

2
Fθ(x,x

′, ω) , (I.8)



2

Re{z}

Im{z}

2π/τL

2(1/τL) cosh−1[(1 +K2
w)/(1 −K2

w)]

FIG. 1. Schematic structure of the poles of the local structure function Fϕ(z), cf. Eq. (I.11).

with the structure function

Fϕ/θ(x,x
′, ω) =

± ( 1
K2

w
− 1)∑α=± cos[ωτL(x + x

′ + αL)/L] + 2 ( 1
K2

w
+ 1) cos[ωτL(x − x

′)/L]

(1 + 1
K2

w
)

2
− (1 − 1

K2
w
)

2
cos2[ωτL]

, (I.9)

which encodes all the information about the interacting wire, i.e., its length L, and the interaction strength Kw.
Note that, due to the presence of the environment and the correspondingly-imposed boundary, a Fabry-Pérot cavity
is formed for the plasmonic excitations, with its resonances encoded in the poles of Eq. (I.9). Setting x′ = 0, the
structure function takes the form

Fϕ/θ(x,0, ω) =
K2

w cos[ωτLx/L]

(1 +K2) − (1 −K2
w) cos[ωτL]

. (I.10)

Analytic properties of the structure function

It is insightful to examine the analytic properties of the local structure function (I.10). For this purpose, we
generalise the structure function for any complex z ∈ C, and find its poles of Fphi as

z±n =
1

τL

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(2n + 1)π ± i cosh−1
[

1+K2
w

1−K2
w
] , K2

w > 1

(2n)π ± i cosh−1
[

1+K2
w

−1+K2
w
] , K2

w < 1

, (I.11)

with n ∈ N, and for Fθ the poles are identical, but the two cases (Kw ≶ 1) are interchanged. For Kw ∈ (0,1), the
poles of Fϕ are shown in Fig. 1. Note that the imaginary part of the poles grows when the repulsive interaction is
decreased, and as we approach the non-interacting limit Kw → 1, it becomes infinitely large.

For the purpose of performing complex integration over the structure factor (I.10), it is useful to rewrite it as a
sum over two function

Fϕ(x,0, z) =Kw cos[ωτLx/L]

⎧⎪⎪
⎨
⎪⎪⎩

−1
1−Kw

1+Kw
exp[izτL] − 1

+
1

1+Kw

1−Kw
exp[izτL] − 1

⎫⎪⎪
⎬
⎪⎪⎭

, (I.12)

where the first/second term in the parenthesis is analytic in the upper/lower-half of the complex plane, i.e., its poles are
in the lower/upper-half. Furthermore, defining y = cosh−1

[(1+K2
w)/(1−K2

w)], we have (1±Kw)/(1∓Kw) = exp(±y),
and therefore we can rewrite the structure function in terms of the bosonic distribution function

Fϕ(x,0, z) =Kw cos[ωτLx/L] {−nb (iτLz − y) + nb (iτLz + y)} . (I.13)

OHMIC-CLASS ENVIRONMENT

We consider a generic Ohmic-class environment with noise power spectrum S(ω) defined in Eq. (2) in the main text.
In the following, we will use the retarded bosonic Green’s function for the field ϕ of the clean wire, GR,0

ϕϕ (x, t;x′, t′) =
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−iΘ(t − t′)⟨[ϕ(x, t), ϕ†(x′, t′)]⟩, with Θ the Heaviside function. It can be expressed in terms of lesser and greater
Green’s function G<,0ϕϕ(x, t;x

′, t′) = −i ⟨ϕ†(x′, t′)ϕ(x, t)⟩ , and G>,0ϕϕ(x, t;x
′, t′) = −i ⟨ϕ(x, t)ϕ†(x′, t′)⟩ , as

G
R,0
ϕϕ (x,x′, ω) = i∫

∞

−∞

dω′

2π

G>,0ϕϕ(x,x
′, ω′) − G<,0ϕϕ(x,x

′, ω′)

ω′ − ω − i0+
. (II.1)

Note that Ohmic-class environments hold detailed balance, and we have

G
<,0
ϕϕ(x,x

′, ω) =
S(−ω)

S(ω)
G
>,0
ϕϕ(x,x

′, ω) = e−βωG>,0ϕϕ′(x,x
′, ω) , (II.2)

which follows from Eq. (I.7) [we use the fact that Fϕ(x,x
′, ω) is a real and even function of ω, see Eq. (I.9)], as we

expect for bosons in thermal equilibrium. Thereby, the retarded Green’s function Eq. (II.1) simplifies to

G
R,0
ϕϕ (x,x′, ω) = ∫

∞

−∞

dω′

2π

Fϕ(x,x
′, ω′)

ω′ − ω − i0+
∣
ω′

ωc
∣

s−1
e−∣ω

′/ωc∣

ω′
. (II.3)

Ohmic-environment

In the case of an Ohmic environment, s = 1, we extend the integral in Eq. (II.3) to the complex plane, and employ
the analytic properties of the structure function [see discussion leading to Eq. (I.13)], to obtain the local retarded
Green’s function for x′ = 0

G
R/A,0
ϕϕ (x,0, ω) =

±iKw/2

ω ± iη

⎧⎪⎪
⎨
⎪⎪⎩

e−iτL(ω±iη)x/L + 1−Kw

1+Kw
eiτL(ω±iη)(x−L)/L

1 − 1−Kw

1+Kw
eiτL(ω±iη)

⎫⎪⎪
⎬
⎪⎪⎭

. (II.4)

Analytically continuing the obtained retarded/advanced Green’s function to the imaginary axis (Matsubara space)
[3] by substitution ω ± iη → iω for ω ≷ 0, we obtain the Matsubara Green’s function. The the same results can be
obtained by solving the equation of motion for Matsubara Green’s function

1

k(x)
[−

νF

k(x)
∂2
x +

k(x)ω2

νF
]G

0
ϕϕ(x,x

′, iω) = δ(x − x′), (II.5)

where k(x) =Kw for x ∈ [−L/2, L/2], and k(x) = 1 elsewhere. This is accomplished by imposing the continuity of the
Matsubara Green’s function and of its derivative vF/k

2(x)∂xG
0
ϕϕ(x,x

′, iω) at the wire’s ends x = ±L/2, as well as at
the discontinuity at x = x′, namely

νF

k2(x)
∂xG

0
ϕϕ(x,x

′, iω)∣x=x
′+0+

x=x′−0+ = −1 . (II.6)

Note that in the limit of L→∞, i.e., far from the boundaries, the Matsubara Green’s function reads G0
ϕϕ(x,x

′, iω) ≈

G0
ϕϕ(x − x

′,0, iω) =Kw/(2∣ω∣) exp[−ν∣(x − x′)ω∣], with ν = νF/Kw resulting in

G
0
(q, iω) = ∫ dxeiqxG0

(x,0, iω) =
Kw

2∣ω∣

1

νq2 + ω2/ν
. (II.7)

For a finite L, the analytical continuation of Eq. II.4 reads G0
ϕϕ(iω) =K(ω)/(2∣ω∣), with

K(ω) =Kw

1 + 1−Kw

1+Kw
e−τL∣ω∣

1 − 1−Kw

1+Kw
e−τL∣ω∣

. (II.8)

At large frequencies, ωτL ≫ 1, K(ω) approaches the Luttinger Liquid parameter inside the wire Kw, whereas for
low frequencies, ωτL ≪ 1, K(ω) goes to 1, resembling the TLL parameter of the noninteracting (Fermi liquid) leads.
In conclusion, the finite length of the wire connected to non-interacting electrons introduces an infrared cutoff 1/τL,
below which the wire acts as non-interacting electrons.
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Infinite wire connected to an Ohmic-class environment

We next consider a generic Ohmic-class environment with s ∈ (0,2), for which the bosonic spectral function reads

ρ(x,x′, ω) = Im{G
R,0
ϕϕ (x,x′, ω)} = Fϕ(x,x

′, ω)
sgn(ω)

2ωc
∣
ω

ωc
∣
s−2

e−∣ω/ωc∣, (II.9)

as is shown in Fig. 2. In the super-Ohmic case, the spectral function at small frequencies, ωτL ≪ 1, diverges slower
than the ohmic case [i.e., slower than ∼ Kw/(2ω)], while the sub-Ohmic case is diverging faster. For the interacting
wire at frequencies ωτL > 1, the oscillations are present due to the formation of a Fabry-Pérot cavity.

10−2 10−1 100 101 102

ω/νF

10−5

10−3

10−1

10

103

ρ
(ω

) s

(a)sub-ohmic

super-ohmic

ωc1/τL Kw = 1

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

10−2 10−1 100 101 102

ω/νF

ωc1/τL

(b)

Kw = 0.5

10−2 10−1 100 101 102

ω/νF

(c)

ωc1/τL Kw = 1.5

FIG. 2. The bosonic spectral function at x = x′ = 0 as a function of frequency for different values of Ohmic-class noise s and
interaction strength Kw for a finite wire of length L/νF = 10. Vertical dashed lines mark frequencies 1/τL (green) below which
the finite length of the wire plays a dominant role, and ωc (red) above which the environment noise is cut off.

Having the plasmonic spectral function, we can obtain the plasmonic Matsubara Green’s function, at Matsubara
frequencies ωn = 2nπ/β, n ∈ N,

G
0
ϕϕ(x,0, iωn) = ∫

∞

−∞

dω′

π

ρ(ω′)

ω′ − iωn
=

−Kwω
1−s
c

2 sin[sπ/2]
Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
α,α′=±

∫Cα′

dz

2π

(−iz)s−2

z − iωn

αeαiτLzx/L

1−αKw

1+α′αKw
eαiτLz − 1

⎫⎪⎪
⎬
⎪⎪⎭

,

=
−Kw

2ωc sin[sπ/2]
∣
ωn
ωc

∣
s−2 e−τL∣ωnx/L∣ + 1−Kw

1+Kw
eτL∣ωn∣(x−L)/L

1 − 1−Kw

1+Kw
e−∣ωn∣τL

, (II.10)

with C± being a half-circle contour extending the real axis to the upper/lower half of the complex plane. We used
the fact that we are interested in ωn ≪ ωc. Taking the limit of L →∞, we can rewrite Eq. (II.10), as G0

ϕϕ(x,0, iω) =

K(ω)/(2∣ω∣)e−∣ωx/ν∣, with K(ω) =KwCsc[(πs)/2]∣ω/ωc∣
s−1. In the Ohmic case, this reduces to K(ω) =Kw as expected.

Analogous to the Ohmic case, we obtain Gϕϕ(q, iωn) =K(ω)/[νq2 + ω2
n/ν].

Finite wire connected to an Ohmic-class environment

In the case of a finite wire, similar to the infinite length case, we can define the effective TLL parameter as

K(ω) = ω∫
∞

0

dω′

π

Fϕ(0,0, ω
′)

ω2 + ω′2
sgn(ω′)

ωc
∣
ω′

ωc
∣

s−2

e−∣ω
′/ωc∣ . (II.11)

In Fig. 3, we show the numerical evaluation of the integral above, and compare it with the approximate formula

K(ω) =
Kw

sin[(πs)/2]
∣
ω

ωc
∣
s−1 1 +Kw + (1 −Kw)e−τL∣ω∣

1 +Kw − (1 −Kw)e−τL∣ω∣ . (II.12)

The approximation agrees well for ω ≪ ωc, irrespective of the value of s. Note that from Eq. (II.12) it follows that
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FIG. 3. The frequency dependence of effective TLL parameter K(ω) for various lengths of the interacting wire with Kw = 0.5.
Filled circles represent the numerical calculation of Eq. (II.11), and the solid lines show the approximate formula (II.12).

at high frequencies, ωτL ≫ 1, K(ω) = Kw∣ω/ωc∣
s−1/ sin(sπ/2). At small frequencies, ωτL ≪ 1, on the other hand, the

curves corresponding to different lengths merge together as is shown in Fig. 3, exhibiting that at such small frequencies,
the physics of the interacting wire is washed out and the system’s behaviour is dominated by the environment.

RENORMALIZATION OF THE SCATTERING POTENTIAL

In this section, we present the standard perturbative RG analysis for the problem of a single impurity immersed in
a TLL. After integrating-out the leads, the action of the system in imaginary-time reads

As[{ϕ}] =
1

4π
∫

β

0
dτ ∫

β

0
dτ ′ ∫

L/2

−L/2
dx∫

L/2

−L/2
dx′ϕ†

(x, τ)G0,−1
ϕϕ (x, τ ;x′, τ ′)ϕ(x′, τ ′) + V0 ∫

β

0
dτ cos [γϕ(x0, τ)] , (III.1)

with γ =
√

4π, and ϕ(τ) = ∫
∞
−∞ dω eiωτϕ(ω). For all x ≠ x0, the action is quadratic, and we can integrate out

all the corresponding fields to obtain the local action [Eq. (4) in the main text], which can be decomposed as
A[ϕ] = A0[ϕ] +Aimp[ϕ], with

A0[φ] = ∫
β

0
dτ ϕ†

(τ)G0,−1
ϕϕ (τ)ϕ (τ),

Aimp[φ] = V0 ∫

β

0
dτ cos[γϕ(τ)], (III.2)

where we have assumed x0 = 0. We define an ultraviolet cut-off Λ and the corresponding scale-dependent field as

ϕΛ(τ) = ∫
Λ
−Λ dω eiωτϕ(ω). For any Λ′ ∈ [0,Λ], we can decompose the bosonic fields into low- and high-frequency fields,

ϕΛ(τ) = ϕΛ′(τ) + h(τ). Now, we turn to the functional-integral formulation of the partition function, and integrate
over the high-frequency field h(τ) to obtain Z = ∫ D[{ϕΛ′}]e−Aeff [{ϕΛ′}], with

Aeff[{ϕΛ′(τ)}] = A0[{ϕΛ′(τ)}] + ⟨Aimp[{ϕΛ′(τ) + h(τ)}]⟩{h(τ)} + ⟨A
2
imp[{ϕΛ′(τ) + h(τ)}]⟩{h(τ)} +⋯, (III.3)

where

⟨Aimp[{ϕΛ′(τ) + h(τ)}]⟩{h(τ)} = V0 ∫

∞

0
dτ ∫ D[{h(τ)}]e−A0[{h(τ)}] cos [γ (ϕΛ′(τ) + h(τ))]

=
V0

2
∫

∞

0
dτ {eiγϕΛ′(τ)

∫ D[{h(τ)}]e−A0[{h(τ)}]+iγh(τ) + c.c} . (III.4)

Performing the Gaussian integral over high-frequency fields we obtain

⟨Aimp[{ϕΛ′(τ) + h(τ)}]⟩{h(τ)} =
V0

2
e−γ

2 ∫ Λ
Λ′

dω
2π G

0
ϕϕ(iω) {eiγϕΛ′ + c.c} . (III.5)
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We proceed with the RG procedure and consider an infinitesimal change of the ultraviolet cutoff Λ′ = Λ − dΛ =

Λ(1 − dl), dl = dΛ/Λ. In order to compare the physics governed by fields ϕΛ′ with the one governed by the fields ϕΛ,
we re-scale the frequency ω to ω′ = ωΛ/Λ′ = (1+ dl)ω, and the corresponding imaginary-time τ to τ ′ = τ(1− dl), such
that τω = τ ′ω′ [4]. Thereby, we have

⟨Aimp[{ϕΛ′(τ) + h(τ)}]⟩{h(τ)} =
V0

2
e−γ

2 ∫ Λ
Λ′

dω
2π G

0
ϕϕ(iω)(1 + dl)∫ dτ ′ cos[γϕΛ′(τ ′)] . (III.6)

Now the high-frequency degrees of freedom can be integrated out while keeping the partition function invariant

Z = ∫ D[{φΛ}]e−A0[{φΛ}]−Aimp[{φΛ(τ),V0}] (III.7)

= ∫ D[{φΛ(1−dl)}]e
−A0[{φΛ(1−dl)}]−Aimp[{φΛ(1−dl),V (Λ)}]

+O (V 2
0 ) , (III.8)

provided that the scattering potential is renormalized accordingly, i.e.,

V (Λ) = V0 [1 + e−γ
2 ∫ Λ

Λ′
dω
2π G

0
ϕϕ(iω) (1 + dl)] . (III.9)

Using the plasmonic Matsubara Green’s function for an infinitely long-wire coupled to the Ohmic-class environment
that we obtained in Eq. (II.10), the integral in the exponent becomes

∫

Λ

Λ′

dω

2π
G

0
ϕϕ(iω) =KwCsc[sπ/2]∫

Λ

Λ(1−dl)

dω

ωc
e−ω/ωc ∣

ω

ωc
∣
s−2

=Kw Csc[sπ/2] {Γ[s − 1,Λ/ωc] − Γ[s − 1, (Λ/ωc)(1 − dl)]}

=Kw Csc[sπ/2] (
Λ

ωc
)

s−1

e−Λ/ωc dl +O[(dl)2
] , (III.10)

where Γ is the incomplete Gamma function. Therefore the flow equation up to the first order in dl is

dV

dl
= V0 [1 −Kw Csc[sπ/2] (

Λ

ωc
)

s−1

e−Λ/ωc] . (III.11)

Taking the limit ωc →∞, in the Ohmic-case (s = 1), the flow equation boils down to dV /dl = V0(1−Kw), which is the
known result from Kane and Fisher [5].

For a finite-length wire, we can obtain the flow equation for the scattering potential in an analogous manner. Figure
4 depicts the beta function dV /dl = β(Λ) as a function of scale parameter Λ for the Ohmic, sub-Ohmic, and the super-
Ohmic cases, and for varying interaction strength Kw. As it is shown for ΛτL ≪ 1, the beta function is independent
of the interaction strength in the wire, which is consistent to our previous discussion in relation to Eq. (II.12). The
flow for ΛτL ≫ 1 is similar to our analysis of the infinitely long wire in the main text.

CONDUCTANCE

In this section, we consider an external electrical potential U(x, t), and calculate the resulting conductance through
the interacting wire containing an impurity. The action of the system in imaginary time reads

Atot[{ϕ}] = As[{ϕ}] + ∫
β

0
dτ ∫

L/2

−L/2
dx E(x, τ) ϕ(x, τ) , (IV.1)

where As is given in Eq. (III.1), and E(x, t) = −∂xU(x, t) is the external electric field. Similar to the previous section,
for all x ≠ x0, the action is quadratic, and we can integrate out all the fields at x ≠ x0 [6], and obtain the following
local action

Aeff =
1

β
∑
ωn

ϕ(−ωn)G
0,−1
ϕϕ (x0, x0, iωn)ϕ(ωn) + V0 ∫

β

0
dτ cos[γϕ(τ)]

+∑
ωn

G
0,−1
ϕϕ (x0, x0, iωn)ϕ(−iωn)∫ dx G0

ϕϕ(x,x0)E(x,ωn)ϕ(−iωn)

−
β

4
∑
ωn
∫ dx∫ dx′ [G0

ϕϕ(x,x
′, iωn) − G

0
ϕϕ(x,0, iωn)G

0
ϕϕ(x0, x

′, iωn) [G
0
ϕϕ(0,0)]

−1
]E(x,ωn)E(x′,−ωn) . (IV.2)
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FIG. 4. The beta function, i.e., the right-hand side of Eq. (III.11), as a function of frequency cut-off for different values of s
and interaction strength Kw. Vertical dashed lines mark frequencies Kw/τL (green) below which the beta function becomes
independent of the interaction strength in the wire, and ωc (red) above which the environment noise is cut off.

In the limit ωn → 0, the structure function (I.9) and hence the Matsubara Green’s function G0(iωn) become indepen-
dent of position (x,x′), and hence the local action can be approximated as

Aeff =
1

β
∑
ωn

ϕ(−ωn)[G
0
ϕϕ(iωn)]

−1ϕ(ωn) + V0 ∫

β

0
dτ cos[γϕ(τ)] +∑

ωn

ϕ(−iωn)U cos(ωt), (IV.3)

where we have assumed x0 = 0, and ∫
L/2
−L/2 dx E(x,ωn) = U cos(ωt). We are interested in calculating the resulting

ac-current, which reads [7]

Iac

2(e2/h)ω
= ⟨φ(t)⟩ = ∫ D[{ϕ}] φ(τ) e−Aeff = U ∫ dt′ Gϕϕ(t, t

′
) cos(ωt′) = U Re{eiωtGϕϕ(iω)} , (IV.4)

with Gϕϕ being the plasmonic Matsubara Green’s function in the presence of the impurity. As the exact form of the
Gϕϕ is unattainable, we perform a perturbative expansion [5] in terms of the scattering potential V0, and obtain

Gϕϕ(iωn) = ∫ D[{ϕ}] φ(−ωn)φ(ωn) e
−Aeff = G

0
ϕϕ(iωn) + G

0
ϕϕ(iωn)Σ(iωn)G

0
ϕϕ(iωn) +O(V 4

0 ) , (IV.5)

where

Σ(iωn) = −V
2
0

γ2

2
∑

α1,α2=±
∫

β

0
dτ1 ∫

β

0
dτ2 [1 + α1α2 cos [ωn(τ1 − τ2)]] e

− γ
2

2β ∑ωn G
0
ϕϕ(iωn)[1+α1α2 cos[ωn(τ1−τ2)]] (IV.6)

is the impurity-induced self energy. In the following, we try to simplify the above expression by using the analytic
properties of Matsubara Green’s functions. First, we define

E(τ) = −
2γ2

β
∑
ωn

G
0
ϕϕ(iωn)[1 − cos(ωnτ)] = −

γ2

β
∑
ωn>0

G
0
ϕϕ(iωn) [1 + e

iωnβ − eiωnτ − eiωn(β−τ)] , (IV.7)

where we have used eiωnβ = 1. Using the Bose-Einstein distribution function nb(z) = [exp(βz) − 1]−1, we can rewrite
the sum in Eq. (IV.7) as the contour integral in the complex plane. Furthermore, we deform the contour to be parallel
to the real axis, and obtain

E(τ) = −γ2
∫

∞

−∞

dω

πi
G

0,R
ϕϕ (ω) {coth(βω/2)[1 − cosh(ωτ)] + sinh(ωτ)} . (IV.8)

Therefore, the impurity-induced self energy becomes

Σ(iωn) = V
2
0 ∫

β

0
dτ [1 − cos(ωnτ)] e

E(τ)
= V 2

0 ∫

β

0
dτ [1 − exp(iωnτ)] e

E(τ) , (IV.9)
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where we have used the periodic properties of E(τ) = E(β − τ). Further deforming of the contour integration in the
complex plane results in

Σ(iωn) = iV
2
0 {∫

∞

0
dt [1 − e−ωnt] eE(it)

− ∫

0

−∞
dt [1 − eωnt] eE(it)

} . (IV.10)

Now, we perform the analytical continuation to the real axis (iωn → ω + i0+), and obtain

ΣR
(ω) = iV 2

0 {∫

∞

0
dt [1 − eit(ω+i0

+)
] eE(it)

− i∫
0

−∞
dt [1 − e−it(ω+i0

+)
] eE(it)

} = iωĨ +O(ω2
) , (IV.11)

with

Ĩ = −iV 2
0 ∫

∞

−∞
dt t eE(it)

= −V 2
0 (β/2)∫

∞

−∞
dt eE(it) . (IV.12)

Note that in Eq. (IV.12), we once again employed the periodic properties E(β − it) = E(it). Finally, the retarded
Green’s function up to second order in V0 reads

G
R
ϕϕ(ω) = G

R,0
ϕϕ (ω)[1 + iωĨGR,0

ϕϕ (ω)] , (IV.13)

which can be employed to calculate the ac current Eq. (IV.4), and hence the ac conductance

G(ω) =
Iac(ω)

U cos(ωt)
= 2

e2

h
{iωGR,0

ϕϕ (ω) − ω2Ĩ [GR,0
(iω)]

2
} . (IV.14)

The first term in Eq. (IV.14) is the conductance of a clean wire [G0 in the main text], and the second term corresponds
to the back-scatterings from the impurity [Gb in the main text]. We conclude this section by emphasising that the
calculation of the conductance (IV.14) boils down to the evaluation of the two integrals in Eqs. (IV.12) and (IV.8).

Ohmic environment

In this subsection, we outline the analysis of the temperature dependence of the conductance through the wire
which is in contact with Ohmic leads with noise power spectrum S(ω) = ω [1 + nb(βω)].

Infinitely long wire

For an infinitely long-wire, the local retarded Green’s function is G0,R
ϕϕ (iω) = iKw

2ω+i0+ e
−∣ω/ωc∣. Hence, Eq. (IV.8)

becomes

E(it) = −
Kwγ

2

π
∫

∞

0
dω

e−ω/ωc

ω
{[1 − cos(ωt)] coth(βω) + i sin(ωt)}

= −
Kwγ

2

π
ln[1 + iωct] +

∞
∑
m=1

ln

⎡
⎢
⎢
⎢
⎢
⎣

1 + (
t

mβ + (1/ωc)
)

2⎤
⎥
⎥
⎥
⎥
⎦

. (IV.15)

Concentrating on the low temperature behaviour, ωcβ ≫ 1, we obtain

E(it) ≈ −
Kwγ

2

π
ln{[1 + iωct] [

β

πt
sinh(

πt

β
)]} , (IV.16)

which makes the evaluation of Eq. (IV.12) feasible, resulting in

G =
e2

h
[Kw −

V 2
0 K

2
w

2ω2
c

√
πΓ[Kw]

Γ[1/2 +Kw]
(
π

βωc
)

2Kw−2

] . (IV.17)

However, note that this situation is unphysical, namely in order to generate a current through the interacting wire,
we have to connect the system to the electronic leads, which forces us to take into account the finite-length of the
wire and the resulting frequency structure of the Luttinger liquid parameter as we shall see in the following.
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Finite wire connected to Ohmic leads

We now consider a finite-length wire, where the Luttinger Liquid parameter acquires a frequency dependence, as
shown in the discussion related to Eq. (II.8). We evaluate the integrals [Eqs. (IV.12) and (IV.8)] numerically and
show the results in Fig. 5. At high temperatures TτL > 1, the conductance can be approximated as

G ≈
e2

h
[1 −

V 2
0

2ω2
c

√
πΓ[Kw]

Γ[1/2 +Kw]
(
π

βΛ
)

2Kw−2

] , (IV.18)

which has been obtained similar to the previous case of infinitely large wire [cf. Eq. (IV.17), albeit considering that
the dc-limit of the effective Luttinger liquid parameter is 1 (i.e., K(ω → 0) = 1).

10−1 100 101 102

TτL

0.0

0.2

0.4

0.6

0.8

1.0

G
[e

2 /
h]

Kw = 1.0
Kw = 0.7
Kw = 0.6
Kw = 0.5
Kw = 0.4

FIG. 5. The conductance as a function of rescaled temperature for various interaction strengths (Kw ≤ 1), cf. Eqs. (IV.12)
and (IV.8). The dashed-dotted lines correspond to Eq. (IV.18).

Infinite wire connected to Ohmic-class leads

We consider a generic Ohmic-class environment with the noise power spectrum defined in Eq. (2) in the main text,
and obtain the temperature dependence of the self-energy, and hence impurity-induced back-scattering conductance.
We can rewrite Eq. (IV.8) as E(it) = E1(it) +E2(it), with the first term being the temperature-independent part

E1(it) = −γ
2Kw(ωc)

1−s
∫

∞

0

dω

π
ωs−2e−ω/ωc [1 − e−iωt]

=Kw
−γ2

π
Γ[s − 1] [1 − (1 + iωct)

1−s
] , (IV.19)

and E2(τ) being the temperature-dependant component

E2(it) = −(ωc)
1−sγ2Kw ∫

∞

0

dω

π
ωs−2e−ω/Λ [coth(βω/2) − 1] [1 − cos(ωt)] (IV.20)

= −
γ2

π
Γ[s − 1] (βωc)

1−s
⎧⎪⎪
⎨
⎪⎪⎩

2ζ [s − 1,1 +
1

βωc
] − ζ [s − 1,1 +

1

βωc
−
it

β
] − ζ [s − 1,1 +

1

βωc
+
it

β
]

⎫⎪⎪
⎬
⎪⎪⎭

,

with ζ the Riemann zeta-function. The linear (in frequency) component of the self-energy [see Eq. (IV.11)] then reads

Ĩ = −V 2
0 (β/2)∫

∞

−∞
dt eE1(it)+E2(it)

= −V 2
0 (β/2) e−Kwαs

∫

∞

−∞
dt e

−Kwαs{(1+iωct)1−s+(βωc)1−s(2ζ[s−1,1+ 1
βωc

]−∑η=± ζ[s−1,1+ 1
βωc

+η itβ ])}
, (IV.21)
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with αs =
γ2

π
Γ(s − 1).

sub-Ohmic case

In the sub-Ohmic case, the current-current fluctuations are more pronounced at smaller frequencies, and hence
at low-temperatures, the environmental effects become dominant. For this case s < 1, the temperature dependant
part, namely Eq. (IV.20) is important. By changing the integration variable t → t + iβ/2 in Eq. (IV.21) and using
ζ[s − 1,1 + q] = ζ[s − 1, q] − q−(s−1), we obtain

Ĩ = −(β/2)V 2
0 e

Kwαs
∫ dte

Kwαs(βωc)1−s[2ζ[s−1,1+ 1
βωc

−∑η=± ζ[s−1, 1
βωc

+ 1
2+ηi

t
β ]]]

. (IV.22)

As we are interested in the low-temperature behaviour, ωcβ ≫ 1, at which the prefactor (βωc)
1−s ≫ 1, we can employ

the method of steepest descend. In other words, we have

∑
η=±

ζ[s − 1,
1

βωc
+

1

2
+ ηi

t

β
] ≈ 2ζ[s − 1,

1

βωc
+

1

2
] − (

t

β
)

2

ζ[s + 1,
1

βωc
+

1

2
]s(s − 1), (IV.23)

which makes the integral in Eq. (IV.22) Gaussian, resulting in

Ĩ = V 2
0 Ase

−BsT 1−s
T
s+3
2 , (IV.24)

with

As = e
Kwαs

⎛

⎝

π

4KwΓ[s + 1]ζ[s + 1, 1
2
+ 1
βωc

]ω1−s
c

⎞

⎠

1/2

,

Bs = 2ω1−s
c ζ[s − 1,1 +

1

βωc
]. (IV.25)

Since we are in the limit βωc ≫ 1, further temperature dependence in Eqs. (IV.25) can be neglected. In conclusion,
we found that the temperature dependence of the self-energy reads Σ(iω) = ωAs exp[−BsT

s−1]T (s+3)/2, cf. Fig. (2) in
the main text.

super-Ohmic case

We now turn into the super-Ohmic case s > 1, cf. Fig. (2) in the main text. The self-energy is

Ĩ = −(β/2)V 2
0 lim
ω→0
∫ dt eiωteE(it+β/2)

= −(β/2)V 2
0 e

Kwαse−BsT
1−s
∫ dt eiωt eẼ(t) , (IV.26)

where we have defined

E(it + β/2) = ∫
∞

0
dω Gϕϕ(iω){coth(βω/2) −

cos(ωt)

sinh(βω/2)
} ≡ Ẽ0 + Ẽ(t). (IV.27)

In contrast to the sub-ohmic case, in the low-temperature limit the pre-factor (βωc)
1−s ≪ 1, and hence we can expand

the exponential in Eq. (IV.22) obtaining

Ĩ ≈ −(β/2)V 2
0 e

Kwαs 1

2
∫ dteiωtẼ2

(t) = −(β/2)V 2
0 ∫

∞

0
dω

G2
ϕϕ(iω)

sinh2
(βω/2)

∝ T 2s−4. (IV.28)
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