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Abstract. We investigate the equilibration process of the strongly coupled quartic

Fermi-Pasta-Ulam-Tsingou (FPUT) model by adding Langevin baths to the ends of

the chain. The time evolution of the system is investigated by means of extensive

numerical simulations and shown to match the results expected from equilibrium

statistical mechanics in the time-asymptotic limit. Upon increasing the nonlinear

coupling, the thermalization of the energy spectrum displays an increasing asymmetry

in favour of small-scale, high-frequency modes, which relax significantly faster than

the large-scale, low-frequency ones. The global equilibration time is found to scale

linearly with system size and shown to exhibit a power-law decay with the strength of

the nonlinearity and temperature. Nonlinear interaction adds to energy distribution

among modes, thus speeding up the thermalization process.

Keywords: Fermi-Pasta-Ulam-Tsingou, Equilibration time, Canonical ensemble,

Langevin heat baths

1. Introduction

Thermalization in the Fermi-Pasta-Ulam-Tsingou (FPUT) model has attracted much

attention since the original formulation of the problem [1, 2, 3]. In the weak coupling

regime the system reaches equipartition on a timescale which depends as a power-law

[4, 5, 6] on the energy density. In this work, we take a different approach by studying

http://arxiv.org/abs/2012.04727v3


Nonlinearity accelerates thermalization of the quartic FPUT with stochastic baths 2

the equilibration process ranging from the weak to the strong coupling regime. In

particular, we explore the steady-state dynamics and the relaxation to steady-state of

the quartic FPUT attaching stochastic Langevin baths to both ends of the chain. A

detailed study of the nonlinear model in equilibrium conditions was performed in [7] by

realizing the canonical setting in a textbook manner, considering a small part of the

microcanonical system. We show that our description using Langevin baths proves to

be a successful framework to simulate both equilibrium and non-equilibrium properties

of the nonlinear model in a canonical setting. We find by numerical simulations of the

stochastic equations that increasing the nonlinear coupling accelerates the approach to

equilibrium. Even at high nonlinearity equilibrium is surprisingly characterized by quasi-

equipartition of linear energy among Fourier modes and relaxation to equilibrium is

faster for high-frequency modes. We derive analytically a compact representation of the

equilibrium properties of the model, introducing a dimensionless scaling variable λkBT

with temperature of the baths T and coupling strength λ. The expressions obtained

from the canonical partition function for equilibrium quantities, such as internal energy

and nonlinear energy, are in satisfactory agreement with the numerical results of the

stochastic model. The equilibration time is shown to be linear in the system-size

for a sufficiently large number of oscillators and is probed as a function of coupling

(temperature) at different temperatures (couplings). We find that both dependencies

are well-fitted by a decaying power-law with exponent −1/3 across four decades in

temperature.

2. The model

We consider the following extension to the quartic FPUT with N particles given by the

Langevin equations [8]

q̈j =qj+1 + qj−1 − 2qj + λ
[

(qj+1 − qj)
3 − (qj − qj−1)

3
]

− δ1,j [γq̇j − ηL(t)]− δN,j [γq̇j − ηR(t)] ,
(1)

where the baths at the left and right edge (L,R) have the same temperature T

〈ηa(t)〉 = 0, 〈ηa(t) ηb(t′)〉 = 2γ kBT δa,b δ(t− t′), a, b = {L,R}. (2)

Fixed boundary conditions were imposed such that q0 = qN+1 = 0. Initially, the position

and momenta are plain for all sites, qj(0) = 0 and q̇j(0) = pj(0) = 0. For reasons of

simplicity, the mass m and the spring constant of the harmonic interaction k are set

to unity, i.e. m = 1 and k = 1. Having a physical realization of our system in mind

[9, 10], we couple stochastic motion only to the edges of the chain. The Langevin

approach for the baths is a special case of the general Markovian evolution of the baths

where the reservoirs are not affected by the system at all. The particular choice of

the baths provides a physical implementation of the thermostats compared with more

efficient schemes like Nosé-Hoover baths [11, 12] which have been applied to determine

probability distributions for canonical momenta [13]. The model without nonlinearity
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Figure 1. Sketch of the model (1). A chain of N particles with quadratic (black

springs) and quartic interaction (blue whirls, coupling strength λ) is attached to

stochastic baths of the same temperature T . The ends (0 and N + 1) are fixed.

(λ = 0) coupled to Langevin baths is known to thermalize, i. e. all particles have equal

kinetic energy as time goes to infinity [14, 15].

3. Numerical implementation

We have integrated the equations of motion using a standard fourth order Runge-Kutta

scheme (RK4) for the deterministic part and a simple first order Euler–Maruyama

method for the stochastic term [16]. Other integration schemes (e.g. Velocity-Verlet),

have also been considered for the deterministic part, which proved to be slower at a

comparable order of accuracy. Setting the dissipation to unity (γ = 1 fixed for the rest

of the paper), a stepsize ∆t = 0.01 proved to be stable and sufficiently accurate for

the purpose of this paper. Considering the deterministic part separately (T = 0), the

largest observed deviation from energy conservation using the RK4 scheme, was of the

order of 10−9, for the case of N = 32 sites and strong nonlinearity λ = 10. For the full

stochastic system, equipartition was reached numerically and the fluctuation-dissipation

theorem was satisfied within less then 1 % for the longest simulation times (5000

timesteps). Ensemble-averaging and time-averaging were implemented simultaneously

for every quantity under inspection. In equations:

F (t) =
1

2 δt

Nrun
∑

l=1

t+δt
∫

t−δt

ds fl(s), (3)

with fl(t) being a measured quantity for a single Wiener-process realization. Unless

explicitly mentioned otherwise, we will refer from now on to every quantity F in

the text as the averaged one. A window of δt = 100 and Nrun = 100 runs are

used for the statistics. Numerical errors appear due the choice of the timestep which

affects predominantly the integration of the stochastic part, due to the low-order Euler-

Mayurama scheme (time-integration is numerically more costly than ensemble-averaging

since the latter can be run in parallel across independent tasks). We have checked the

validity of our results by doubling the timestep, size of the ensemble and of the time-

averaging window for the time-average, thus confirming satisfactory convergence of the
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stochastic simulations. Higher order schemes for the stochastic part might improve the

efficiency of the code and will be considered in the future for longer time simulations.

4. Time-evolution of the normal modes

The kinetic energy of a single site defines a temperature distribution in real space

kBTj(t) = q̇2j (t). For the linear Langevin chain (recovered by setting λ = 0) all oscillators

equilibrate to the temperature of the baths, i. e. Tj(∞) = T [14, 17]. We will show that

this holds also for the nonlinear case. It is useful to introduce the normal modes of the

harmonic system [18]

Ak(t) =

√

2

N + 1

N
∑

j=1

qj(t) sin

(

kjπ

2 (N + 1)

)

. (4)

Their frequencies are ωk = 2 sin(kπ/(2N + 2)) and the linear energy is given by

Ek = 1/2(Ȧ2
k + ω2

kA
2
k). The total energy stored in the linear motion of the modes is

∑

k Ek. The probability to find the system in mode k is adopted according to [5, 19, 20]

pk(t) =
Ek

∑

k Ek
(t). (5)

If the nonlinearity is weak the total energy E is well-approximated by the linear energy

in the modes, i. e. E ≈ ∑

k Ek. This is not true anymore for the strong coupling regime.

Figure 2. Distribution of modes (bath temperature T = 1, dissipation γ = 1). We

evolved the system of N = 32 sites for trun = 5000 and three different strengths of the

nonlinearity λ until the distribution becomes flat due to equipartition. For the linear

system (λ = 0) modes around k ≈ 12 are excited early (black curve). The slowest and

fastest modes reach equilibrium latest. Ramping up the coupling (λ = 1, 4) creates an

asymmetry in the thermalization between modes at the ends of the spectrum as high-

oscillating modes reach equilbrium faster than low-oscillating modes. Furthermore,

equipartition is reached faster for larger coupling due to the quicker distribution of

energy into modes at both ends of the spectrum.
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Figure 3. Temperature profiles Tj(t) (same parameters as in figure 2). Equipartion

is reached faster for larger coupling.

Nevertheless, (5) defines the probability distribution of the normal modes at every value

of the coupling, and is properly normalized by
∑

k Ek. Excluding an anharmonic term

from the definition gives us a clear perspective on the modification of the spectrum when

the coupling is changed. We observe that the nonlinearity has an impact on the time

evolution of the spectrum pk.

Snapshots of temperature profiles Tj(t) and the distribution of modes pk(t) for different

coupling strengths are shown at different points during their evolution in figure 2 and 3.

For the latest time in our simulation, the system approaches a homogeneous temperature

in real space and a flat spectrum in mode space, regardless of the coupling strength.

Comparing distributions/temperature profiles for different coupling strengths at the

early points in the evolution, the nonlinearity accelerates the thermalization process.

For the linear case (λ = 0), modes around k ≈ N/3 are fastest excited at early stages

in the evolution. In comparison with the real space evolution, the exterior sites j = 1

and j = N attached to the baths are early excited. Low- and high-oscillating Fourier

modes at the ends of the spectrum reach equipartition latest and nearly at the same

time. Ramping up λ, an asymmetry in the spectrum is observed, as high-oscillating

modes are quicker to reach equipartition than the low ones. At λ = 4 (figure 2 c)), the

first snapshot in the evolution (black curve) displays a spectrum which is almost flat for

modes k > 8 and steeply declines for low-oscillating modes. The high-oscillating modes

approach equilibrium on the same time scale as the fastest relaxed modes whereas low

modes trail behind.

5. Thermodynamics from the stochastic model

Next, we derive analytic expressions for the internal energy, and the nonlinear and

harmonic part of the energy in equilibrium. They are required to validate the
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Figure 4. Dependence of the energy of the quartic FPUT in equilibrium (N = 32

sites). a) The internal energy normalized by the thermal energy of a linear chain,

i.e. U/(NkBT ), is a function only of the product kBTλ. The simulation using the

stochastic baths agrees with the analytic result (10). b) Nonlinear energy Unl increases

with coupling while the harmonic energy Uhar decreases (17) (black dotted).

corresponding time-asymptotic quantities in the simulation of the stochastic quartic

FPUT. The partition function for the system reads

Z =
∫ N
∏

j=1

dpj dqj exp







− (kBT )
−1





N
∑

j=0

1

2
p2j +

1

2
(qj+1 − qj)

2 +
λ

4
(qj+1 − qj)

4











(6)

with momenta pj and p0 = pN+1 = 0 as well as q0 = qN+1 = 0. Singling out the kinetic

term we make the coordinate transformation [7]

φL = q1−q0, φ1 = q2−q1, . . . , φN−1 = qN−qN−1, φN = qN+1−qN , φR = qN+1.(7)

The variables φL and φL are not real coordinates but parameters due to the fixed

boundaries. The Jacobian of the transformation is invertible and has determinant equal

to the identity. The partition function is transformed to

Z = ξ(N) (πkBT )
N/2

∫ N
∏

j=1

dφj exp







− (kBT )
−1

N
∑

j=0

[

1

2
φ2
j +

λ

4
φ4
j

]







, (8)

displaying the same contribution of every variable φj. The prefactor ξ(N) =

exp
(

− (q0−q1)
2

N+1

)

/
√
N + 1 is a relict of the transformation and does not depend on the

coordinates due to the fixed boundary conditions. The integral of the quartic exponential

is found in terms of modified Bessel functions of the second kind Kν(z). The partition

function becomes

Z = ξ(N)

[

πkBT

2λ
exp

(

1

8kBTλ

)

K 1

4

(

1

8kBTλ

)

]N/2

. (9)

This is equivalent to the result given in [7] by the relation of the parabolic cylinder

functions Dν(y) and the Bessel functions D−1/2(y) =
√

y/(2π)K1/4 (y
2/4), upon
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changing from fixed to periodic boundary conditions.

The internal energy is related to the partition function by U = kBT
2 ∂/∂T log(Z). We

obtain

U =
NkBT

4
+

N

8λ
K
(

1

8kBTλ

)

, (10)

where we have definded the ratio of the Bessel functions

K(y) =
K 5

4

(y)

K 1

4

(y)
− 1. (11)

Again, the result is equivalent to [7]. Dividing in (10) by kBT , the internal energy has

a dimensionless scale z = 8kBTλ

U

NkBT
(z) =

1

4
+

1

z
K
(

1

z

)

. (12)

The coupling λ plays by the found relation for z the role of an inverse nonlinear

temperature scale. It is also worth investigating the harmonic part and nonlinear part

of the energy

Uhar = Z−1
∫ N
∏

j=1

dpj dqj
N
∑

j=0

1

2
(qj+1 − qj)

2 exp
{

− (kBT )
−1H

}

, (13)

Unl = Z−1
∫ N
∏

j=1

dpj dqj
N
∑

j=0

λ

4
(qj+1 − qj)

4 exp
{

− (kBT )
−1H

}

, (14)

where H is the Hamiltonian of the quartic FPUT. The change of variables (7) and

rewriting by parameter differentiation yields

Uhar = − λkBT
∂

∂λ
log

[

∫

dφ exp

{

− (kBT )
−1

(

1

2
φ2 +

λ

4
φ4

)}]N

, (15)

Unl = − λkBT
∂

∂g

∣

∣

∣

∣

g=1
log

[

∫

dφ exp

{

− (kBT )
−1

(

g

2
φ2 +

λ

4
φ4

)}]N

.(16)

The result can again be given in dimensionless form

Uhar

NkBT
(z) =

2

z
K
(

1

z

)

− 1,
Unl

NkBT
(z) =

3

4
− 1

z
K
(

1

z

)

. (17)

Observe that z−1K (z−1) → 1
2
for infinitely strong coupling z → ∞, so the asymptotics

is given by

lim
kBTλ→∞

U =
3

4
N kBT, lim

kBTλ→∞

Unl =
N

4
kBT, lim

kBTλ→∞

Uhar = 0. (18)

The asymptotic (and maximum) ratio of nonlinear energy Unl and internal energy U

settles at Unl/U = 1
3
. The following ratio yields the contribution of nonlinear coupling

to potential energy

η(z) =
Unl

Uhar + Unl

=
3z − 4K (z−1)

4K (z−1)− z
. (19)
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It assumes values on the unit interval, i.e. η(0) = 0 (purely linear) and η(∞) = 1 (purely

nonlinear), and thus provides a good measure to separate strong from weak coupling

which we define by

η(z) ≪ 1, weak coupling. (20)

We have simulated the linear case η = 0 up to values η ≈ 0.36 (at kBTλ = 1), covering

both weak and strong coupling regime. The stochastic implementation of the canonical

ensemble of the quartic FPUT shows quantitative agreement with the values of internal,

linear and nonlinear energy expected from equilibrium statistical mechanics (see figure

4).

6. Equilibration time

Having assessed the equilibrium properties of the system, next we utilize the stochastic

model to numerically investigate the dependence of the relaxation to steady-state on the

system size, temperature and nonlinearity. We define the equilibration time teq as the

minimum time for which the total energy E(t) reaches the equilibrium energy U = U(λ)

(10) and stays around it within fluctuations of the order of a small fraction of ∼ kBT .

Numerically, it is convenient to take a window |E − U |/(kBTN) < 1% (illustrated in

figure 5 b)).

For a given temperature T and coupling λ, we find that the equilibration time depends

linearly on the system size, provided N is large enough, see figure 6. We have fixed

Figure 5. Equilibration of total kinetic energy K(t) =
∑

j p
2
j/2 and total energy E(t)

(N = 32, kBT = 0.1). The straight (colored) lines are simulation for different strengths

of the coupling while the black dotted lines display the value of the energy predicted

from the partition function. The kinetic energy always reachesNkBT/2 independent of

coupling, the total energy approaches U(λ) and decreases with coupling. Nonlinearity

accelerates the equilibration process.
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Figure 6. Dependence of the equilibration time on system size. The equilibration

time is linear in the system size teq ≃
√

t20 + t21N for N large enough (fixed λ = 10).

The single-body relaxation time is t0 ≈ 300 in the plot. The slope depends on

temperature t1 = t1(T ) and increases with decreasing T , explicitly t1(kBT = 10) = 5.8,

t1(kBT = 1) = 7.5 and t1(kBT = 0.1) = 8.4.

λ = 10 (strong coupling) and plotted teq as a function of N for various temperatures,

finding good agreement with the following fit (the numerical values of the parameters

are given in Appendix Appendix A)

teq(N)|λ,T ≃
√

t20 + t21N
2, (21)

Besides being directly suggested by visual inspection of the numerical data, this fit also

responds to a simple physical interpretation. Indeed, t0 is associated to single-body

relaxation time, while t1 is the increment of teq due to the insertion of a single extra-

node in the lattice chain. For large N > 100, a linear scaling is clearly observed, with

coefficient t1 = t1(T ) depending on the temperature, but not on the coupling strength.

The main outcome of this analysis is the linear dependence of teq on N .

Figure 7 reports the equilibration time teq/N as a function of the nonlinearity λ.

For a given temperature, the curves for different N are equidistantly spaced, e.g.

teq(λ,N = 32)/32− teq(λ,N = 64)/64 = const. indicating that t1 depends only weakly

on the nonlinear coupling. For the case of a few sites N → 1, temperature (at fixed λ)

has no effect on the equilibration time, as seen from the fact that all curves in the figure

6 merge into a single one for N → 1).

The linear dependence of teq on the system size is the main result of the work.

We have added a cubic nonlinearity to the quartic FPUT model (1) and performed
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Figure 7. Dependence of the equilibration time on coupling. The equilibration has

a power-law dependence on the coupling ∼ λ−µ with exponent µ in the range of

[0.23− 0.35] for the shown graphs.

simulations to study teq(N) for fixed λ and T (not shown in this paper). The linear

relationship is still valid in this case, as long as the cubic nonlinearity is sufficiently weak

to act as perturbation to the quartic model, namely as long as the potential displays a

single minimum.

Next, we analyse the relaxation time as a function of temperature (see figure 8).

The equilibration time decays weakly over a large range of simulated bath temperatures,

and appears to be satisfactorly fitted by a power-law decay of the form:

teq(T )|N,λ ≃ r1 T
−1/3 + r0. (22)

Fitting more generally teq ≃ r1 T
−ν + r0, the exponent ν ≈ 1/3 is found for different

Figure 8. Dependence of the equilibration time on temperature. We find a power-law

behavior ∼ T−1/3 for various coupling strengths and system sizes.
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Figure 9. Equilibration time as a function of temperature for different couplings and

system sizes. The equilibration time follows a power-law with exponent T−1/3 over

many orders of magnitude of the thermal energy. In the left bottom panel we show

the average of all curves, assuming they all follow the suggested power-law.

couplings and system sizes (see Appendix A). The first parameter r1 decays weakly

with λ and increases linearly with N , as the two curves for N = 32 and N = 64

in each subfigure 8 a) - c) are almost equidistantly spaced. The second parameter

r0 is a sublinear function of N and numerically almost independent on λ, since the

curves in figure 8 a) - c) (different λ, fixed N) have the same value for the largest

bath temperature. We relate the parameters in (21) and (22) in the large N limit: the

parameter r0 takes numerically values similar to the case of the single-body relaxation

time t0 in our simulations at large N . By expanding (21) in N , we identify the term

t1N with r1T
−1/3, thereby deducing t1 ∼ T−1/3.

At last, we investigate the effect of the coupling λ on the equilibration time. From

the spectral time evolution (see figure 2), we have already observed that equilibration is

accelerated by nonlinearity. As in the temperature-dependent study, teq depends weakly

on λ, a power-law with a small exponent

teq(λ)|N,T ≃ u1λ
−1/3 + u0. (23)

We have again assumed first a general dependence like teq(λ) ≃ u1λ
−µ + u0, and

concluded from our data that µ ≈ 1/3 (see Appendix A). The time-asymptotic value

u0 does not significantly depend on N , and increases with T , assuming numerically
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comparable values like r0 and t0. Again, we can indentify them in the large N -limit

and relate u0 to t0 and r0, to give the leading contribution to the equilibration time in

temperature (there might be also a contribution from u0). It follows that t0 and r0 scale

like ∼ λ−1/3.

The power-laws (22) and (23) can be motivated by dimensional analysis. The quantity

ωnl = (λkBT )
1/4 m−1/2 (24)

has the dimension of a inverse time. This suggests that if the equilibration time depends

like a power-law on λ, then it should also depend like a power-law on T with the same

exponent, and vice versa. Like in thermal equilibrium, λ plays the role of an inverse

temperature. The other time-scales in the problem are the inverse dissipation constant,

multiplied by the mass τ = γ/m and the harmonic frequency ωhar =
√

k/m. The

simulations provide strong evidence for a behavior of the form teq ∼ (λT )−1/3, see figure

9, hence the nonlinear frequency enters like teq ∼ ω
−4/3
nl .

7. Discussion and conclusion

We have implemented the quartic FPUT model and succesfully reproduced the

equilibrium canonical ensemble using Langevin baths. The equilibrium energy of

our numerical approach agrees with the internal energy expected from the canonical

ensemble (cf. figure 4). By an exact integration of the partition function of the nonlinear

chain, we have been able to recover non-perturbative results from statistical mechanics,

covering both weak and strong coupling regimes. Numerical integration of the stochastic

differential equations matched the expression of the internal, nonlinear energy and

harmonic energy from statistical mechanics in the time-asymptotic limit.

It was found that the mentioned components of the equilibrium energy of the quartic

FPUT, normalized to the thermal energy in a linear chain, depend only on the product of

temperature and coupling via the dimensionless scaling z = 8kBTλ, i. e. [U/(NkBT )] (z).

By the found scaling in z, we can make a proportionality argument: consider the

potential of a single bond V (φ) = 1
2
φ2 + 1

4
λφ4 of the quartic FPUT and a change in

coupling λ → 2λ. The internal energy of the bond remains exactly the same if we cool

down the bond by T → T/2, regardless of the interaction strength, temperature of the

baths and also system size. At equilibrium, all bonds feel the bath as if it was adjacent

to them. The amount of nonlinearity η is likewise only a function of z, providing a

closed formula (19) to distinguish quantitatively between the strong and weak coupling

regimes.

Attaching the nonlinear system in the framework of Langevin baths puts us in the

position to investigate the time evolution of the FPUT during the thermalization

process. It is found that the nonlinearity accelerates equipartition, although not to

a dramatic extent. This becomes clear from comparing the classic FPUT with the

harmonic chain in terms of energy distribution. In the harmonic chain, energy is kept

only in the intially excited mode, whereas in the FPUT case, energy is distributed among
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all modes (provided at least one even and odd modes are initially excited in the quartic

FPUT). When thermal baths are attached to the nonlinear FPUT, energy equipartition

is reached through the Langevin terms under the presence of nonlinearity, while in the

linear chain, this is obtained solely by the action of the Langevin terms.

Nonlinear interaction adds to energy distribution among modes, thus speeding up the

thermalization process. This happens selectively in different regions of the spectrum.

Energy is faster channeled to the high modes as the coupling is amplified. The

equipartition time is a function of system size, temperature and coupling strength. For

N large enough (N > 100), it increases linearly with the system size, with the slope

dependent on temperature but not on the coupling strength. The relaxation time is

increased by increasing the temperature of the baths and displays a power law behavior

with exponent −1/3. Increasing the coupling λ leads to quicker equilibration, following

again power-law dependence, with approximately the same exponent.

In a future work, the faster distribution of energy, favoring high-oscillating modes,

should be investigated by considering the transient solution of the mode equations.

It would also be interesting to investigate the effect of dimensionality on the scaling of

the equilibration time with system size. We hope that the stochastic implementation

of the canonical ensemble presented in this paper can prove useful to study equilibrium

and non-equilibrium properties of similar nonlinear models, such as the Toda chain.
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Appendix A. Fitting parameters

We state fitting parameters used in figures 6, 7 and 8.

kBT 0.1 1 10

t1 8.4 7.5 5.8

Table A1. Fitting parameters for the dependence of the equilibration time on system

size teq(N) =
√

t20 + t21N
2 and λ = 10. The single-body relaxation time is t0 ≈ 300.

λ = 1 λ = 5 λ = 10

N = 32 r1 = 168, r0 = 306

ν = 0.28

r1 = 61.6, r0 = 333

ν = 0.39

r1 = 64, r0 = 321

ν = 0.32

N = 64 r1 = 242, r0 = 420

ν = 0.34

r1 = 129, r0 = 437

ν = 0.34

r1 = 107, r0 = 426

ν = 0.32

Table A2. Fitting parameters for the dependence of the equilibration time on

temperature teq(T ) = r1T
−ν + r0. The exponent ν is nearly independent of λ and

N , and close to 1
3
.

00
N = 32 N = 64 N = 128

kBT = 0.1 u1 = 340, u0 = 250

µ = 0.26

u1 = 659, u0 = 264

µ = 0.28

u1 = 1192, u0 = 300,

µ = 0.29

kBT = 1 u1 = 100, u0 = 419,

µ = 0.35

u1 = 200, u0 = 415,

µ = 0.23

u1 = 826, u0 = 206,

µ = 0.34

Table A3. Fitting parameters for the dependence of the equilibration time on coupling

teq(λ) = u1λ
−µ + u0.
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