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In this paper, we investigate the ground-state phase diagram of the S = 1/2 Heisenberg-Γ model
on a honeycomb lattice by dimer series expansion and exact diagonalization. We focus on the effects
of the anisotropy of the interactions; by tuning the coupling constants, the system changes between
the isolated dimer and the spin-chain models. We find that, in the spin-chain limit, there are
three kinds of states: a Tomonaga-Luttinger liquid and two magnetically long-range-ordered states.
All three states become two-dimensional long-range ordered states by the infinitesimal interchain
interaction except for the case where the Heisenberg interaction is much weaker than the off-diagonal
symmetric (Γ) interaction. Starting from the isolated dimer limit, a triplet dimer phase survives up
to the isotropically interacting system in a large part of the phase diagram where the Heisenberg and
Γ interactions are ferromagnetic and antiferromagnetic, respectively. Otherwise, a phase transition
to a magnetically ordered phase occurs before the interaction becomes isotropic. This indicates that
the quantum spin liquid proposed in the Γ model [A. Catuneanu et al., npj Quantum Mater. 3, 23
(2018)] is unstable against the anisotropy of the interactions.

I. INTRODUCTION

Recently, much condensed matter physics researches
have been focused on realizing quantum spin liq-
uids. Kitaev spin liquid1 is one of the most stud-
ied, since several magnets including Na2IrO3 and α-
RuCl3 emerged as promising candidates for the Kitaev
model2–16. So far, effective magnetic models have been
proposed by employing various ab-initio and ab-initio-
guided calculations6,8,17–28; they indicate that these ma-
terials possess the Heisenberg (J) and symmetric off-
diagonal (Γ) couplings in addition to Kitaev (K) in-
teractions. Moreover, in real materials, these inter-
actions include a spatial anisotropy18,19,25,29,30, which
plays a significant role in understanding Kitaev physics.
The simplest example may be the effect of the spatially
anisotropic interaction in the pure Kitaev model. In the
pure Kitaev model on a honeycomb lattice, the gapless
Kitaev spin liquid undergoes a phase transition to gapped
spin liquid related with the ground state of the toric code
model1. In the Kitaev-Γ model considering both Kitaev
and Γ interactions on the honeycomb lattice, when the
spatial anisotropy of the interactions is strong, the Ki-
taev spin liquid connects adiabatically to the spin liquid
appearing in |Γ/K| ≫ 129,30. The presence of this spin
liquid phase is under debate, because variational Monte
Carlo study predicts that one proximate Kitaev spin liq-
uid phase appears in 0.2 / Γ/|K| / 0.6 and the zigzag
phase is stable in 0.6 / Γ/|K|31. These findings have
prompted us to investigate the ground-state properties
of relevant models for Kitaev magnets that include K, Γ,
and J interactions.

In a previous study on the Kitaev-Γ model32, we clari-
fied that a dimerized state survives up to the isotropically
interacting system under fixed Γ/K. From the resulting
phase diagram, we inferred that the isotropically inter-
acting system is located at the phase boundary in the

Kitaev-Γ model with Γ > 0. We attributed this to a frus-
tration effect between the Kitaev and the Γ interactions.
In contrast, nearest-neighbor Heisenberg interactions on
the honeycomb lattice themselves are free of frustration,
favoring the magnetically ordered state. Thus, we ex-
pect the ground-state phase diagram of the Heisenberg-Γ
model to possess more different features than that of the
Kitaev-Γ model. Although the Heisenberg interaction is
weak in α-RuCl3, the ground-state phase diagram of the
Heisenberg-Γ model provides insights on the possibility
of the quantum spin liquid argued in the Kitaev-Γ model
with the strong Γ interaction29.
In this paper, we investigate the ground-state phase

diagram of the S = 1/2 Heisenberg-Γ model on the hon-
eycomb lattice by varying the anisotropy of the interac-
tions. The Hamiltonian is described by

H = t(HX +HY ) + (1 − 2t)HZ , (1)

where

HX,Y =
∑

〈ij〉γ=X,Y

[

JSi · Sj + Γ
(

Si
αSj

β + Si
βSj

α
)]

(2)

and

HZ =
∑

〈ij〉
Z

[JSi · Sj + Γ (Si
xSj

y + Si
ySj

x)]. (3)

Here, 〈ij〉γ=X,Y,Z represents a nearest-neighbor pair on
the γ bond of the honeycomb lattice, and both α and β
are the different spin components from the γ component.
The anisotropy of the interactions is introduced by t.
This model includes the two limits: the isolated dimer

model (t = 0) and the spin chain model (t = 1/2). Start-
ing from the dimerized limit at t = 0, we examine the
ground state up to the isotropically interacting system
(t = 1/3) by employing series expansions; these are based

http://arxiv.org/abs/2012.04894v2


2

on graph theories and can include systematically higher-
order terms33,34. We adopt dimer series expansions,
where the interactions on specific bonds are included in
the initial state. Starting from isolated dimers on the
Z bond [Fig. 1(a)], we consider the interactions between
the dimers are incorporated perturbatively. We calculate
the ground-state energy and evaluate its first and second
derivatives numerically; furthermore, we also calculate
these quantities, employing the numerical exact diago-
nalization method (ED) for a 24-site cluster as shown in
Fig. 1(b). Thus, series expansions and ED can be used
complementarily. To understand the ground-state prop-
erties in the chain limit at t = 1/2, we employ the ED
and the density-matrix-renormalization-group (DMRG)
calculations. Starting from the chain limit as shown in
Fig. 1(c), we also calculate the ground-state energy and
its first and second derivatives with the 24-site ED by in-
creasing the interchain interactions. Finally, combining
all the results, we obtain the ground-state phase diagram
of the anisotropically interacting Heisenberg-Γ model be-
tween the spin chain limit and the isolated dimer limit.
The rest of the paper is organized as follows. We show

the ground-state phase diagram and the features of each
phases in Sec. II. We present the details on inspection
of the phase diagram in Sec. III. First, we discuss the
ground state at the three characteristic points where the
model becomes equivalent to the spin-chain, the isolated-
dimer, and the isotropically interacting models. Next, we
explore the stable states when the interchain/interdimer
interactions are strengthened with respect to the Heisen-
berg and Γ interactions. We find that, when t is in-
creased, depending on the ratio of Heisenberg and Γ in-
teractions, the dimer state either undergoes a phase tran-
sition at an anisotropic interaction, or survives up to the
isotropically interacting system where a phase transition
occurs. Based on the phase diagram, we argue that the
quantum spin liquid29,30 anticipated near the Γ model is
absent. Finally, we summarize this paper in Sec. IV.

II. OVERVIEW OF THE PHASE DIAGRAM

A. Outline of dimer series expansions

When t = 0, the system is described by the isolated
dimer model. For 0 ≤ t ≤ 1/3, we investigate the ground-
state properties by dimer series expansions33, treating
HZ as the unperturbed term and HX +HY as the per-
turbation. The schematic of dimer series expansions is
shown in Fig. 1(a). We rewrite the original Hamiltonian
(1) as

H′ = HZ + λ(HX +HY ), (4)

where λ = t/(1 − 2t). Starting from the isolated initial
dimers on the Z bonds, we perform dimer series expan-
sions with respect to λ(HX+HY ) up to the eighth order.
For the unperturbed Hamiltonian HZ , the lowest energy
state on each bond is selected from one of the following

four candidates: singlet dimer |s〉 = (| ↑↓〉 − | ↓↑〉)/
√
2,

triplet dimers |t0〉 = (| ↑↓〉+| ↓↑〉)/
√
2, |tx〉 = (| ↑↑〉−i| ↓↓

〉)/
√
2, and |ty〉 = (| ↑↑〉+ i| ↓↓〉)/

√
2, where the up and

down arrows indicate the spin-up and spin-down states,
respectively. We perform the dimer series expansions by
adopting the optimal initial dimer for θ. We calculate
the ground-state energy per unit cell, E, as well as its
first and second derivatives, ∂E/∂t and ∂2E/∂t2. We
also calculate these quantities by the 24-site ED. Start-
ing from t = 0 (λ = 0), we discuss the ground-state
properties toward the isotropically interacting system at
t = 1/3 (λ = 1).

B. Phase diagram

In Fig. 1(d), we summarize the ground-state phase
diagram of the Heisenberg-Γ model. All of phase bound-
aries are settled by the first and second derivatives of
the ground-state energy of the 24-site ED. In this paper,
we parametrize the Heisenberg and Γ interactions with
θ : J = − cos θ and Γ = sin θ (0 ≤ θ < 2π). Thus,
θ = 0 (π) describes the honeycomb-lattice Heisenberg
model constructed by ferromagnetic (antiferromagnetic)
interactions, while θ = π/2 (3π/2) describes the Γ model
where only the antiferromagnetic (ferromagnetic) Γ in-
teraction between nearest-neighbor spins is present. Note
that the antiferromagnetic (ferromagnetic) Γ interaction
means positive (negative) Γ.
The obtained phase diagram indicates the existence of

ten phases: three ferromagnetically ordered [F(z), F(xy),
and F], three dimerized (|tx〉 dimer, |s〉 dimer, and |ty〉
dimer), two spiral (SP1 and SP2), one antiferromagneti-
cally ordered (AF), and one stripy [Stripy(z)] phases. In
Fig. 2, we show the static structure factors S(Q), corre-
sponding to each of these ordered phases.
For 0 < θ/π < 0.3, we find the two ferromagnetically

ordered phases for which the ordering spin component
depends on t. For 0 < t < 1/3, the x (and y) compo-
nents of S(Q) display the largest intensity at the Γ point
[Fig. 2(a)]; this indicates that the spins are ferromagnet-
ically ordered on the (x, y) plane in the spin space. On
the other hand, for 1/3 < t < 1/2, the z component of
S(Q) exhibits the largest intensity also at the Γ point,
as shown in Fig. 2(b), revealing that the spins are fer-
romagnetically ordered parallel to the z-axis in the spin
space. F(z) and F(xy) are separated by the first-order
phase transition, where E shows the cusp illustrated in
Fig. 8 (a).
For 0.317 < θ/π < 0.572, the |tx〉-dimer phase under-

goes a phase transition to SP1 at t = 1/3. In SP1, the
intensity of S(Q) [Fig. 2(c)] at each wave vector has the
same order, although it exhibits the relatively large value
at the Y point. This implies the development of the in-
commensurate spin-spin correlation. Since the present
result is based on the 24-site ED, it is difficult to analyze
the system size dependence and discuss the properties
in the thermodynamic limit. Thus, the nature of SP1
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FIG. 1: (Color online) (a) Schematic of the dimer series expansions described in Sec. II. Ellipsoids designate the initial spin
dimers on the Z bonds. Green and blue dotted lines denote the same strength interactions on the X and Y bonds. (b) The
24-site cluster. Periodic boundary conditions are applied along the dotted lines with common symbols. The X, Y , and Z bonds
are denoted by green, blue, and red colors, respectively. (c) Schematic picture of the spin chain model. (d) Ground-state
phase diagram determined from the 24-site ED for the Heisenberg-Γ model, where J = − cos θ and Γ = sin θ, (0 ≤ θ < 2π).
The values t = 0, 1/3, and 1/2 describe the isolated dimer, isotropically interacting, and spin chain models, respectively. All
red asterisks mean that ∂t,θE shows a jump and/or ∂t,θ

2E shows a dip. Error bars are smaller than the symbol sizes. Thin
solid lines and curves are guide to eyes. ”F (AF)” represent the ferromagnetic (antiferromagnetic) long-range ordered phase.
In SP1 and SP2, weak antiferromagnetic and ferromagnetic correlations exist on the Z bonds, respectively. Characters in
parentheses correspond to the spin component that shows the long-range order. Open symbols correspond to static structure
factors shown in Fig. 2. At t = 1/2, lines colored by orange, green, and blue correspond to the ferromagnetic long-range
ordered, antiferromagnetic long-range ordered, and Tomonaga-Luttinger (TL) liquid phases, respectively. Because the phase
boundaries are determined by the 24-site ED, the noncolored area around t = 0.5 and θ/π = 3/2 is expected to disappear in the
thermodynamic limit. It is also difficult to clarify the details of the other noncolored area in 0.2 < t < 1/3 around θ/π = 1.35
because of the small system size.

in the thermodynamic limit leaves our future study. For
t ≤ 1/3, the |tx〉 dimer is stable, and no prominent peak
appears in S(Q) [Fig. 2(d)]. Since as will be discussed in
Sec. III D no clear signs of phase transitions are observed
for 0.317 < θ/π < 0.572 and 0 ≤ t < 1/3, the |tx〉 dimer
starting from t = 0 survives up to t = 1/3. This means
that the Γ spin liquid29,30 is unstable against both the
anisotropy of the interactions and the Heisenberg inter-
action. This result is similar to our previous result32 for
the Kitaev-Γ model, where the |tx〉-dimer phase survived
up to t = 1/3 for 0.184 < θ′/π < 0.583 (K = − cos θ′

and Γ = sin θ′). In the Kitaev-Γ model, the spin liquid
near the antiferromagnetic Γ model is unstable against
the anisotropy of the interaction.

AF appears for 0.6 / θ/π / 1.35 at t ≈ 1/3 and
the |s〉-dimer phase appears in t / 0.25. In AF, the z
component of S(Q) exhibits the largest intensity at the
Γ′ point for 1/3 / t < 1/2; the x and y components
exhibit the largest intensity at the Γ′ point for t / 1/3
[Figs. 2(e) and 2(f)]. No other phase transition appears

between these two AFs. Note that since SU(2) symmetry
is satisfied at θ/π = 1 irrespective of t, the intensity
profiles of these three components become identical. In
the |s〉-dimer phase, no prominent peaks appear as shown
in Fig. 2(g).

For t > 1/3 and at θ/π ≈ 1.35, one stripy2 phase ap-
pears, namely, Stripy(z). In Stripy(z), the largest inten-
sity of S(Q) appears at the X point in the z component
[Fig. 2(h)], revealing that the Sz component exhibits the
stripy order. Stripy(z) extends in the lengthwise thin re-
gion. Since the present result is based on the 24-site ED
calculations, we cannot neglect the finite-size effect aris-
ing upon the emergence of this phase, and further calcula-
tions are needed for a definite conclusion. At θ/π ≈ 1.45,
the other spiral phase (SP2) appears for 0.25 < t < 0.48.
In SP2, the relatively largest intensity in S(Q) appears
at the Γ point [Fig. 2(i)]. However, its value is almost
comparable to those at the K and K ′ points. To clarify
the details of SP2 in the thermodynamic limit, further
calculations beyond the 24-site ED are also needed.
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FIG. 2: (Color online) Static structure factors S(Q) in each phase shown in Fig. 1(d): (a) F(z), (b) F(xy), (c) SP1, (d) |tx〉
dimer, (e) AF for t > 1/3, (f) AF for t < 1/3, (g) |s〉 dimer, (h) Stripy(z), (i) SP2, (j) |ty〉 dimer, and (k) F. (l) Brillouin zone
of the four-sublattice system on honeycomb lattice. Green, blue, and red circles correspond to x, y, and z components of S(Q),
respectively; the circle areas are proportional to the intensity. The results for the x component are covered by those of the y
component.

As shown in Fig. 1(d), the |ty〉-dimer phase shows
the phase transitions to the ferromagnetic long-range-
ordered phase at tc < 1/3. Typical results for S(Q) in
the |ty〉-dimer phase and the ferromagnetic long-range-
ordered phase are shown in Figs. 2(j) and 2(k), respec-
tively. The absence of the |ty〉-dimer phase at t = 1/3 is
explained similarly to that in the Kitaev-Γ model32: the
sign combination between the Heisenberg and Γ interac-
tions. When the Heisenberg and the Γ interactions have
the same signs, the frustration between these interactions
is free. Thus, simple magnetic ordering is favored, such
as the ferromagnetic order and the Néel order. Actually,
for θ/π > 3/2, the Heisenberg and Γ interactions pos-
sess the same signs, which results in the ferromagnetic
order. When the signs of the Γ and Heisenberg inter-
actions are opposite, they cause frustration. In fact, for
0 ≤ θ/π / 1/2 and 1 / θ/π / 3/2, the simple mag-
netic order tends to be suppressed and the various other
phases appear.

III. DETAILS OF INSPECTION OF THE

PHASE DIAGRAM

First, we explain the results obtained at three char-
acteristic points, namely t = 0, 1/3, and 1/2 where the

systems are described by the isolated dimer, the isotrop-
ically interacting, and the spin chain models, respec-
tively. We then explain the results for 0 < t < 1/3 and
1/3 < t < 1/2.

A. Isolated dimer model: t = 0

When the system is described by isolated dimers on
the Z bonds, the ground state is described by the direct
product of the dimers selected from the following four
candidates: the singlet dimer |s〉, and the triplet dimers
|t0〉, |tx〉, and |ty〉, depending on θ. By increasing θ/π
from zero to two, the ground state undergoes phase tran-
sitions from |tx〉 to |s〉 at θ = π−arctan 2 and from |s〉 to
|ty〉 at θ = π+arctan2. Notice that, in the Heisenberg-Γ
isolated-dimer model, the |t0〉-dimer state is always elim-
inated from the possible ground-state selection.

B. Spin chain model: t = 1/2

Figure 3 illustrates the typical behavior of E and
∂2E/∂θ2 obtained by the ED as functions of θ. From
these quantities, we recognize three regions distinguished
by the first-order phase transition: 0 < θ/π < 0.611(2),
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FIG. 3: (Color online) Typical behavior of (a) E and (b)
∂2E/∂θ2 obtained by the ED.
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FIG. 4: (Color online) Central charge c at t = 1/2. The
central charge c is evaluated from Eq. (5).

0.611(2) < θ/π < 1.389(2), and 1.389(2) < θ/π < 2. A
global π-rotation around the Sz axis, (Si

x, Si
y, Si

z) →
(−Si

x,−Si
y, Si

z), changes the sign of Γ, leaving J in-
variant. Thus, E satisfies E(θ) = E(2π − θ), revealing
that the phase diagram should be symmetric with re-
spect to θ/π = 1, and the phases are identical when
0 < θ/π < 0.611 and 1.389 < θ/π < 2. Consequently, we
focus on the results obtained for 0 ≤ θ/π ≤ 1.

In the spin-chain model, we expect a TL liquid at least
at the trivial point. At θ/π = 1, the system is equiva-
lent to the antiferromagnetic Heisenberg chain; thus, the
ground state is the TL liquid. In Refs. 35,36, it was
argued that the TL liquid is stable in the Kitaev-Γ spin
chain for φc1 < φ ≤ φc2 and φ 6= π, where K = cosφ,
Γ = sinφ, 0 < φc1/π < 1/2, and 3/2 < φc2/π < 2.
The Kitaev-Γ spin chain at φ/π = 3/4 and 5/4 is
equivalent to the antiferromagnetic Heisenberg spin chain
by implementing the six-sublattice rotation35–39. When
φ/π 6= 3/4 or 5/4, some additional terms that are not
renormalized into the Heisenberg term remain after the
six-sublattice rotation. Therefore, it is anticipated that
these remaining terms are irrelevant because the TL liq-
uid exists for φc1 < φ ≤ φc2 and φ 6= π.
In the Heisenberg-Γ spin chain, the Heisenberg inter-

action disappears at θ/π = 1/2 and 3/2. Therefore, it
can be verified that the ground state at θ/π = 1/2 and
3/2 is the TL liquid. To elucidate whether or not the TL
liquid in the Γ (antiferromagnetic Heisenberg) spin chain
is also stable against the Heisenberg (Γ) interaction, we
evaluate the central charge using the finite-size scaling
form based upon the conformal field theory40–42. The
scaling form is given by

E(L)

L
= ǫ∞ − πcvs

6L2
, (5)

where E(L) is the ground-state energy for L spins and c
is the central charge. ǫ∞ and vs are the ground-state en-
ergy per site and the low-lying excitation velocity in the
thermodynamic limit, L → ∞, respectively. To evaluate
vs, we calculate the lowest energy Ek(L) in the momen-
tum space k and obtain the excitation velocity for L spins
from vs(L) ≈ L

2π
[Ek(L)−E(L)]. By adopting the fitting

form, vs(L) ≈ vs +
a
L
+ b

L2 , we estimate vs, where a and
b are constants. Note that we adopt the scaling form
Eq. (5) in 0 ≤ θ/π ≤ 1 regardless of whether the sys-
tem shows the linear low-lying dispersion. The results
obtained are shown in Fig. 4. We find that the central
charge c = 1 seems to be satisfied for 1/2 ≤ θ/π / 0.611
and in the vicinity of θ/π = 1. Thus, the TL liquid
characterized by c = 1 appears in these two regions. The
result in the former region implies that the antiferromag-
netic Heisenberg interaction is irrelevant for the TL liquid
appearing in the pure Γ chain model, similar to the Ki-
taev interaction in the Kitaev-Γ chain model35,36. The
reason why the antiferromagnetic Heisenberg interaction
is irrelevant over such a large portion of the parameter
is still to be explained. Except for the above two re-
gions, c takes nontrivial values. These nontrivial values
are caused by the fact that the system violates the linear
dispersion of the low-lying excitation, which makes it in-
appropriate to adopt the finite-size scaling form for the
ground-state energy given by Eq. (5).
To elucidate what types of order happens for 0 <

θ/π < 1/2 and 0.611 ≤ θ/π < 1, we calculate the spin-
spin correlation function through DMRG calculations. In
Fig. 5, we exhibit the typical results for the L = 256
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FIG. 5: (Color online) Diagonal and off-diagonal spin-spin
correlations of the spin-chain model for (a) θ/π = 1/6 and (b)
θ/π = 2/3. The spin-spin correlation Cµν(r) is obtained by
DMRG. We adopt the maximum bond dimension to be 512.
Note that Cαα = 〈Sα(r)Sα(0)〉 and Cαβ+βα = 〈Sα(r)Sβ(0)+
Sβ(r)Sα(0)〉/2, where α, β = x, y, z and α 6= β.

chain with the open boundary condition. We find that
for 0 < θ/π < 1/2 (0.611 ≤ θ/π < 1), the spin-spin
correlation shows the one-dimensional ferromagnetic (an-
tiferromagnetic) long-range order, because the values of
the spin-spin correlation at the longest distance are pos-
itively (negatively) finite. Therefore, we consider that
c = 0 is satisfied for 0 ≤ θ/π < 1/2 and 0.611 ≤ θ/π < 1
in the thermodynamic limit. Since the phase diagram
at t = 1/2 is symmetric with respect to θ/π = 1, the
TL liquid appears also for 1.389 < θ/π ≤ 3/2, and
the long-range order appears for 1 < θ/π ≤ 1.389 and
3/2 < θ/π < 2. The emergent TL liquid and two mag-
netically ordered phases are consistent with the results
reported in Ref. 36.

C. Isotropically interacting model: t = 1/3

To investigate the ground state at t = 1/3, we exe-
cute the ED for the 24-site cluster. In Fig. 6, we il-
lustrate the typical behavior of the ground-state energy,
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FIG. 6: (Color online) Typical behavior of (a) E, (b) ∂E/∂θ,
and (c) ∂2E/∂θ2 by the 24-site ED at t = 1/3, where the
interactions become spatially isotropic.

E, as well as its first and second derivatives, ∂E/∂θ
and ∂2E/∂θ2, respectively. The clear cusps in E re-
veal that the first-order phase transition takes place at
θ/π = 0, 0.317(3), 0.572(3), and 1.367(3). Several dips
and a broad minimum in ∂2E/∂θ2 are confirmed at
θ/π ≈ 0.556, 1.372 and 1.528, respectively. However, it
is a difficult issue to argue whether or not these two dips
and this minimum indicate the presence of phase tran-
sitions in the thermodynamic limit. Furthermore calcu-
lations and finite-size analysis are needed to clarify this
issue.

Further, we focus on the simplest model; at θ/π = 0
and 1, the model becomes equivalent to the ferromagnetic
and antiferromagnetic Heisenberg models on the honey-
comb lattice, respectively. This indicates that the ferro-
magnetic (long-range) order appears for 0 ≤ θ < 0.317
and 1.528 < θ/π < 2, and the antiferromagnetic (long-
range) order appears for 0.572 < θ/π < 1.367. The static
structure factors around θ/π = 0 and 1 show prominent
peaks at the Γ and Γ′ points in the reciprocal space, re-
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spectively (results not shown). In the remaining regions,
0.317 < θ/π < 0.572 and 1.372 < θ/π < 1.528, there
are no prominent peaks of the static structure factor at
symmetric wave vectors, such as the Γ, Γ′, X , Y , and M
points. We consider that the ground state is in the spiral
phase which was argued in Ref. 43.

D. 0 < t < 1/3

References 29,30 argued that, by introducing the
anisotropy of the interactions as a detour, the Kitaev
spin liquid seems to adiabatically connect the Γ spin liq-
uid with |Γ/K| ≫ 1. In our previous study32, we pointed
out that the Γ spin liquid in the Kitaev-Γ model seems
to be unstable against the anisotropy and that the |tx〉-
dimer state survives up to the isotropically interacting
system, t = 1/3. Furthermore, in the Kitaev-Γ model,
the phase boundary at t = 1/3 is depicted in a large por-
tion of the phase diagram for Γ > 0 and K < 0 (see Fig.
5(a) in Ref. 32). This means that the |tx〉-dimer phase is
stable when the Kitaev and Γ interactions are ferromag-
netic and antiferromagnetic, respectively. In such a case,
the long-range magnetically ordered state is suppressed,
because the sign combination between the Kitaev and Γ
interactions induces a strong frustration effect. In the
Heisenberg-Γ model, the frustration effect attributed to
the Heisenberg interaction is apparently weaker than that
attributed to the Kitaev interaction. Thus, whether or
not the dimer state in the Heisenberg-Γ model is also
stable is nontrivial, because the Heisenberg interaction
usually favors the magnetic ordering. To elucidate the
stability of the dimer state in the Heisenberg-Γ model,
we perform dimer series expansions for the Hamiltonian
(4).
In Fig. 7, we show the E, ∂E/∂t, and ∂2E/∂t2 varia-

tion with t. Figures 7(a)–7(f) show the typical behavior
of these quantities (up to the sixth–eighth orders) for
θ/π = 0.078, 0.465, 0.629, 1.070, 1.313, and 1.750. As the
initial state, we adopt the |tx〉 dimer [Figs. 7(a)–7(c)],
the |s〉 dimer [Figs. 7(d) and 7(e)], and the |ty〉 dimer
[Fig. 7(f)]. We also calculate the same quantities by the
24-site ED and compare the results.
Except for Fig. 7(b), the results obtained by the dimer

series expansions show a similar behavior: the ground-
state energy convergence becomes worse toward t = 1/3.
As shown in Figs. 7(a) and 7(c)–7(f), the ground-state
energy exhibits a good convergence for small t and agrees
with the results obtained by the 24-site ED. However, if t
is increased, both calculations generate results that start
to deviate around t∗ where ∂2E/∂t2 obtained by the 24-
site ED shows a minimum. Furthermore, for t > t∗, the
ground-state energies obtained by the dimer series ex-
pansions up to the sixth–eighth orders deviate from each
other with increasing t, which means that the dimer series
expansions fail to properly characterize this model. We
consider that the first-/second-order phase transitions oc-
cur at t ≈ t∗(≡ tc) and the initial dimer state becomes

unstable for t > t∗. Comparing the results of the dimer
series expansion with those of the 24-site ED calcula-
tions at various θ’s, we find that, at least, both |s〉-dimer
and |ty〉-dimer phases disappear at t ≈ t∗ < 1/3 and do
not survive up to t = 1/3. These phase transitions in
1/2 < θ/π < 1 and 3/2 < θ/π < 2 are attributed to a
reduction of the frustration owing to the same signs of
the Heisenberg and Γ interactions.
In contrast, at θ/π = 0.465 [Fig. 7(b)], the ground-

state energies obtained for up to sixth, seventh, and
eighth orders converge for 0 ≤ t ≤ 1/3, in good agree-
ment with those obtained by the 24-site ED. The second
derivative ∂2E/∂t2 obtained by the 24-site ED shows a
steep dip at t = 1/3, suggesting that, at t = 1/3, the sys-
tem is located on the phase boundary. We perform the
same calculations for various θ’s around θ = 0.465 and
conclude that the |tx〉-dimer phase for 0.32 / θ/π / 0.57
survives up to t = 1/3.

E. 1/3 < t < 1/2

For 1/3 < t < 1/2, we explore the ground-state phase
diagram using the Hamiltonian (1). In Fig. 8, we present
the typical behavior of E, ∂E/∂t, and ∂2E/∂t2 obtained
by the 24-site ED. For 0 ≤ θ/π / 0.28, 0.5 / θ/π / 1.39,
and 1.67 / θ/π ≤ 2, the system is considered to be
located on the phase boundary of the first-order phase
transition at t = 1/2, because of the jump in ∂E/∂t [Fig.
8(a)]. The reason for the first-order phase transition is
simplistically explained below.
We consider ferromagnetically/antiferromagnetically

ordered spin chains that interact each other via inter-
chain coupling. When t increases from below t = 1/2
to above t = 1/2, the sign of the interchain coupling
changes at t = 1/2 from positive to negative. Because of
this sign change, the long-range order switches from fer-
romagnetic/antiferromagnetic order to the conventional
stripe pattern. We expect this phase transition to be
of the first-order, because the broken symmetry is dif-
ferent in both phases below and above t = 1/2. Thus,
we attribute this first-order phase transition to the sign
inversion of the interchain spin-spin correlation.
On the other hand, the ground-state energy E for

0.28 / θ/π / 0.5 changes continuously, when t decreases
from t = 1/2. Anomalous behavior, such as a jump
or negative divergence, is absent in ∂E/∂t and ∂2E/∂t2

close to t = 1/2 [Fig. 8(b)]. For 0.28 / θ/π / 0.5, the
spin-spin correlation along the spin chain composed of
the X and Y bonds [see Fig. 1(c)] shows a ferromagnetic
long-range order when t = 1/2; here, the ordering vector
is slightly tilted from the diagonal direction of a cube in
the spin space, because the amplitudes of the diagonal
and off-diagonal spin-spin correlations are different [Fig.
5(a)]. As t decreases from 1/2, each ferromagnetically or-
dered chain starts to correlate via positive Γ interactions,
which may continuously tilt the direction of the ordering
vector in each spin chain. The static structure factor
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FIG. 7: (Color online) Typical behavior of E, ∂E/∂t, and ∂2E/∂t2 obtained by dimer series expansions (up to sixth, seventh,
and eighth orders) and the 24-site ED. θ/π = (a) 0.078, (b) 0.465, (c) 0.629, (d) 1.070, (e) 1.313, and (f) 1.750.

S(Q) shows no prominent peaks for 0.28 / θ/π / 0.5
and 1/3 < t < 1/2, and the variation of S(Q) with t
is weak [see Fig. 2(c)]. We conclude that the ground
state in SP1 corresponds to the spiral phase at t = 1/3
argued in Ref. 43. However, the detail of SP1 is still an
open question, because as discussed in Refs. 29,30,44,45,
the possibility of spin liquid or quantum paramagnet re-
mains.

For 1.35 / θ/π / 1.65, the ferromagnetic long-range
ordered state and the TL liquid at t = 1/2 extend slightly
toward t < 1/2, the area of which is noncolored in the
phase diagram shown in Fig. 1(d). We consider that
this noncolored area is caused by the finite-size effect. In
addition, it is also difficult to clarify the detailed char-
acteristics and phase boundaries of the other noncolored
area for 0.2 < t < 1/3 around θ/π = 1.37 in Fig. 1(d).
Further calculations for larger system size are desired to

obtain conclusive results.

IV. SUMMARY

We have investigated the ground-state phase diagram
of the Heisenberg-Γ model on a honeycomb lattice by us-
ing dimer series expansions, ED, and DMRG. We have
studied the ground-state properties by increasing the in-
terchain interactions, starting from the spin chain limit.
In the spin chain model except for 0.28 < θ/π < 0.5
and 1.39 < θ/π < 1.67, the system is located on the
phase boundary; moreover, for 1/3 < t < 1/2, the two-
dimensional magnetic orders are stabilized. When the
interchain interaction is introduced, the two-dimensional
magnetic orders, such as F(z), AF, Stripy(z), and F are
stabilized and the one-dimensional ferromagnetic long-
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range order changes to SP1 without a sign of the phase
transition.

We have also studied the ground-state properties,
starting from the isolated dimer model. Placing the ini-
tial dimers on Z bonds, we have increased the strength
of the interactions between nearest-neighbor dimers and
investigated the stability of the dimer state. We have
found that, for a ferromagnetic Heisenberg and antifer-
romagnetic Γ interactions, the |tx〉-dimer phase is robust
and survives up to the isotropically interacting system
t = 1/3 where the phase transition occurs. This result is
similar to what we previously reported32 for the Kitaev-Γ
model with ferromagnetic Kitaev and antiferromagnetic
Γ interactions, where the |tx〉-dimer phase survived up
to the isotropically interacting system. Thus, we assert
that, for a strong antiferromagnetic-Γ interaction, the
system favors dimerization. Furthermore, we expect the
|tx〉-dimer phase to occupy a large part of the phase di-
agram in the generalized Kitaev model that includes the
Heisenberg, Γ, and Γ′ interactions17,20,25,26,44. In con-
trast to the |tx〉-dimer phase, the |ty〉-dimer and |s〉-dimer
phases exhibit a phase transition to magnetically ordered
phases at tc < 1/3. This is because the same signs of the
Heisenberg and Γ interactions causes a reduction of the
frustration.

We have summarized the obtained results in the phase
diagram. The obtained phase diagram has indicated that

the isotropically interacting system is placed on the phase
boundary in a large parameter region, when the system
possesses the antiferromagnetic Γ interaction. This im-
plies that the ground state is sensitive to the spatial
anisotropy of the interactions. Thus, we consider that
our results may help to discuss the stability of the or-
dered state of the isotropically interacting generalized
Kitaev model in magnetic fields45–47. A semiclassical
analysis argued that in the Kitaev-Γ model in the mag-
netic field, the unit cell of the lowest-energy states be-
comes large when Γ increases for K < 0, and the C3

symmetric state with a fairly large unit cell appears for
0.25 < Γ/|K| < 0.547. Such a state is sensitive to the
spatial anisotropy of the interactions, because the spa-
tial anisotropy spontaneously breaks the C3 symmetry.
In addition, DMRG results45 indicated that the cluster
geometry used in the computations strongly affects the
ordered state. When the magnetic fields exist, two ne-
matic paramagnet states that breaks C3 rotational sym-
metry of the lattice were confirmed45. These two states
are competing, which implies that the calculations keep-
ing C3 symmetry of the lattice is important to consider
the lowest energy state in the magnetic fields.
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