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Abstract Interpolating the exchange-correlation energy along the density-
fixed adiabatic connection of density functional theory is a promising way to
build approximations that are not biased towards the weakly correlated regime.
These interpolations can be done at the global (integrated over all spaces) or
at the local level, using energy densities. Many features of the relevant energy
densities as well as several different ways to construct these interpolations,
including comparisons between global and local variants, are investigated here
for the analytically solvable Hooke’s atom series, which allows for an explo-
ration of different correlation regimes. We also analyze different ways to define
the correlation kinetic energy density, focusing on the peak in the kinetic cor-
relation potential.

Keywords Density Functional Theory · Exchange-Correlation Functionals ·
Electronic correlation

1 Introduction

The density-fixed adiabatic connection [1] of Kohn-Sham (KS) density func-
tional theory (DFT) is a powerful theoretical tool for the construction of ap-
proximate exchange-correlation (XC) functionals: for example, hybrid [2] and
double-hybrid functionals [3] can be constructed from simple models of the
adiabatic connection integrand [4,5,6]. These approximations, however, use
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exact ingredients only for the limit of small coupling strength, and are thus
biased towards the weakly-correlated regime.

A class of approximations that removes this bias is based on the idea of
Seidl and coworkers [7,8,9] to interpolate the adiabatic connection integrand
between its weak and strong interaction limits. This way, information from
both extreme correlation regimes is taken into account on a similar footing.
These interpolations can be done on the global [7,8,9,10,11,12] (i.e., integrated
over all space) ingredients, or in each point of space, using energy densities [13,
14,15]. As well known, energy densities are not uniquely defined and one should
be sure, when doing an interpolation between weak and strong coupling in each
point of space, that all the input local quantities are defined in the same way
[13,14,15,16], which makes the use of semilocal approximations very difficult,
a problem shared with local hybrids [17,18,19,20]. Non-local functionals for
the strong-interaction limit [21,22] or the physical regime [23] are needed in
this context, as full compatibility with the exact exchange energy density is
required.

Interpolations constructed from the global ingredients are in general com-
putationally cheaper than their local counterpart, not only because they can
use semilocal approximations for the strong-interaction functionals, but also
because they do not need energy densities from exact exchange and from
second-order perturbation theory, but only their global values. These global
interpolations are in principle not size consistent, but it has been recently
shown that their size-consistency error can be fully corrected at no additional
computational cost [12], allowing for the calculation of meaningful interaction
energies [12]. On the other hand, in all the tests performed so far on small
chemical systems [14,15], the local interpolations have always been found to
be more accurate than the corresponding global ones for systems with more
than two electrons. In the Helium isoelectronic series, the global and local
interpolation perform similarly [14].

The purpose of the present work is to further compare and analyze local
and global interpolations when the physical system is in different correlation
regimes. In order to disentangle the errors coming from the interpolation itself
from those on the input ingredients, we use a model system, two Coulombically
interacting electrons in the harmonic potential (“Hooke’s atoms”) [24,25,26],
which allows us to explore the whole range from weak to strong correlation
always using exact input ingredients. We also analyze the kinetic correlation
energy density, and particularly how its peak in the origin, which in systems
with Coulomb confinement plays an important role for strong correlation [27,
28,29], varies as the system becomes more and more correlated.
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2 Theoretical Background

2.1 Density fixed adiabatic connection

By defining the λ-dependent density functional Fλ[ρ] in the Levy constrained-
search formalism [30],

Fλ[ρ] ≡ min
Ψ→ρ
〈Ψ |T̂ + λŴ |Ψ〉, (1)

with T̂ the electronic kinetic energy operator, Ŵ the Coulomb electron-electron
interaction operator, and “Ψ → ρ” indicating all fermionic wavefunctions yield-
ing the one-electron density ρ(r), one obtains an exact formula [1] for the XC
energy functional of KS DFT,

Exc[ρ] =

∫ 1

0

Wλ[ρ] dλ. (2)

In Eq. (2) Wλ[ρ] is the global adiabatic connection integrand,

Wλ[ρ] ≡ 〈Ψλ[ρ]|Ŵ |Ψλ[ρ]〉 − U [ρ], (3)

where Ψλ[ρ] is the minimizing wavefunction in Eq. (1) and U [ρ] is the Hartree
repulsion energy. The real parameter λ is a knob that controls the interaction
strength, defining an infinite set of systems all with the same one-electron
density ρ(r) = ρλ=1(r), but with different correlation. The global adiabatic
connection integrand has the known expansions at small and large λ,

Wλ→0[ρ] = W0[ρ] + λW ′0[ρ] + ..., (4)

Wλ→∞[ρ] = W∞[ρ] +
W ′∞[ρ]√

λ
+ ..., (5)

where W0[ρ] = Ex[ρ] is the exact exchange energy (the same expression as the
Hartree-Fock exchange, but with KS orbitals), W ′0[ρ] = 2EGL2

c [ρ] is twice the
Görling-Levy [31] second-order correlation energy (GL2), W∞[ρ] is the indi-
rect part of the minimum possible expectation value of the electron-electron
repulsion in a given density [32], and W ′∞[ρ] is the potential energy of coupled
zero-point oscillations around the manifold that determines W∞[ρ] [33].

2.2 Energy densities

Equation (2) can also be written in terms of real-space energy densities wλ(r; [ρ]),

Exc[ρ] =

∫
dr ρ(r)

∫ 1

0

dλwλ(r; [ρ]), (6)
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which are, of course, not uniquely defined. For the purpose of building λ-
interpolation models on energy densities, the choice of the gauge of the elec-
trostatic potential of the exchange-correlation hole hλxc(r1, r2) seems so far to
be the most suitable [16],

wλ(r) =
1

2

∫
hλxc(r, r2)

|r− r2|
dr2, (7)

where hλxc(r1, r2) is defined in terms of the pair-density Pλ2 (r1, r2) and the
density ρ (see also [34]),

hλxc(r1, r2) =
Pλ2 (r1, r2)

ρ(r1)
− ρ(r2), (8)

with Pλ2 obtained from Ψλ[ρ],

Pλ2 (r, r′) = N(N − 1)
∑

σ,σ′,σ3...σN

∫
|Ψλ(rσ, r′σ′, r3σ3 . . . rNσN )|2dr3 . . . drN .

(9)

Energy density at λ = 0. At λ = 0 we have the Kohn-Sham or exchange hole,
which yields, in the case of a closed-shell singlet considered in this work (with
real orbitals)

w0(r) = − 1

2ρ(r)

N/2∑
i,j

φi(r)φj(r)

∫
dr′

φj(r
′)φi(r

′)

|r− r′|
, (10)

where φi(r) are the occupied KS spatial orbitals.

Slope of the energy density at λ = 0. The slope w′0(r) of the energy density at
λ = 0 in the gauge of Eq. (7) is given, again for a closed shell singlet with real
orbitals, by [14]

w′0(r) = − 1

ρ(r)

∑
abij

4〈ij|ab〉 − 2〈ij|ba〉
εa + εb − εi − εj

φi(r)φa(r)

∫
dr′

φj(r
′)φb(r

′)

|r− r′|
, (11)

where φa and φb are unoccupied and φi and φj are occupied Kohn-Sham
orbitals, 〈ij|ab〉 denotes the Coulomb integral over the spatial orbitals, and
the εi are the Kohn-Sham orbital energies. For systems with N > 2, there
should be also a term with single excitations [31], which we do not consider
here as we focus on N = 2.
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Energy density at λ = ∞. In the λ → ∞ limit we obtain a system of strictly
correlated electrons (SCE), for which it has been shown [13] that

w∞(r) =
1

2

N∑
i=2

1

|r− fi(r)|
− 1

2
vH(r), (12)

where vH(r) is the Hartree potential and fi(r) are co-motion functions that
determine the position of the ith electron given the position r of a chosen
reference electron (as the fi(r) satisfy cyclic group properties it does not matter
which electron is chosen as reference), and are non-local functionals of the
density ρ(r) [32,35].

There is at present no local expression in the gauge of Eq. (7) for the
next leading term W ′∞[ρ] in the λ → ∞ asymptotic expansion. In fact, the
functional W ′∞[ρ] can be computed from an integral on position-dependent
zero-point energies [33], which, however, do not provide an energy density
within the definition of Eq. (7).

2.3 Global and local interpolations

The original idea of Seidl and coworkers [7,8,9] was to build an approximate
adiabatic connection integrand W ISI

λ [ρ] by interpolating between the two limits
of Eqs. (4) and (5). These interaction-strength interpolation (ISI) functionals
typically use as input the four ingredients (or a subset thereof) appearing in
Eqs. (4) and (5): {W0[ρ],W ′0[ρ],W∞[ρ],W ′∞[ρ]}, denoted W in short. The XC
energy functional EISI

xc [ρ] is then obtained from Eq. (2), by integrating W ISI
λ [ρ]

over λ, which will result in a non-linear function of the input ingredients
W. Because of this non linear dependence, the ISI-type functionals are not
size consistent when a system dissociates into unequal fragments, even when
the input ingredients are size-consistent themselves. However, in this latter
case, size-consistency can be easily restored with a very simple correction [12].
The ISI-type functionals are, instead, automatically size extensive [12]. Several
formulas for interpolating between the two limits of Eqs. (4) and (5) have been
proposed in the literature, and are reported in Appendix A.

More recently, these same interpolation formulas have been used to build, in
each point of space, a model energy density wISI

λ (r; [ρ]), with Eqs. (10)-(12) as
input ingredients [14,15]. This way, by integrating wISI

λ (r; [ρ]) over λ between
0 and 1, one obtains an exchange-correlation energy density in the gauge of
the coupling-constant averaged exchange-correlation hole. Such interpolations
done in each point of space are size consistent in the usual DFT sense [36,37].
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Table 1 Values of ω for the various analytic solutions of the hamiltonian of Eq. (13)
considered here, corresponding to different degrees n − 1 of the polynomial in the solution
for the relative coordinate r12 [24].

n ω

2 0.5
3 0.1
4 0.0365373
5 0.0173462
6 0.00957843

2.4 Hooke’s atom series

The Hooke’s atom series consists of two electrons bound by an harmonic ex-
ternal potential, with hamiltonian

Ĥ = −1

2

(
∇2

1 +∇2
2

)
+
ω2

2

(
r21 + r22

)
+

1

r12
, (13)

with ri = |ri| and r12 = |r1 − r2|. At large ω the system has high-density and
is in the weakly correlated regime, which can be fully described by using the
scaled coordinates si ≡

√
ω ri, while as ω → 0 the system becomes more and

more correlated [25], and the relevant scaled variables are s̃i ≡ ω2/3 ri.

As well known, there is an infinite set of special values of ω for which the
hamiltonian (13) is analytically solvable [24] once rewritten in terms of center
of mass and relative coordinates. These analytic solutions have the center of
mass in the ground-state of an harmonic oscillator with mass m = 2 and
frequency

√
2ω, and the relative coordinate in an s-wave with the radial part

described by a gaussian times a polynomial [24]. We denote here the various
analytic solutions with the degree n − 1 of the polynomial in r12. At n = 1
we have the non-interacting system, and as n increases the system becomes
more and more correlated, with ω smaller and smaller [24]. The values of
ω corresponding to the different values of n considered here are reported in
Table 1.

3 Computation of exact energy densities

Given the analytic solutions [24] Ψ(r1, r2, r12) of the hamiltonian (13) for n =
2, . . . , 6, we have computed the corresponding densities ρ(r), which are also
analytic. Although leading to cumbersome expressions, these densities allowed

us to obtain analytic Kohn-Sham potentials vs(r) =
∇2
√
ρ(r)

2
√
ρ(r)

+ ε, with ε =

E2 − E1, the energy difference between the physical state with two and one
electrons.
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Fig. 1 Energy densities at λ = 0 for the Hooke’s atoms series with n = 2, . . . , 6, correspond-
ing to the ω values of Table 1. In the second panel the energy density has been multiplied
by the density and by the volume element. The high-density scaling has been used.

3.1 Energy densities at λ = 0

For a singlet N = 2 state Eq. (10) reduces to w0(r) = − 1
4vH(r), with vH(r)

the Hartree potential, leading to the simple expression

w0(r) = −π
∫ ∞
r

r′ρ(r′) dr′ − Ne(r)

4 r
, (14)

with the cumulant Ne(r) defined as

Ne(r) = 4π

∫ r

0

r′2ρ(r′) dr′. (15)

We have obtained these energy densities analytically from the exact densities.
They are shown in Fig. 1 for the different analytic solutions considered here.

3.2 Energy densities for the slope at λ = 0

The analytic exact Kohn-Sham potentials were used to obtain the virtual
Kohn-Sham orbitals needed for the evaluation of Eq. (11). We used an isotropic
spherical Gaussian basis with ω as the width parameter. Angular momentum
values were included from l = 0 to l = 9, with 5 to 30 basis states for ev-
ery value of l. All matrix elements were obtained analytically in this basis,
including the Coulomb integrals.

We first analyze the convergence of the global slope of the coupling constant
integrand, W ′0 = 2EGL2

c , with increasing basis set size nbasis in the first panel
of Fig. 2. The number of basis states is that per angular momentum quantum
number, with all l up to l = 9 included. As ω decreases (the quantum number
n increases), the l = 0 contribution becomes less important, with the l > 0
contributions gaining more weight, as shown in the second panel of Fig. 2,
where the result from each channel l with nbasis = 30 is reported.

For the local slope w′0(r) only 10 basis states are used. In the present
case of a two-electron system, w′0(r) can also be simplified, as there is only
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Fig. 2 Convergence of W ′
0 = 2EGL2

c with the size nbasis of the gaussian basis set used to
expand the KS orbitals, relative to nbasis = 30, (first panel) and contribution of the different
angular momentum l (second panel)
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Fig. 3 The local slope (first panel) and the local slope multiplied by the volume element
and density (second panel).

one occupied Kohn-Sham spatial orbital. Additional utilization of the spherical
symmetry then yields the following expression, by using the spherical harmonic
expansion of the Coulomb potential,

w′0(r) = − 2

ρ(r)

∑
nanbl

1

εa + εb − 2εocc
〈(occ)(occ)|ab〉

R0
occ(r)R

l
na

(r)(r−l−1
∫ r

0

dr′r′l+2R0
occ(r

′)Rlnb
(r′)

+rl
∫ ∞
r

dr′r′−l+1R0
nj

(r′)Rlnb
(r′)),

(16)

where the functions Rln(r) are the radial functions of the spatial orbitals and
occ is the occupied Kohn-Sham orbital. The full local slope is shown in the
first panel of Fig. 3. Numerical issues appear at around the scaled variable
values s & 4.5, but this is of no relevance to the integrated energy as it is clear
upon multiplication by the volume element and the density (second panel of
Fig. 3).
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Fig. 4 Energy densities corresponding to λ = ∞ (first panel), and energy densities corre-
sponding to λ = ∞ multiplied by the density and the volume element (second panel). The
coordinates and energy densities are scaled according to the large ω limit.

3.3 Energy densities at λ =∞

The energy density w∞(r) of Eq. (12) in the case of N = 2 electrons in a
spherical density is known to be determined by the radial co-motion function

f(r), which gives the full f(r) via f(r) = − f(r)r r [38,32,39,13], yielding

w∞(r) =
1

2(r + f(r))
− 1

2
vH(r). (17)

In turn, f(r) is a fully non-local functional of the density ρ(r), given in terms
of the cumulant Ne(r) of Eq. (15) and its inverse N−1e ,

f(r) = N−1e (2−Ne(r)). (18)

In Fig. 4, we report the energy densities w∞(r) for the analytical solutions
corresponding to the ω values of Table 1.

3.4 Energy densities at λ = 1

Since we have exact analytic wavefunctions we can also compute the exact
energy densities at physical coupling strength λ = 1, which can be used to test
the accuracy of local interpolations between λ = 0 and λ =∞, as well to study
features of the energy densities as the interaction strength is changed. The
exact w1(r) are reported in Fig. 5. We see that the physical energy densities
w1(r) for the Hooke’s atom series differ more among each other at large r,
unlike w0(r) and w∞(r). This is clearer if we look at the correlation energy
density wc(r) = w1(r) − w0(r), which is reported in Fig. 6. The correlation
energy density wc(r) decays ∝ − 1

r3 , but with different coefficients for different
values of ω.

A comparison of the three energy densities w0, w1 and w∞ is given in
Fig. 7 for the Hooke’s atom with n = 6. An interesting feature of these energy
densities, already observed in Ref. [13], is that for large r it can be seen that
w1(r) < w∞(r), while for the corresponding global quantities we have the
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Fig. 5 Energy densities corresponding to λ = 1 (first panel), and energy densities corre-
sponding to λ = 1 multiplied by the density and the volume element (second panel). The
coordinates and energy densities are scaled according to the large ω limit.
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Fig. 6 Correlation energy densities (first panel) and correlation energy densities multiplied
by the density and the volume element (second panel). The coordinate and energy density
are scaled according to the large ω limit

strict inequality W1[ρ] > W∞[ρ]. However taking w1(r) ≈ w∞(r) for large r
only has a small effect on the energy even for the most strongly correlated
Hooke’s atom considered here (n = 6), as it becomes clear once the energy
densities are multiplied by the density and the volume element (second panel
of Fig 7), which is what ultimately determines the correlation energy. This
crossing of energy densities has never been observed, so far, in systems with
the Coulomb external potential.

4 Results from global and local interpolations

4.1 Interpolations using global ingredients

The global ingredients W0[ρ], W ′0[ρ] have been obtained as described in Sec-
tions 3.1 and 3.2, while W∞[ρ] has been obtained by integrating the energy
density of Eq. (17). Additionally, we have also obtained W ′∞[ρ] of Eq. (5),
which in this case is given by [33]

W ′∞[ρ] =
1

2

∫ ∞
0

4π r2
ρ(r)

2

(
ω1(r)2 +

ω2(r)2

2

)
dr, (19)
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Fig. 7 Energy densities for the most strongly correlated Hooke’s atom considered here
(n = 6), at different values of λ (first panel). In the second panel the energy densities have
been multiplied by the density and the volume element.
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Fig. 8 The scaled adiabatic connection integrand as a function of λ obtained from a Padé
interpolation that includes the exact W1[ρ] (see Appendix A).

with

ω1(r)2 =
r2 + f(r)2

rf(r)(r + f(r))3
(20)

ω2(r)2 = − 2(1 + f ′(r)2)

f ′(r)(r + f(r))3
, (21)

and with f(r) given by Eq. (18). Notice that f ′(r) < 0, so that ω2(r)2 > 0.
We have used the interpolation formulas reported in Appendix A, namely

SPL [7], LB [40], ISI [9] and revISI [33]. The first two, SPL and LB, use only
three ingredients (they do not include W ′∞[ρ]), while ISI and revISI use all
the four ingredients of Eqs. (4)-(5). Additionally, we have also used a Padé
approximant (see Appendix A) which uses W0[ρ],W ′0[ρ] and the exact W1[ρ],
to generate plausible reference adiabatic connection curves, which are shown
in Fig. 8. As expected, as the Hooke’s atoms get more correlated, the AC
integrand displays a stronger curvature.

The error resulting in the correlation energy Ec[ρ] with the different global
interpolations is shown in Fig. 9. We consider only the correlation energy,
since all the methods utilize 100% exact exchange. The Padé method performs
best as expected, since it uses the exact W1, which in practical situations is
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Fig. 10 Errors in the exchange-correlation energy resulting from the application of several
global interpolations and approximations (see text).

unavailable. The LB interpolation formula performs second best, while SPL,
containing the same ingredients, performs much worse. The ISI and revISI
methods improve slightly the SPL formula, but are still outperformed by LB,
despite containing more exact information in the form of W ′∞[ρ].

For comparison with traditional Density Functional Approximations (DFAs),
such as the local density approximation (LDA) [41] and the PBE GGA [42],
we show the error in the exchange-correlation energy Exc[ρ] in the first panel
of Fig. 10. It is clear that the adiabatic connection interpolation methods
outperform the PBE method, however at the increased computational cost
of a double hybrid. In the second panel of Fig. 10 we compare the perfor-
mance of LDA (PW92 [41]) with GL2 alone and with the λ→∞ expansion of
Eq. (5) alone, which yields Exc[ρ] = W∞[ρ] if we retain only the first term, and
Exc[ρ] = W∞[ρ] + 2W ′∞[ρ], if we include also the second term. The LDA per-
forms poorly already for the first Hooke’s atom and its performance worsens as
correlation increases. The GL2 method works well for the first Hooke’s atom,
which is expected since its adiabatic connection integrand resembles a straight
line in Fig. 8, but it is way too negative for the exchange-correlation energy
in the more correlated Hooke’s atoms. The λ→∞ expansion alone performs
better as the Hooke’s atoms become more correlated, but with the first term
only is still too negative by about 15% in the strongest correlated Hooke’s
atom. Adding the second term contribution reduces the error for n > 3, and
the resulting XC energy becomes now less negative than the exact one.
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Fig. 11 Error δwc(r) = wc,exact(r) − wc,model(r) multiplied by the volume element and
density obtained with the LB approximation (first panel) and error in w̄c(r) obtained with
the same LB approximation (second panel). The high density scaling is applied. For the LB
interpolation formula, see Appendix A

4.2 Interpolations on energy densities

As already mentioned at the end of Sec. 2, an expression for the energy density
corresponding to W ′∞[ρ] in the gauge of Eq. (7) is not available. For this rea-
son, we can only test local interpolations using the LB and SPL interpolation
formulas, which do not use the information from W ′∞[ρ]. We first compare
the resulting wc(r) = w1(r) − w0(r) from the two interpolation formulas in
the first panels of Figs. 11 (LB) and 12 (SPL) with the exact result obtained
from the analytic wavefunctions. The errors are small on an absolute scale,
so we show in both figures δwc(r) = wc,exact(r)− wc,model(r) and include the
volume element and density. Notice that δwc(r) = δw1(r) since we use the
exact w0(r) in the construction of both the LB and SPL approximations. In
order to assess the coupling constant integrated energy density w̄c, which is
not known exactly for any of the Hooke’s atoms, we compare it with the one
obtained from the Padé interpolation, which includes the exact w0(r), w′0(r)
and w1(r).

We see that in the case of LB there is an over-estimation of the coupling-
constant averaged energy density at small r, which cancels quite well with an
underestimation at large r, achieving almost perfect error cancellation. In the
case of SPL, there is a smaller overestimation of the correlation at small r,
coupled with a stronger underestimation of the correlation energy at large r,
which worsens its performance.

4.3 Comparison between global and local interpolations

Of interest is then comparing the performance of the global and local variants
of the Padé, LB and SPL interpolations. In Fig. 13 the relative error on the
correlation energy obtained from the local and global interpolation is shown,
where in this case we use for both 10 basis states per angular momentum
quantum number for the slope. In the case of the Padé interpolation the per-
formance worsens only slightly going from the global to the local interpolation,
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Fig. 13 Comparison of the local and global adiabatic interpolations in terms of the relative
error in the correlation energy Ec.

while for the SPL interpolation there is a dramatic worsening. In the case of
the LB interpolation the error switches sign for n ≥ 3 and in general worsens.

This is somehow surprising as, instead, for small chemical systems the local
interpolations have been found to outperform their global counterparts [15,14].

5 Kinetic correlation energy densities

The coupling-constant integration is one possible way to recover the correlation
part due to the difference between the true, interacting, kinetic energy T [ρ]
and the Kohn-Sham kinetic energy Ts[ρ], Tc[ρ] = T [ρ]− Ts[ρ]. We have

Tc[ρ] =

∫
ρ(r)(w(r)− w1(r)) dr, (22)

where w(r) is obtained by integrating wλ(r) over λ between 0 and 1. Equa-
tion (22) defines a possible kinetic correlation energy density equal to w(r)−
w1(r).

Another correlation kinetic energy density that has been defined [27] and
studied [43,44,45] in the literature, and that has been found to display very
interesting features for strongly correlated systems [46,28,29,47], arises from
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the work of Baerends and coworkers [27,43,44,45],

vc,kin(r) =
1

2

∫ (
|∇rΦ(2, ..., N |r)|2 − |∇rΦs(2, ..., N |r)|2

)
d2..dN, (23)

where Φ(2, ..., N |r) is a conditional amplitude defined in terms of a wavefunc-
tion Ψ and its density ρ,

Φ(2, ..., N |1) =

√
N

ρ(1)
Ψ(1, ..., N), (24)

1, ...N denote the spatial and spin coordinates of the N electrons, and in
Eq. (23) we consider the conditional amplitude from the exact wavefunction
(denoted with Φ) and for the KS determinant (denoted with Φs). Equation (23)
can also be rewritten in several different interesting and more practical forms,
for example in terms of first order density matrices, or in terms of natural
orbitals, or with Dyson orbitals (see, e.g., [43,44,45,48,49,50,51,52,53]). In
the present case of N = 2 electrons, Eq. (23) takes the simple form

vc,kin(r) =
1

2ρ(r)

∫
|∇rΨ(r, r′)|2dr′ − |∇ρ(r)|2

8ρ(r)2
, (25)

where Ψ(r1, r2) is the exact ground-state wavefunction of the interacting sys-
tem.

Both w(r)− w1(r) and vc,kin(r) integrate to Tc[ρ] when multiplied by the
density ρ(r), but they describe the kinetic correlation energy locally in a dif-
ferent way. Here we compare the features of these two definitions, as the cor-
relation kinetic energy is important to capture strong correlation. Also, very
recently, it has been proposed to use the correlated kinetic energy density as
an additional variable in an extended KS DFT theory for lattice hamiltoni-
ans [54], and it is thus important to understand which definition is the most
suitable to generalize this theory to the continuum.

In Fig. 14 we show the two different kinetic correlation energy densities,
where for w(r) we have used the integration over λ of the Padé model, which
uses the exact w0, w′0 and w1 as input. We see that the two are rather different:
vc,kin(r) displays a peak in the center of the harmonic trap, reminiscent of the
one appearing in a stretched bond [27,28,29,47], while w(r)− w1(r) displays
a weaker peak, which is not located at the center.

5.1 Analysis of the peak of vc,kin(r)

In the case of a stretched bond, it has been shown that the height of the peak of
vc,kin(r) at the midbond saturates as the bond is stretched [28], displaying an
anomalous scaling [29], which is the way in which exact KS DFT can describe
Mott-insulator physics [29], and which is not captured by any approximate XC
functional. In the low-density (small ω or large n) Hooke’s atom, the system
forms a “Wigner molecule”, with the maximum of the density located away
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Fig. 14 The two kinetic correlation energy densities of Eqs. (22) and (23) for the different
Hooke’s atoms considered here. The high density scaling is applied.
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Fig. 15 The peak vc,kin(0) as a function of ω. The first three orders in the small-ω (strong
correlation) expansion are compared with the values (dots) from the exact wavefunctions of
Taut [24], and with the large-ω (weak correlation) expansion.

from the center of the harmonic trap. It is interesting to analyze how the height
vc,kin(0) of the peak scales when the system becomes very correlated (ω → 0),
as in Fig. 14 it seems to saturate when one uses the high-density scaling.

For any 2-electron wavefunction of the form Ψ(r1, r2, r12) = e−
ω
2 (r21+r

2
2)p(r12),

the peak’s height is given by the simple expression

vc,kin(0) =

∫∞
0
e−ωx

2

x2 p′(x)2 dx

2
∫∞
0
e−ωx2 x2 p(x)2 dx

. (26)

We have used up to the second-order of the small-ω (strong correlation) expan-
sion of the exact wavefunction [25], finding that in the scaling used in Fig. 14
the peak does not saturate, but eventually will decrease and then go to zero
very slowly, as ω1/6. In Fig. 15, we show the peak’s height as a function of
ω for the analytic solutions, compared to the first three orders in the small-ω
(strong correlation) expansion (Eq. (32) of [25]), and with the large-ω (weak
correlation) expansion (Eq. (22) of [25]). We see that the strong-correlation
expansion for the peak is much more accurate than ordinary perturbation the-
ory from the weak correlation limit even for very moderate correlation (the
Hooke’s atom with ω = 1/2 resembles the He atom as far as the degree of
correlation is concerned).
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6 Conclusions

We have analyzed the performances of exchange-correlation functionals built
from global and local interpolations between the weak- and the strong-interaction
limits of DFT for the Hooke’s atom series. This case study allows for the use of
exact analytical input ingredients, thus disentangling the errors coming from
the interpolation itself from those on the input quantities. Surprisingly, we
have found that for these systems the global interpolations always outperform
their local counterparts, in striking contrast with what had been observed so
far for small chemical systems [14,15].

We have also compared two different definitions of the kinetic correlation
energy density, which plays a crucial role for strongly correlated systems [28,
29], and that can help in understanding how to extend to the continuum a
KS theory that recovers the exact kinetic energy density recently proposed for
lattice models [54].

Acknowledgements Financial support from European Research Council under H2020/ERC
Consolidator Grant corr-DFT (Grant Number 648932) is acknowledged. We thank S. Gia-
russo and S. Vuckovic for insightful discussions.

A Interpolation Formulas

In the following we report the interpolation formulas in terms of the global ingredients W0,
W ′

0, W∞ and W ′
∞. For the interpolation on energy densities, we have used the same SPL,

LB and Padé[1/1] formulas below in each point of space, replacing the global quantities Wi

with their local counterparts wi(r).

Interaction Strength Interpolation (ISI) formula [9,8]

W ISI
λ = W∞ +

X
√

1 + λY + Z
, (27)

with

X =
xy2

z2
, Y =

x2y2

z4
, Z =

xy2

z3
− 1 ; (28)

x = −2W ′
0, y = W ′

∞ , z = W0 −W∞ . (29)

After integration in Eq. (2), we have

EISI
xc = W∞ +

2X

Y

[√
1 + Y − 1− Z ln

(√
1 + Y + Z

1 + Z

)]
. (30)

Revised ISI (revISI) formula [33]

W revISI
λ = W∞ +

b
(
2 + cλ+ 2d

√
1 + cλ

)
2
√

1 + cλ
(
d+
√

1 + cλ
)2 , (31)

where

b = −
4W ′

0(W ′
∞)2

(W0 −W∞)2
, c =

4(W ′
0W

′
∞)2

(W0 −W∞)4
,

d = −1−
4W ′

0(W ′
∞)2

(W0 −W∞)3
. (32)
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The corresponding XC functional is

ErevISI
xc = W∞ +

b
√

1 + c+ d
. (33)

Seidl-Perdew-Levy (SPL) formula [7]

WSPL
λ = W∞ +

W0 −W∞√
1 + 2λχ

, (34)

with

χ =
W ′

0

W∞ −W0
. (35)

The SPL XC functional reads

ESPL
xc = (W0 −W∞)

[√
1 + 2χ− 1− χ

χ

]
+W0 . (36)

Notice that this functional does not make use of the information from W ′
∞.

Liu-Burke (LB) formula [40]

WLB
λ = W∞ + β(y + y4) , (37)

where

y =
1

√
1 + γλ

, β =
W0 −W∞

2
, γ =

4W ′
0

5(W∞ −W0)
. (38)

Using Eq. (2), the LB XC functional is found to be

ELB
xc = W0 + 2β

[
1

γ

(√
1 + γ −

1 + γ/2

1 + γ

)
− 1

]
. (39)

Also the LB functional does not use the information from W ′
∞.

Padé[1/1] formula with the exact W1 [55]

WPade
λ = a+

b λ

1 + c λ
, (40)

with

a = W0 (41)

b = W ′
0 (42)

c =
W1 −W0 −W ′

0

W0 −W1
, (43)

yielding

EPade
xc = a+ b

(
c− log(1 + c)

c2

)
(44)
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