
ar
X

iv
:2

01
2.

04
91

3v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

5 
Fe

b 
20

21

Accepted manuscript. The final version was published in:

Journal of Magnetism and Magnetic Materials 527, 167767 (2021),

DOI:10.1016/j.jmmm.2021.167767

Magnetocaloric and electrocaloric properties of the Hubbard pair cluster

K. Szałowskia,∗, T. Balcerzaka

aDepartment of Solid State Physics, Faculty of Physics and Applied Informatics,
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Abstract

The paper contains the discussion of the magnetocaloric and electrocaloric effect in a model dimer (pair cluster). The

system of interest is modelled with a Hubbard Hamiltonian including the external electric and magnetic field. The

thermodynamics of such pair is described exactly, on the grounds of the grand canonical ensemble, focusing on the

half-filling of energy states. The quantities of interest, such as magnetic entropy, magnetic specific heat as well as

isothermal entropy change resulting from the variation of either electric or magnetic field and appropriate Grüneisen

ratios are calculated and discussed in a wide range of external fields. The importance of singlet to triplet transition for

the observed behaviour is emphasized. The ranges of direct and inverse caloric effects are found and the manifestations

of the magnetoelectric phenomena are described. In particular, the tunability of the magnetocaloric effect with electric

field as well as tunability of the electrocaloric effect with magnetic field are demonstrated.
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1. Introduction

The development of nanodevices stimulates strongly

the search for novel approaches to refrigeration in rel-

evant scale, ranging from nano- to mesoscale, exploit-

ing a plethora of physical phenomena [1, 2, 3]. Among

various strategies adopted to achieve the goal of on-

chip cooling, one of the successful approaches is based

on magnetocaloric effect (MCE)[4, 5], manifesting it-

self for example in a form of temperature drop during

adiabatic demagnetization [6]. This principle has been

demonstrated and used for effective on-chip cooling on

the basis of such subsystems as single magnetic ions [7],

thin magnetic films [8] or nuclear magnetic moments

[9, 10, 11]. Analogous mechanism has already been ob-

served in molecular nanomagnets [12]. Another, less

frequently investigated caloric effect connected with the

variability of the external electric fieldis electrocaloric

effect (ECE) [13, 14]. Both effects give hopes for ef-

ficient solid state-based cooling [15] and motivate con-

stant quest for novel materials and concepts, including

especially quantum materials [16].
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The finite cluster nanosystems exhibit typically quan-

tum level crossings [17, 18] - the points in which the

ground state of the system changes when some control

parameter (like the external electric or magnetic field)

is varied. Their presence manifests itself in the ex-

periment, for example, as a rapid change of the total

magnetization of the system at a certain critical value

of the field. However, the accidental state degener-

acy at the quantum level crossing point causes also a

residual entropy to emerge exactly for the critical field.

This entropy has necessarily different value than the en-

tropy at each side of the quantum level crossing point

(which may be either zero when the ground state is non-

degenerate or positive if it is degenerate). As a con-

sequence, the ground-state (residual) entropy exhibits a

discontinuous behaviour as a function of the field at the

quantum level crossing point. The temperature would

tend to smear that dependence, nevertheless, such a be-

haviour of the entropy makes it particularly sensitive to

the external field in the vicinity of the quantum level

crossing. This behaviour can be utilized to maximize

the caloric effect corresponding to the external field

causing the quantum level crossing.

The simplest magnetic systems with spin-spin cou-

pling are spin dimers. In case of antiferromagnetic cou-

pling, they exhibit a singlet-to-triplet transition (quan-

tum level crossing) when the magnetic field is increased.

1

http://arxiv.org/abs/2012.04913v2
http://dx.doi.org/10.1016/j.jmmm.2021.167767


Accepted manuscript. The final version was published in:

Journal of Magnetism and Magnetic Materials 527, 167767 (2021),

DOI:10.1016/j.jmmm.2021.167767

The dimer structure can arise naturally in molecular

magnets, making them a highly interesting class of ma-

terials. The mentioned phenomenon has been studied

in the context of the magnetocaloric effect, for example

in (coupled) Cu-based dimers with spin 1/2 [19, 20, 21]

or Ni-based dimers with spin 1 [22]. It can be men-

tioned that also rotational magnetocaloric effect utiliz-

ing magnetic anisotropy has been studied in dimer sys-

tems based on Dy and Gd ions [23]. The phenomenon

has been also found and discussed theoretically in vari-

ous magnetic cluster systems, to mention such examples

as the calculations for anisotropic Heisenberg polyhe-

dra [24], Ising tetrahedra [25], edge-sharing tetrahedra

and octahedra [26] or triangular lattice-based Ising nan-

oclusters [27, 28] and other clusters [29].

In order to enrich the number of degrees of freedom

in the studied system and include two external fields -

the magnetic and electric one - a natural choice is fo-

cusing the interest on a Hubbard dimer (pair). Such

nanosystem exhibits an interplay between charge and

spin response to the external fields, being a natural can-

didate system to exhibit pronounced magnetoelectric

phenomena. Some properties of the system, like the

chemical potential, magnetic and electric polarization

and susceptibilities were studied by us in Refs. [30, 31,

32] It should be mentioned that the thermodynamics of

such system can be described exactly. The Hubbard

dimer has been studied also in the context of symmetries

[33], density functional theory [34, 35], spectral func-

tion [36], integrals of motion [37], two-orbital model

[38], orbital degeneracy [39] or the extended version

of the Hubbard model [40, 41] including the electron-

phonon couplings within Hubbard-Holstein model on a

dimer [42]. Other cluster-based Hubbard nanostructures

have also been studied [43, 44, 45], to mention espe-

cially those like cube [46, 47, 48], triangle [49, 50] and

tetrahedron [49] or a finite chain [51, 52, 53].

In the paper we characterize exactly the magne-

tocaloric and electrocaloric effect in Hubbard dimer

(pair), exploiting the plethora of phenomena caused

by the simultaneous presence of electric and magnetic

field. In the next section 2 we sketch the theoretical for-

malism used to characterize the thermodynamics of the

Hubbard dimer, based on the grand canonical ensem-

ble. In the following part 3 we present and discuss the

results of the extensive numerical calculations focused

on the magneto- and electrocaloric effect. The final re-

marks are drawn in the section 4.

2. Theoretical model

The Hubbard Hamiltonian for the pair of atoms (a, b)

embedded in the external magnetic and electric fields is

of the form:

Ha,b = − t
∑

σ=↑,↓

(

c+a,σcb,σ + c+b,σca,σ

)

+ U
(

na,↑na,↓ + nb,↑nb,↓

)

− H
(

S z
a + S z

b

)

− V (na − nb) , (1)

where t > 0 is the hopping integral, and U ≥ 0 is on-

site Coulomb repulsion energy. The external uniform

magnetic field with magnitude Hz is introduced by the

parameter H, namely H = −gµBHz. The parameter V

stands for the electrostatic potential of the uniform elec-

tric field oriented along the line joining both atoms, in

such a way that V = Va = −Vb. It is related to the elec-

tric field E by the formula V = E|e|d/2, where d is the

interatomic distance and e is the electron charge.

The creation (c+γ,σ) and annihilation (cγ,σ) operators

for site γ = a, b and spin state σ =↑, ↓ can be used to

define the corresponding occupation number operators

nγ,σ, namely:

nγ,σ = c+γ,σcγ,σ. (2)

With the help of nγ,σ the total occupation number oper-

ators at the site γ = a, b are given by:

nγ = nγ,↑ + nγ,↓. (3)

Moreover, the spin operators S z
γ in Eq.(1) are defined as

follows:

S z
γ =

(

nγ,↑ − nγ,↓
)

/2. (4)

We consider the Hubbard pair as an open system, be-

ing able to exchange the electrons with its neighbour-

hood. For instance, this could be a situation where the

pair cluster is placed on the metallic substrate serving as

the electronic reservoir or a situation where the pair is

coupled to the electrodes (gates). Taking into account

the possible fluctuations of the number of electrons,

the equilibrium thermodynamics of such open system

is properly described by the grand canonical ensemble.

In this formalism the Hamiltonian (1) is extended by

adding the term −µ (na + nb), where µ is the chemical

potential.

The exact analytical diagonalization of the extended

Hamiltonian has been performed in Ref. [30]. As a re-

sult, a set of 16 eigenenergies and corresponding eigen-

states has been found, which enabled determination of

2
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the grand partition functionZa,b:

Za,b = Tra,b exp{−β
[

Ha,b − µ (na + nb)
]

}

=

16
∑

i=1

exp

(

−
t

kBT
Ei

)

, (5)

where Ei are the normalized energy eigenvalues given

in the Appendix B of Ref. [30]. The grand potential,

Ωa,b, of the open system is then given by:

Ωa,b = −kBT lnZa,b, (6)

and it enables the calculation of all thermodynamic

properties in equilibrium.

On the other hand, the statistical properties can be

found from the statistical operator ρa,b:

ρa,b =
1

Za,b

exp
{

−β
[

Ha,b − µ (na + nb)
]}

, (7)

which can be constructed in a diagonal form on the ba-

sis of the diagonalized pair HamiltonianHa,b. With the

help of ρa,b the statistical averages of arbitrary quan-

tum mechanical operators can be calculated. In par-

ticular, averaging of operators nγ, and S z
γ, which are

defined by Eqs. (3) and (4), respectively, can be per-

formed. Namely:

〈

nγ
〉

= Tra,b

[(

nγ,↑ + nγ,↓
)

ρa,b

]

, (8)

and
〈

S z
γ

〉

= Tra,b

[

1

2

(

nγ,↑ − nγ,↓
)

ρa,b

]

. (9)

For completeness of the method, the chemical potential

µ can be self-consistently determined from the relation-

ship:

〈na〉 + 〈nb〉 = −

(

∂Ωa,b

∂µ

)

T,H,V

. (10)

For studies of the magnetocaloric and electrocaloric ef-

fects the entropy S of the system is a crucial quantity.

The entropy as a function of T , H and E is defined by:

S (T,H, E) = −

(

∂Ωa,b

∂T

)

H,E

, (11)

where the external field parameters H and E are con-

stant.

Alternatively, the entropy can be expressed as:

S (T,H, E) =

〈

Ha,b − µ (na + nb)
〉

−Ωa,b

T
. (12)

The caloric effects, which can manifest themselves by

the heat flow between the system and its environment

under the external field change can be quantified with

the help of the isothermal entropy changes ∆S T . For

the magnetocaloric effect we define

∆S MCE
T = S (T,H = 0, E) − S (T,H, E), (13)

i.e., ∆S T is the isothermal change of the entropy cor-

responding to the jump of magnetic field from H = 0

to H > 0, whereas the electric field parameter E is con-

stant. Analogously, the electrocaloric effect is described

by

∆S ECE
T = S (T,H, E = 0) − S (T,H, E), (14)

where the isothermal entropy change corresponds to the

jump of the electric field from E = 0 to E > 0, whereas

the magnetic field is constant.

The known entropy of the system can also be ex-

ploited for calculation of the heat capacity, CH,E . For the

constant external field parameters H and E, the heat ca-

pacity of the Hubbard pair cluster (dimer) is then given

by:

CH,E = T

(

∂S (T,H, E)

∂T

)

H,E

= −T

(

∂2Ωa,b

∂T 2

)

H,E

. (15)

Applying the fluctuation-dissipation theorem, an alter-

native formula, particularly convenient for numerical

calculations, can be derived in the following form:

CH,E =

〈

[

Ha,b − µ (na + nb)
]2
〉

−
〈

Ha,b − µ (na + nb)
〉2

kBT 2
.

(16)

Potentially interesting parameters quantifying the re-

sponse of the system to the external field are Grüneisen

ratios. For the system embedded in external magnetic

field H and electric field E two such parameters can be

defined. Namely, a magnetic Grüneisen ratio can be de-

fined as [54, 56]:

ΓH = −
1

CH,E

(

∂M

∂T

)

H,E

, (17)

where M =
〈

S z
a

〉

+
〈

S z
b

〉

is the total magnetization of

the cluster. This quantity can be further expressed in the

following forms:

ΓH =
1

T

(

∂T

∂H

)

S ,E

= −
1

CH,E

(

∂S

∂H

)

T,E

. (18)

Moreover, in analogous manner, an electric

Grüneisen ratio can be defined as follows:

ΓE = −
1

CH,E

(

∂P

∂T

)

H,E

, (19)
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where P is the total electric polarization of the pair. Al-

ternatively, it can be expressed as:

ΓE =
1

T

(

∂T

∂E

)

S ,H

= −
1

CH,E

(

∂S

∂E

)

T,H

. (20)

The formulas given by Eq. 18 and 20 show a direct rela-

tion of Grüneisen ratios both to the differential tempera-

ture change under adiabatic conditions and to the differ-

ential entropy change under isothermal conditions, thus

proving the importance of these quantities for descrip-

tion of the caloric effects. Interestingly, the Grüneisen

ratio is expected to diverge at quantum phase transition

points [54, 55] and presents an experimentally measur-

able quantity.

The numerical calculations based on the above

formalism and aimed at description of the magneto-

and electrocaloric effects for the Hubbard dimer will be

presented in the next Section 3.

3. Numerical results and discussion

The numerical results have been obtained on the basis

of formalism outlined in previous section and are based

on the exact diagonalization of the model. For most of

the figures, the mean number of electrons in the cluster

has been assumed as x = (〈na〉 + 〈nb〉) /2 = 1, which

corresponds to the half-filling condition for the energy

states of the system. For such electron concentration,

the chemical potential is independent on the external

fields and temperature and equal to µ = U/2. However,

two figures were prepared to demonstrate the influence

of the electron concentration x on the thermodynamic

parameters.

We commence the discussion of the results from the

most fundamental quantity for the caloric properties -

the entropy of the system. In Fig.1, the normalized

entropy S/kB is presented in the normalized magnetic

field H/t - normalized temperature kBT/t coordinates as

a density plot with contours. The electric field is absent

in this case. The isentropes with increasing values cor-

respond typically to increasing temperatures. For zero

temperature, a characteristic point is seen, in which the

isolines are concentrated. This point corresponds to the

magnetic critical field Hc in which the quantum level

crossing takes place, as the system switches from a sin-

glet state (occurring in lower magnetic fields) to a triplet

state (occurring in higher magnetic fields) at zero tem-

perature. The value of the critical field Hc, seen in Fig.1

for the normalized electric field E|e|d/t = 0 and Hub-

bard on-site energy U/t = 2, is in agreement with the
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Figure 1: Density plot of normalized entropy as a function of the nor-

malized temperature and magnetic field, for electric field E|e|d/t = 0.0

and U/t = 2.0. Isentropes are marked with solid lines.

phase diagram constructed by us in Ref. [32] (see Fig. 1

in Ref. [32]).

To complement the picture presented in Fig. 1, in

Fig.2 the normalized entropy S/kB is presented in the

normalized electric field E|e|d/t - normalized tempera-

ture kBT/t coordinates as a density plot with contours.

The magnetic field is set to H/t = 1.5. As before, the

isentropes with increasing values correspond normally

to increasing temperatures. Again, for zero tempera-

ture, a characteristic point is seen, in which the isolines

are concentrated. This point corresponds to the elec-

tric critical field Ec in which the quantum level crossing

takes place and the system switches from triplet state

(occurring in lower electric fields) to singlet state (oc-

curring in higher electric fields). It can be verified that

the value of the critical field Ec presented in Fig.2 for

the normalized magnetic field H/t = 1.5 and Hubbard

on-site energy U/t = 2 is in agreement with the phase

diagram found by us in Ref. [32].

It can already be noted that in the vicinity of the quan-

tum level crossing the entropy becomes particularly sen-

sitive to the external field - either magnetic or electric

one. This fact is connected with the possibility of gener-

ating a significant entropy change with a limited change

in the field, thus maximizing the caloric effects. Such

a conclusion has been drawn, for example, in Ref. [21]

for the magnetocaloric effect in Heisenberg dimer, un-

dergoing the singlet-triplet transition.

The cross-sections of the density plots permit the de-

tailed tracking of the entropy variability as a function of

a single control parameter. An example of such plot is
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Figure 2: Density plot of normalized entropy as a function of the nor-

malized temperature and electric field, for magnetic field H/t = 1.5

and U/t = 2.0. Isentropes are marked with solid lines.

Fig. 3, where the entropy, S/kB, is plotted vs. dimen-

sionless temperature kBT/t for several electric fields

E|e|d/t and for U/t = 2. In the main panel the mag-

netic field is fixed at H/t = 2, whereas in the inset the

magnetic field is absent. In general, the entropy is an

increasing function of temperature, and when T → ∞

the entropy reaches the limit S/kB = ln 16 ≈ 2.7726.

It means that all the 16 states of the Hubbard pair clus-

ter, which have been specified in Ref. [30], are occupied

with equal probability. The electric field causes that

approaching this limit is slightly harder. On the other

hand, for T → 0, when the system is in a pure ground

state, either singlet or triplet one, the entropy goes to

zero. However, for the electric critical field (the green

curve labelled by Ec|e|d/t = 2.828), i.e., when the quan-

tum level crossing takes place, the residual entropy re-

mains. It results from degeneracy of two states (singlet

and triplet) exactly at the phase transition point, and its

value is S/kB = ln 2 ≈ 0.6931. In general, the residual

entropy, S/kB amounts to ln n, where n is a number of

degenerate states occurring with the same ground state

energy. In our case n = 2, which corresponds to equilib-

rium coexistence of the singlet and triplet state exactly

at the critical electric field. For H/t = 0, in the inset,

the system is in pure singlet state for all considered val-

ues of the electric field and the residual entropy does

not emerge. It should also be noted that for T → 0 the

entropy curves exhibit a vanishing slope, thus not de-

pending on the temperature, which reflects the 3rd law

of thermodynamics.

Fig. 4 and Fig. 5 present the density and contour
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Figure 3: Dependence of the normalized entropy on the normalized

temperature, for U/t = 2.0 for various electric fields, for normalized

magnetic field H/t = 2.0 (main panel) and for H/t = 0.0 (inset).

plots of the normalized specific heat, CH,E/kB, for the

same parameters E|e|d/t, H/t and U/t as in Fig. 1 and

Fig. 2, respectively. The isolines, representing the con-

stant values of the specific heat, show a quite complex

behaviour. The specific heat for T → 0 tends to zero, in

agreement with the 3rd law of thermodynamics, in this

way reflecting the flattening of the entropy curves from

Fig. 3. The quantum level crossings at T = 0 are seen in

the points where the isolines are concentrating and even

forming a loop structure. As the entropy in the vicin-

ity of the level crossing presents a local maximum as a

function of the field, the specific heat C = T (∂S/∂T )

shows a double peak (with the peaks located at two in-

flection points of the field dependence of the entropy).

With an increase in temperature, in both figures the spe-

cific heat increases, then reaches some maximum at in-

termediate temperatures and finally tends to zero when

the temperature is very high. The areas where the spe-

cific heat is large, i.e., CH,E/kB > 1, have been distin-

guished by various shades of yellow and red colours. It

can be deduced from Fig. 4 that the highest maximum

of the specific heat occurs at H/t → 0, near the tem-

perature of kBT/t ≈ 0.4. On the other hand, in Fig. 5,

the highest maximum will occur at the largest electric

field (E|e|d/t ≈ 5 in this figure), and for the tempera-

ture about kBT/t ≈ 0.7. Moreover, it can be seen in

Fig. 5 that for some electric fields, for instance near

E|e|d/t ≈ 2.5, the double-maximum structure of the spe-

cific heat can be predicted when temperature increases.

Such an interesting behaviour of the specific heat results

from a complicated interplay between the magnetic and

electric energy terms. It should be noticed that the spe-
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Figure 4: Density plot of normalized specific heat as a function of the

normalized temperature and magnetic field, for electric field E|e|d/t =

0.0 and U/t = 2.0. Lines of constant specific heat are marked with

solid lines.

cific heat fulfils the inequality CH,E ≥ 0 for any point

in (H, E, T )-space, which evidences that the system re-

mains in a stable thermal equilibrium.

Further illustration of the entropy behaviour is shown

in the Fig. 6 to Fig. 10. In Fig.6 the normalized en-

tropy, S/kB, is plotted vs. normalized magnetic field

H/t. The on-site Coulomb energy amounts to U/t = 5,

whereas the electric field is absent. Various curves cor-

respond to different temperatures. For very low temper-

atures a peak of residual entropy is seen at the critical

magnetic field Hc corresponding to the quantum level

crossing of singlet and triplet states. As before, this

transition has been predicted by the phase diagram ob-

tained by us in Ref. [32] and the entropy in this doubly-

degenerated point for T → 0 amounts to S/kB = ln 2

(see also the discussion of Fig. 3). The entropy peak dis-

appears in large temperatures, where the curves become

monotonously decreasing functions of the field. This

result can be intuitively understood, since the increas-

ing magnetic field orders the system and thus dimin-

ishes the entropy. Moreover, in the context of Maxwell

relation (∂S/∂H)T,E = (∂M/∂T )H,E , it means that the

magnetization M of the system decreases with the tem-

perature. By the same token, in the region of low tem-

peratures, for the magnetic fields below the quantum

level crossing point (in singlet state), the behaviour of

magnetization should be anomalous, with the deriva-

tive (∂M/∂T )H,E > 0. Such anomalous behaviour is in

agreement with the predictions of our previous paper

Ref. [31].

In order to give a flavour of the importance of elec-
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Figure 5: Density plot of normalized specific heat as a function of the

normalized temperature and electric field, for magnetic field H/t = 1.5

and U/t = 2.0. Lines of constant specific heat are marked with solid

lines.

tronic concentration on the dimer entropy away from

half-filling of the energy levels (i.e. for x , 1), Fig. 7

is presented. It permits tracking of the entropy depen-

dence on the electronic concentration x for the same pa-

rameters as those used for preparing Fig. 6, with some

values of the external magnetic field selected. In part

Fig. 7(a) the lower magnetic fields are considered. It is

evident that the entropy shows pronounced dependence

on the electronic concentration x with full electron-hole

symmetry (i.e. the values remain the same for x and

1 − x). In the absence of the magnetic field the entropy

is low (close to zero) at half-filling (x = 1), and if the

dimer is charge doped, the entropy rises significantly.

The maximum values are taken at |x − 1| = 1/3 and if

the system is doped stronger, minimum are reached at

|x−1| = 1/2. Further doping results in reaching another

maxima of entropy at |x − 1| = 2/3 and then the en-

tropy tends to zero if the limit of |x − 1| = 1 is achieved

(system is empty or completely filled with electrons). A

similar behaviour can be observed for the presence of

the external field H/t . 0.3, but the entropy value at

x = 1 rises whereas the value at the maxima is reduced.

Moreover, the first maximum is shifted towards x = 1

and the second one shows quite the opposite tendency.

If the magnetic field exceeds H/t ≃ 0.3, as shown in

Fig. 7(b), the maxima continue to shift in the directions

described above. However, this time the maxima close

to |x − 1| ≃ 1/3 become gradually more pronounced.

The largest entropy value at the maxima is achieved at

the critical magnetic field H/t = 0.702. After cross-

ing this field value, the maxima tend to flatten. On the
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magnetic field, for U/t = 5.0 and electric field E|e|d/t = 0.0, for

various temperatures.

contrary the maxima close to |x − 1| ≃ 2/3 exhibit the

entropy magnitude much less sensitive to the magnetic

field for H/t & 0.3; when it increases, the value tends

to kB ln 2 for strong fields and the position of maxima

shifts to |x − 1| = 3/4.

Behaviour of the entropy analogous to one discussed

in Fig. 6 can be seen in Fig. 8, where it is plotted vs.

the electric field E|e|d/t, for Coulomb on-site energy

U/t = 2 and the magnetic field fixed at H/t = 2. Various

curves correspond to different temperatures. Again, in

the low temperature region, the residual entropy peak is

seen, corresponding to quantum level crossing between

the triplet and the singlet state. The value of the en-

tropy in the peak for T → 0 is the same as in Fig. 6,

S/kB = ln 2. The peak disappears as the temperature in-

creases. The analysis of the entropy vs. electric field can

be connected with the behaviour of electric polarization

P vs. temperature. With the help of Maxwell relation

(∂S/∂E)H,T = (∂P/∂T )H,E , we can conclude that the

electric polarization P should behave similarly to mag-

netization M. Namely, it decreases with increase in tem-

perature for sufficiently large temperatures. However, in

the low temperatures, below the quantum level crossing

(in triplet state) the behaviour of P is anomalous, with

the derivative (∂P/∂T )H,E > 0. Such a behaviour has

also been predicted in Ref. [31].

Like in the case of Fig. 7, it is instructive to sketch

the entropy behaviour as a function of the electron con-

centration to demonstrate the effect of charge doping of

the system. Such data can be tracked in Fig. 9, prepared

for the same parameters as Fig. 8, for selected values of

the electric field. In the absence of the electric and mag-
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Figure 7: Dependence of the normalized entropy on the electron con-

centration, for U/t = 5.0 electric field E|e|d/t = 0.0 and normalized

temperature kBT/t = 0.1, for various magnetic fields.

netic field, the entropy shows four symmetric maxima at

|x−1| = 1/3 and |x−1| = 2/3, with the entropy value of

kB ln 2. At |x − 1| = 1/2 the entropy has deep local min-

ima. The maxima at |x − 1| = 2/3 remain completely

insensitive to the changes in the electric field. On the

contrary, the maxima at |x − 1| = 1/3 build up when

the electric field is applied; their position is shifted to-

wards x = 1. Also the minimum at x = 1 is lifted up.

The maximum entropy is reached at the critical electric

field value E|e|d/t = 2.828. Further increase in the field

results in flattening of the maxima.

Both Fig. 7 and Fig. 9 demonstrate the crucial in-

fluence of the electronic concentration on the entropy

behaviour in the dimer. However, the case of x = 1

(i.e. half filling), indicates the most pronounced sensi-

tivity of the entropy to the external electric field. There-

fore, we return in all the further discussion to the case

of x = 1.
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The observation that maximum value of the entropy

in the low-temperature peak is constant, S/kB = ln 2,

has been confirmed in Fig.10. It this figure the normal-

ized entropy, showing a pronounced peak, is presented

vs. normalized magnetic field H/t, for U/t = 5, whereas

the temperature is low and constant, kBT/t = 0.1. Vari-

ous curves in Fig.10 correspond to different magnitudes

of the electric field E|e|d/t. An increase in the electric

field causes the increase in the critical magnetic field

Hc, thus shifting the position of the entropy peak. Such

a shift is non-linear vs. electric field E|e|d/t, which

is in agreement with the phase diagram presented in

Ref. [32].

The response of the entropy to the external fields

is quantified by the appropriate Grüneisen ratios. In

Fig. 11 the magnetic Grüneisen ratio ΓH t is shown in

dimensionless units, as a function of the normalized

magnetic field H/t. Various curves correspond to differ-

ent temperatures kBT/t. The Coulombic on-site energy

amounts to U/t = 5, and the electric field is absent. It

is demonstrated that for very low temperatures the pa-

rameter ΓH diverges at the quantum level crossing, i.e.,

for the critical field Hc. With an increase in tempera-

ture, the divergence disappears and the curves flatten.

The magnetic Grüneisen ratio is negative in the range

of the singlet ground state, i.e., below Hc, and positive

in the range of the triplet ground state, above Hc. The

divergence of ΓH at Hc, when T → 0, is predisposing

this parameter for a good indicator of the quantum level

crossing.

In Fig. 12 the electric Grüneisen ratio, ΓE t/ (|e|d),

is shown in dimensionless units, vs. normalized elec-
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Figure 9: Dependence of the normalized entropy on the electron con-

centration, for U/t = 2.0 magnetic field H/t = 2.0 and normalized

temperature kBT/t = 0.1, for various electric fields.

tric field E|e|d/t. Various curves correspond to differ-

ent temperatures kBT/t. The Coulombic on-site energy

amounts to U/t = 5, and the magnetic field is H/t = 2.

One can see in Fig. 12 that for very low temperatures

the parameter ΓE diverges at the quantum level crossing

point, at the critical field Ec. With an increase in tem-

perature this divergence disappears and the curves flat-

ten, similarly to the behaviour of ΓH demonstrated in the

previous figure. However, here the electric Grüneisen

ratio is negative in the range of the triplet ground state,

i.e., below Ec, and is positive in the range of the sin-

glet ground state, above Ec. The divergence of ΓE at Ec,

when T → 0, can be also a useful property, analogously

to ΓH , for uncovering the presence of the quantum level

crossing. Moreover, this divergence proves the sensitiv-

ity of the entropy to the changes of the external field,

marking the regions of interest for maximising the en-

tropy change in the caloric effects.

The behaviour of the entropy as a function of the

external field is crucial for the description of magne-

tocaloric (MCE) and electrocaloric (ECE) effects. The

appropriate quantity is the isothermal entropy change

when the external field is varied between the initial

value of 0 to the non-zero final value. First let us dis-

cuss the MCE in the Hubbard dimer system. In Fig. 13

and Fig. 14 the isothermal entropy change in MCE (de-

fined by Eq. 13) is presented vs. normalized tempera-

ture kBT/t. Various curves in these figures correspond to

different constant external electric fields E|e|d/t. Fig. 13

is prepared for U/t = 2 and the external magnetic field

is switched from H/t = 0 to H/t = 0.1. The final

value, according to the phase diagram (Ref. [32]), cor-
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responds to the region of the singlet ground state for

all the values of the electric field. On the other hand,

Fig. 14 is prepared for U/t = 5 with the magnetic field

switched from H/t = 0 to H/t = 1.5, where such a fi-

nal value corresponds to the triplet ground state for the

values of electric fields specified in the figure legend. It

can also be mentioned that for the electric field higher

than about E|e|d/t ≈ 5 the system with the parameters

from Fig. 14 should undergo the transition to the sin-

glet ground state. One can see that behaviour of the

MCE curves vs. temperature is completely different for

both figures. In Fig. 13, starting from the singlet ground

state, the strong inverse MCE can be observed in the

low temperature region. Then, for higher temperatures

the MCE becomes direct, i.e., entropy change is posi-

tive, but relatively weak, and it further weakens with an

increase in temperature. The inset in Fig. 13 shows this

behaviour in the logarithmic temperature scale. On the

other hand, in Fig. 14, starting from the triplet ground

state, a strong direct MCE can be observed, provided

the electric field is not very large. When E|e|d/t in-

creases, that is, approaching a phase boundary with the

singlet ground state, the inverse MCE appears in the

low temperatures and the curves noticeably tend to the

shape demonstrated in the previous figure. The com-

mon characteristic of both figures, Fig. 13 and Fig. 14,

is a shift of the minimum and maximum position of the

curves towards higher temperatures, as the electric field

increases. The strengthening of the electric field makes

the curves more flat in Fig. 13, but in Fig. 14 such con-

clusion can be drawn only for the positive (direct) MCE.

It can be seen that the magnitude of the external constant
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Figure 11: Dependence of the normalized magnetic Grüneisen ratio

on the normalized magnetic field, for U/t = 5.0 and normalized elec-

tric field E|e|d/t = 0.0, for various temperatures.

electric field exerts a noticeable effect on the entropy

change under variation of the magnetic field, being a

clear manifestation of the magnetoelectric phenomena

in Hubbard dimer.

An effect complementary to MCE is ECE, quantified

conveniently by the isothermal entropy change defined

by Eq. 14. In Fig. 15 and Fig. 16, the isothermal en-

tropy change in ECE is presented vs. normalized tem-

perature kBT/t. Various curves in these figures corre-

spond to different magnitudes of the constant external

magnetic field H/t. Fig. 15 is prepared for U/t = 2

and the electric field is switched from E|e|d/t = 0 to

E|e|d/t = 0.5, where the final value corresponds to the

region with the singlet ground state, since all values of

the magnetic field labelled in this figure fulfil the con-

dition H < Hc. On the other hand, Fig. 16 is prepared

for U/t = 5 and the electric field is also switched from

E|e/.t = 0 to E|e|d/t = 0.5. Therefore, the final value of

E corresponds to the singlet ground state for H/t =0.0,

0.4, 0.5 and 0.6, according to the phase diagram pre-

sented in Ref. [32]. However, for higher fields, i.e.,

for H/t =0.8, 0.9 and 1.0, the triplet ground state oc-

curs at the final value of E. Therefore, it is interest-

ing to compare ECE in both these figures. In Fig. 15

the curves present two positive maxima showing a di-

rect ECE. In the low temperature region the maximum

is sharp and it builds up with an increase in the magnetic

field. On the other hand, the second, high-temperature

maximum is less pronounced and slowly flattens with

an increase in the magnetic field. At the same time, the

minimum between these maxima becomes deeper as the

field increases. In particular, for H/t = 1 an inverse
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ECE can be found, corresponding to the minimum of

∆S ECE
T

, which then extends down to negative values. In

Fig. 16, the ECE curves corresponding to H/t ≤ 0.6,

i.e., for the singlet ground state, are of similar character

as those in Fig. 15, with the reservation that the nega-

tive minima are much deeper. However, the curves for

H/t ≥ 0.8, i.e., for the triplet ground state, are totally

different. They present a strong inverse ECE in the low-

temperature minimum. Also the second negative min-

imum, which is more shallow, can be seen for larger

temperatures. The minimum at the low temperature is

especially pronounced for H/t = 0.8, i.e., for the small-

est considered field in the range of the triplet ground

state. Evidently, the rapid change from positive to neg-

ative ECE is connected with the quantum phase transi-

tion in the ground state, from singlet to triplet state. The

insets in Figs.15 and 16 are to inspect the effect in the

logarithmic temperature scale for some representative

values of H/t chosen from the main figures, to facilitate

tracking the low-temperature behaviour.

4. Summary and conclusion

In the paper we report a theoretical study of the

caloric effects - MCE and ECE - in a model Hubbard

dimer (pair cluster) immersed in external electric and

magnetic field.

The formalism of the grand canonical ensemble has

been used [30], in which the system can exchange elec-

trons with its environment, whereas the average elec-

tron concentration, x = (〈na〉 + 〈nb〉) /2, amounts to

0 ≤ x ≤ 2. This general formalism enables the studies
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Figure 13: Dependence of the normalized isothermal entropy change

in magnetocaloric effect on the normalized temperature, for magnetic

field variation between H/t = 0.0 and 0.1, for U/t = 2.0 and various

normalized electric field values. The inset shows selected data from

the main panel in logarithmic scale for temperature.

of the influence of electron concentration x on the ther-

modynamic properties of such cluster. However, in the

numerical application of the method, the most interest-

ing value of concentration has been exploited, namely

x = 1, which corresponds to the half-filling of the en-

ergy levels of the system. For x = 1 the sensitivity of

the system entropy to the external fields was found to be

maximized, thus corresponding to the most pronounced

caloric effects exhibited by the system in question.

For investigation of the caloric effects, a crucial quan-

tity is the entropy with its dependence on the external

fields. The numerically exact results for the entropy of

the Hubbard dimer have been analysed in relation to the

phase diagram obtained by us previously in Ref. [32],

and they are in agreement with other thermodynamic

properties, for instance, those calculated in our work

Ref. [31]. One of the most interesting results is the

residual entropy in the ground state exactly at the quan-

tum level crossing point (corresponding to a transition

between the singlet and triplet state and controlled with

the electric or magnetic field). This particular feature

is manifested as the finite-width entropy peak at the fi-

nite temperature when the critical field value is crossed.

Moreover, in the vicinity of this critical field the entropy

is particularly sensitive to the external field, thus max-

imizing the caloric effect magnitude. It might be men-

tioned that the effect of maximization of the field depen-

dence of the entropy has been pointed out in the context

of spin dimers [12, 21] and the singlet-triplet transition

in this system focused the attention in Ref. [19].
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in magnetocaloric effect on the normalized temperature, for magnetic

field variation between H/t = 0.0 and 1.5, for U/t = 5.0 and various

normalized electric field values.

The numerical calculations concerned first measures

of MCE and ECE such as the isothermal entropy

changes ∆S MCE
T

and ∆S ECE
T

, respectively. The inves-

tigations spanned of the wide range of temperatures as

well as magnitudes of the magnetic field and electric

field change, to identify the most interesting cases. In

general, the significant ranges of both direct and inverse

caloric effects were found.

It has also been found that the caloric effects are es-

pecially pronounced in the low temperature region, in

the vicinity of the critical fields responsible for quan-

tum level crossing. This fact could be potentially used in

practice, for the magnetic or electric field change-based

cooling in the range of low temperatures.

In the theoretical part, the electric Grüneisen ratio,

ΓE , has been defined as a new quantity, being an ana-

logue of the magnetic Grüneisen ratio, ΓH . It has been

shown that both parameters reveal singularities at the

quantum critical points, when T → 0. Thus, both these

Grüneisen ratios can be useful for determination of the

quantum phase transitions.

The Hubbard dimer (pair cluster) turned out to be a

very interesting model system, in which the thermody-

namics of the caloric effects - MCE and ECE - can be

simultaneously studied by the exact method. The mag-

netic and electric fields are found to exert opposite ef-

fects on the induced magnetism in the studied system,

therefore, using the exact approach is particularly im-

portant for studying the interplay of both fields.

It can be noted that in the light of the paper [57],

where the magnetoelastic properties of the Hubbard pair

cluster have been investigated, it would be interesting to
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Figure 15: Dependence of the normalized isothermal entropy change

in electrocaloric effect on the normalized temperature, for electric

field variation between E|e|d/t = 0.0 and 0.5, for U/t = 2.0 and var-

ious normalized magnetic field values. The inset shows selected data

from the main panel in logarithmic scale for temperature.

study the caloric effects in the presence of the external

elastic forces , leading to the emergence of multicaloric

effects [58, 59, 60]. These forces, being able to deform

interatomic distance, influence both the hopping inte-

gral and the interatomic Coulomb potential. However,

such problem exceeds the frame of the present paper

and should be considered elsewhere.

Having found the entropy, the specific heat has been

determined for the system embedded simultaneously in

the magnetic and electric fields. An interesting result is

a possibility of occurrence of double maximum of the

specific heat in some regions of the density diagrams

(Figs. 4 and 5), when corresponding temperature depen-

dence is analysed.

The dimer with electron hopping has also been dis-

cussed in the literature as a part of Ising Hamiltonian-

based more elaborate magnetic model [61, 62, 63] in

the simultaneous presence of the electric and magnetic

field. In this case, non-trivial phase diagrams were

found as a result of the interplay of the charge doping

(controlled with the chemical potential) and the influ-

ence of the external fields in the infinite planar system.

This might motivate further studies of Hubbard dimers

embedded in localized-spin magnetic model in the ex-

ternal fields.

Last but not least, let us mention the applicabil-

ity of the Hubbard dimer model to experimental sys-

tems in condensed matter physics. In this context,

we can point out the layered charge transfer salts of

Mott insulator type, for which Hubbard dimer can

serve as a minimum model [64]. For example, the
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extended Hubbard model for two sites was investi-

gated to capture physics of β and κ polymorphs of

(ET)2X or (BEDT-TTF)2X, where (ET) or (BEDT-TTF)

is bis(ethylenedithio)tetrathiafulvalene and X is mono-

valent anion, like Cu2(CN)3, constituting half-filled sys-

tems composed of effective dimers [65]. Similar goals

was addressed in calculations performed in Ref. [66].

The mentioned materials motivate also the interest in

development of more elaborate models based on dimer-

ized Hubbard Hamiltonian with interacting dimers [67]

for a complex group of BEDT-TTF charge transfer salts

[68]. A somehow similar kind of model has been ap-

plied to description of metal-insulator transition in VO2

[69]. In this context, it is worth mentioning that the

pronounced electrocaloric effect associated with metal-

insulator transition has been measured in VO2 [70].

In addition, etracyanoquinodimethane (TCNQ)-based

charge transfer salts were also modelled using the dimer

Hubbard model [71]. Also, the applications of two site

Hubbard model to description of diradicals can be men-

tioned [72, 73, 74]. Hubbard model on small clusters

has been also invoked for prediction of selected proper-

ties of transition metal nanostructures [45, 75].

The present results, concerning an ensemble of non-

interacting Hubbard dimers, may serve as a starting

point for the studies of electro- and magnetocaloric phe-

nomena in extended model with, for example, inter-

dimer interactions included (see for example the study

in Ref. [76]). Moreover, larger clusters can be studied

using the identical model, to mention for example our

work on the cubic cluster Ref. [48]. The influence of

the cluster geometry on the thermodynamic properties

is expected to be crucial (in particular, linear or closed

geometry can lead to different sort of behaviour, as it can

be followed for the case of Hubbard trimer in Ref. [50]).

Therefore, each shape and size of cluster requires a sep-

arate computation. In the context of exact studies, the

works for various tetramers can be noticed [77, 49, 78].

However, in relation to the external electric field applied

to the Hubbard model for large clusters or even infinite

lattice of any dimensionality, it should be mentioned

that screening effects would limit the field influence on

the model properties. This facts focuses the interest in

electric field-related phenomena rather on small clus-

ters.
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[13] Z. Kutnjak, B. Rožič, R. Pirc, J. G. Webster, Electrocaloric Ef-

fect: Theory, Measurements, and Applications, in: Wiley Ency-

clopedia of Electrical and Electronics Engineering, John Wiley

& Sons, Inc., 1999.
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refrigeration: Thermodynamics, state of the art and future per-

spectives, International Journal of Refrigeration 40 (2014) 174–

188. doi:10.1016/j.ijrefrig.2013.11.007 .
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