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Gauge symmetries play a key role in physics appearing in areas such as quantum field theories
of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by
the desire to efficiently simulate many-body quantum systems with exact local gauge invariance,
gauge equivariant neural-network quantum states are introduced, which exactly satisfy the local
Hilbert space constraints necessary for the description of quantum lattice gauge theory with Zd
gauge group and non-abelian Kitaev D(G) models on different geometries. Focusing on the special
case of Z2 gauge group on a periodically identified square lattice, the equivariant architecture is
analytically shown to contain the loop-gas solution as a special case. Gauge equivariant neural-
network quantum states are used in combination with variational quantum Monte Carlo to obtain
compact descriptions of the ground state wavefunction for the Z2 theory away from the exactly
solvable limit, and to demonstrate the confining/deconfining phase transition of the Wilson loop
order parameter.

Introduction – Quantum many-body systems defined
on a lattice with local gauge invariance occur ubiq-
uitously in the description of physics at diverse en-
ergy scales — they appear in the effective theories of
many-electron systems [1] and topological phases [2], in
bosonization of two-dimensional lattice fermions [3, 4],
and in the microscopically regulated description of inter-
acting elementary particles in the Standard Model [5].
Quantum lattice gauge theories are characterized by the
fact that the physical states span a subspace of the many-
body Hilbert space which is defined by satisfying a set
of local operator constraints. These operator constraints
gives rise to group invariance of the associated wavefunc-
tion, called gauge invariance.

Because of the analytic intractability of gauge the-
ories, it is important to develop techniques for simu-
lating them. Methods such as lattice-gauge theory [6]
accomplish this via a quantum-classical mapping which
rewrites the quantum problems as a statistical mechan-
ics problem in one higher dimension. This mapping
can only be done for sign-free problems without intro-
ducing a ‘negative’ weight in the statistical mechanics
model which induces either an exponential cost in the
simulations or the need for additional approximations
to mitigate the sign-problem. Alternatively, quantum
gauge theories can be simulated using variational meth-
ods based on compact parameterizations of many-body
wavefunctions. DMRG [7], a variational approach based
on matrix-product states, has been extensively used to
analyze gauge theories [8]. While DMRG is efficacious
for one-dimensional systems, the bond-dimension of the
matrix product state needed to accurately represent the
ground state grows exponentially with width in higher
dimensions.

Machine-learning techniques based on a neural-
network variational representation of quantum states [9],
have extended the scope of variational methods by ac-
curately representing low-energy states of strongly corre-
lated systems in two or more spatial dimensions [10–18].
Imposing physical symmetries in neural-network quan-
tum states is a very active research topic [19, 20] that
reflects the broader need to impose symmetries in ma-
chine learning applications to physics [21]. Our work fur-
ther extends the scope of neural-network quantum states
by developing gauge equivariant neural networks which
are special-purpose variational families of wave-functions
that are explicitly gauge invariant.

Our work is inspired by recent developments of group-
invariant networks with group equivariant layers. These
have found applications both in data-science and physics.
For data-science, the data-generating process is often as-
sumed to be invariant under a symmetry groupG [22, 23].
For example, Ref. 24 derived equivariant layers starting
from the assumption that the input data transforms co-
variantly as a tensor field on a Riemannian manifold.
Very recently, gauge equivariant networks have been con-
structed and variationally optimized using the reverse-
relative entropy to approximate the Gibbs distribution
associated with the Euclidean action functional for lat-
tice Yang-Mills in the case of abelian U(1) [25] and sub-
sequently non-abelian SU(N) gauge group [26] (a differ-
ent gauge-equivariant construction for this non-abelian
group is also considered in [27]). The approach of [25, 26],
which is closely related to variational inference [28], relies
on the existence of an analytic continuation between the
quantum theory and a positive-definite Gibbs measure,
which presents a challenge in the presence of fermions,
however, due to the well-known sign problem.
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The paper is organized as follows. The Z2 gauge theory
Hamiltonian is introduced using a notation that general-
izes to the Zd gauge group and higher dimensional models
such as 3D toric code and X-cube model (explicitly de-
scribed in SM III and IV). The general construction of
the gauge equivariant neural network is then described.
Gauge equivariant neural wavefunctions are variationally
optimized using variational Monte Carlo on square lat-
tices up to system size 12×12, demonstrating the transi-
tion of Wilson loop order parameters from perimeter to
area law.

Z2 Gauge Theory – We start by briefly reviewing the
formulation of the lattice gauge theory for the simplest
non-trivial gauge group Z2 = {−1, 1}. The generaliza-
tion to Zd and higher dimensional models, such as 3D
toric code and X-cube model, are discussed in Sec. III
and IV of the Supplemental Material. We consider the
Hamiltonian with Z2 fields on the edges e ∈ E of a peri-
odic square lattice,

H = −J
∑
f∈F

Bf − h
∑
e∈E

Xe , (1)

with Bf :=
∏
e∈f Ze, where F is the set of the smallest

1 × 1 plaquettes � on the lattice, e ∈ f are the edges
around plaquette f and Ze, Xe are the usual Pauli ma-
trices. Let V be the set of vertices on the lattice. In
order to define the Hilbert space of physical states, de-
fine a local operator for each vertex v ∈ V consisting of
the product of Pauli-X operators incident on the given
vertex, Av :=

∏
e3vXe, where e 3 v indicates the edges

containing v. These vertex operators commute amongst
themselves, commute with the Hamiltonian H and have
eigenvalues ±1. In this work we focus on the so-called
even gauge theory in which the physical Hilbert space
Hphys is chosen to be the +1 eigenspace of all vertex
operators,

Hphys := {|ψ〉 ∈ H : Av|ψ〉 = |ψ〉 ∀v ∈ V } . (2)

Since the vertex operators satisfy the global operator
identity

∏
v∈V Av = 1, it follows that only |V | − 1 of

the constraints defining Hphys are independent. The di-
mension of physical state space is therefore found to be

dimHphys = 2|E|

2|V |−1 = 2L
2+1. Further details on the de-

scription of the Hilbert space are provided in Sec. I of
the Supplemental Material.

The Z2 gauge theory is exactly solvable in both the
weak coupling (h → 0) and strong coupling (h → ∞)
limits. For infinite transverse field h = ∞ the non-
degenerate ground state is simply the uniform superpo-
sition state |+〉⊗E which is manifestly gauge invariant,
where |+〉 satisfies X|+〉 = |+〉. In the opposite extreme
of h = 0, the ground states are also eigenstates of all
Bf and are four-fold degenerate. As shown originally
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FIG. 1. (a) Gauge equivariant neural network architecture.
(b) Gauge equivariant block. (c) Gauge invariant block. For
(b) and (c), the convolution neural network (CNN) compo-
nent uses channel=2, stride=1, activation function=leaky relu
and periodic boundary padding. The kernel size in CNN is
different for different systems sizes.

by Wegner using duality arguments [29], the uniform su-
perposition |+〉⊗E and the ground states at h = 0 cor-
respond to different phases of matter, which are distin-
guished by the expectation value of a non-local operator
called the Wilson loop which is defined for any closed
curve C ⊆ E on the lattice as follows

ŴC :=
∏
e∈C

Ze . (3)

Wegner found a critical value of the transverse field hc

separating a deconfined phase for h < hc in which 〈ŴC〉
decays exponentially with the perimeter of C, from a
confined phase where 〈ŴC〉 decays exponentially with
the area enclosed by C.
Gauge equivariant neural networks – We present now

a neural network which explicitly preserves the gauge
invariance of the wave-function. The classical config-
uration space ZE2 can be regarded as a subset of the
continuous vector space CE := CL×L×2 consisting of
tensors with shape (L,L, 2), where the edge e is speci-
fied by the vertex v ∈ V indexed by the first two axes
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and the direction µ ∈ {x̂, ŷ} indexed by the third axis.
The components of an arbitrary tensor φ ∈ CE will
then be indexed as φµ(v) where v ∈ V and µ ∈ {x̂, ŷ}.
The action of the gauge group on the space of (L,L, 2)
tensors is described as follows. Given a square matrix
Ω ∈ {−1, 1}V := {−1, 1}L×L, we define a gauge trans-
formation gΩ : CE → CE by the following rule,

(gΩ · φ)µ(v) := Ω(v)φµ(v)Ω(v + µ) , (4)

where Ω(v) and Ω(v+µ) denote the entries of the matrix
Ω at the lattice location v ∈ V and the shifted lattice
location v+µ ∈ V , assuming boundaries are periodically
identified. It is straightforward to show that the gauge
transformation associated with Hilbert space operator Av
is given by gΩv

where Ωv is defined for each v′ ∈ V by,

Ωv(v
′) =

{
−1, v′ = v

+1, v′ 6= v
. (5)

A wave-function which obeys the Gauss law constraint is
then one in which

Ψ(gΩv
· φ) = Ψ(φ), (6)

for the case where φ ∈ ZE2 . Let us call a function
h : CE → C gauge invariant if it satisfies h(gΩ ·φ) = h(φ)
for all gΩ and a function f : CE → C gauge equivariant
if it satisfies f(gΩ · φ) = gΩ · f(φ) for all gΩ. A wave-
function which consists of multiple layers of gauge equiv-
ariant functions interwoven with pointwise nonlinearities
followed by a final gauge invariant layer is guaranteed to
obey Eq. 6 since group equivariance is preserved by com-
posure and pointwise nonlinearities. In the following, we
construct neural network blocks which are equivariant
and invariant respectively.

Gauge Equivariant Layer – The construction of the
gauge equivariant layer parallels the construction found
in [25], applied to discrete abelian groups. Given vertices
v, v′ ∈ V and a path γ ⊆ E from v to v′, consisting of a
sequence of adjacent edges, we define the Wilson path as
the function Wγ : CE → C given by the formula,

Wγ(φ) :=
∏
e∈γ

φe . (7)

It is easy to show that for any Ω and any path γ from
v to v′ we have

Wγ(gΩ · φ) = Ω(v)Wγ(φ)Ω(v′) . (8)

The above Wilson path is the fundamental primitive from
which the gauge-equivariant layers will be constructed.
Note that if γ is a closed curve C then the function WC

is gauge invariant.
Consider a fixed equivariant layer described by the

equivariant function f : CE → CE . Each such layer
is specified by decorating the edges e = (v, v+ µ) ∈ E of
the lattice with the following data

FIG. 2. The variance (top) and the energy difference be-
tween the exact ground state (bottom) of the gauge equivari-
ant network, gauge invariant network (no equivariant layers)
and RBM on a 3 × 3 lattice of Eq. 1. The details of the
above networks are provided in Sec. VI of the Supplemental
Material.

1. A path γe ⊆ E from v to v + µ

2. A collection of ne ≥ 1 closed curves Ce1 , . . . C
e
ne

3. A parametrized neural network he : Cne → C

From the above data we construct a gauge-equivariant
function f : CE → CE defined for all φ ∈ CE by the rule
f : φe 7→ fe(φ), where

fe(φ) := Wγe(φ)he
(
WCe

1
(φ), . . . ,WCe

ne
(φ)
)
. (9)

The equivariance follows directly from Eq. (8). The ex-
plicit calculation is outlined below for convenience of the
reader,

fe(gΩ · φ) = he
(
WCe

1
(gΩ · φ), . . . ,WCe

n
(gΩ · φ)

)
Wγe(gΩ · φ)

= he
(
WCe

1
(φ), . . . ,WCe

n
(φ)
)
Ω(v)Wγe(φ)Ω(v + µ)

= Ω(v)fe(φ)Ω(v + µ) (10)

=
(
gΩ · f(φ)

)
e
. (11)

Numerical Experiments – Here we determine the
phase diagram of Eq. 1 for different values of the trans-
verse field h. When h = 0, we can analytically write a
network which exactly represents the ground state with a
single gauge invariant block (and no equivariant blocks),
which is detailed in Sec. II of the Supplemental Mate-
rial. For all h, we use variational Monte Carlo to approx-
imately determine the ground states on square lattices.
The family of variational wavefunctions is summarized
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FIG. 3. The variance (top) and the energy difference be-
tween the exact ground state (bottom) of the gauge equiv-
ariant network, gauge invariant network (no equivariant lay-
ers) and RBM on a 3 × 3 lattice of H = −

∑
f∈F

∏
e∈f Ze −∑

e∈E Xe − Jy
∑
f∈F

∏
e∈f Ye. The details of the above net-

works are the same as Fig. 2.
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FIG. 4. The ground state expectation value of rectangle
Wilson loops of size l1 × l2 (l1, l2 ≤ 4) as a function of the
enclosed area AC in the confining phase for h > hc (Top) and
of the enclosed perimeter PC in the deconfined phase for h <
hc (Bottom) on a 12 × 12 lattice. The linear fit to the log-

linear plot is consistent with area law scaling 〈ŴC〉 ∼ e−αAC

with best fit parameter α = 0.185 and a perimeter law scaling

〈ŴC〉 ∼ e−α
′PC with best fit parameter α′ = 0.00718.a

a Due to the smallness of α′, we note that a linear fit of 〈ŴC〉
versus PC is also consistent with the data.
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FIG. 5. Based on the optimized gauge equivariant states on
L × L lattices as a function of h, it shows (Top): derivative
of the energy per site calculated by the Hellmann-Feynman
theorem. (Bottom): Magnitude of k1 (solid) and k2 (dotted)

for fitting log〈ŴC〉 = k1AC + k2PC + b with area Ac and
perimeter Pc. The changes at around h = 0.30 in the top
figure and the increase in Ac in the bottom figure suggest the
confined/deconfined phase transition.

graphically in Fig. 1. It consists of multiple gauge equiv-
ariant layers, in which the gauge invariant Wilson loop
features within each layer were chosen to consist of all
elementary plaquettes of the form γe = �. The gauge
equivariant Wilson path associated with each edge e is
chosen to be the curves of the form u and @ ending on
e. Real-valued weights and biases are used in all neural
networks. The neural networks he are chosen to be con-
volutional neural network with periodic padding to cap-
ture symmetry and facilitate transfer learning. Residual
layers or equivalently skip connections, which are mani-
festly gauge equivariant, are also employed. The neural
network parameters are optimized using the Stochastic
Reconfiguration algorithm [30]. Further details about the
architecture and optimization are provided in Sec. V of
the Supplemental Material.

We start with a benchmark of the hamiltonian in
Eq. 1 on a 3 × 3 square lattice by comparing gauge
equivariant neural network, gauge invariant network, re-
stricted Boltzmann machine (RBM) and exact diago-
nalization, where Fig. 2 presents the energy and vari-
ance. In addition, we benchmark a hamiltonian with
a sign problem H = −J

∑
f∈F

∏
e∈f Ze − h

∑
e∈E Xe −

Jy
∑
f∈F

∏
e∈f Ye for J = h = 1, which results are shown

in Fig. 3. The number of variational parameters for the
above three neural networks are 66, 24 and 1044 respec-
tively. It can be seen that even with small number of pa-
rameters, the gauge equivariant neural network achieves
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better performance than the RBM and attains accurate
results close to the exact. We further apply our method
to larger square lattices of size L×L with L ∈ {8, 10, 12}.
It is known that the Wilson loop expectation value 〈ŴC〉
decays exponentially with area law for h > hc and with
perimeter law for h < hc [31]. In Fig. 4, the variational
wave function is shown to capture the area law and the
perimeter law behaviors of the Wilson loop in the corre-
sponding regimes and attains the related decay factors.
In Fig. 5, we compute the energy derivatives and per-
form a simultaneous fitting of area and perimeter law
for log〈ŴC〉 with different h. The changes of the data
at around h = 0.3 suggest a deconfinement/confinement
phase transition, which is consistent with [32, 33].

Discussion and future directions – In this work, we
have showed how to use gauge equivariant networks
to represent variational states which exactly obey local
gauge constraints. This significantly expands the space
of models whose phase diagrams can now be numerically
established. For example one could variationally explore
the phase diagrams of the Zd lattice gauge theory for
d > 2 (see SM III); the 3D Toric-Code (SM IV); X-cube
fracton model (SM IV) or Kitave D(G) models (SM V)
with external field; or models with disorder. Another
interesting application would be to relax the restriction
to the even sector of the gauge theory and explore the
physics of different gauge sectors. Beyond the explicit
constructions given here, it will be interesting to further
extend the reach of such networks by generalizing the
approach described in this work to models with different
gauge symmetries or constraints from gauging subsystem
symmetries. Finally, the ability to exactly employ gauge
constraints variationally has potential to have impact be-
yond ground state calculations for example in overcoming
obstacles in optimizing combinatorial structures [34] or
in successful quantum-state tomography [35].
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network solution of the electronic schrödinger equation,”
(2019), arXiv:1909.08423 [physics.comp-ph].

[13] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G.
Melko, and J. Carrasquilla, Phys. Rev. Research 2,
023358 (2020).

[14] J. Stokes, J. R. Moreno, E. A. Pnevmatikakis, and
G. Carleo, Phys. Rev. B 102, 205122 (2020).

[15] O. Sharir, Y. Levine, N. Wies, G. Carleo, and
A. Shashua, Phys. Rev. Lett. 124, 020503 (2020).

[16] S. Lu, X. Gao, and L.-M. Duan, Phys. Rev. B 99, 155136
(2019).

[17] X. Gao and L.-M. Duan, Nature Communications 8, 662
(2017).

[18] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Physical Review X 8 (2018), 10.1103/phys-
revx.8.011006.

[19] K. Choo, G. Carleo, N. Regnault, and T. Neupert, Phys.
Rev. Lett. 121, 167204 (2018).

[20] T. Vieijra, C. Casert, J. Nys, W. De Neve, J. Haegeman,
J. Ryckebusch, and F. Verstraete, Phys. Rev. Lett. 124,
097201 (2020).

[21] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev.
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Supplemental Material

I. Detailed Description of the Z2 Gauge Theory Hilbert Space

The lattice underlying the gauge theory is chosen to be the L×L square lattice with periodic boundary conditions
and topology of the torus. Let G = (V,E) denote the undirected interaction graph with |V | = L2 vertices and
|E| = 2L2 edges and |F | = L2 faces, in accordance with Euler’s formula |V |− |E|+ |F | = 2−2g for a torus, which has
genus g = 1. Vertices, edges and faces are indexed by v ∈ V , e ∈ E, and f ∈ F respectively. Each edge hosts a qubit
C2 = spanC{|−1〉, |1〉} with basis vectors labeled by the eigenvalues[37] of the Pauli-Z operator Z|±1〉 = ±|±1〉, so the
joint tensor product Hilbert space for all qubits is H =

⊗
e∈E C2 with orthonormal basis elements |x〉 :=

⊗
e∈E |xe〉

where xe ∈ Z2. It will be convenient to define the superposition state |+〉 = 1√
2
(|−1〉 + |1〉) ∈ C2. Cardinalities of

sets are omitted when they appear in superscripts so, for example, x ∈ ZE2 denotes a ±1 string of length |E|, indexed
by the edges of the graph G.

II. Exact Representation of Z2 Toric Code Ground States

In this section, we provide exact constructions of gauge equivariant neural networks for the ground states and the
excited state of the Z2 toric code model. This can be done with a neural network with no equivariant blocks and a
single invariant block. It differs from our construction in the main text in two additional ways: (1) we use a fully
connected network instead of a convolution network and (2) in addition to all the primitive plaquettes we include two
topologically non-trivial loops around the torus.

There are four degenerate ground states of the Z2 model. One exact ground state can be obtained by starting
with the uniform superposition state |+〉⊗E and applying the following projection operator which commutes with all
vertex operators,

P :=
∏
f∈F

1 +Bf
2

. (S1)

which gives rise to the loop-gas ground state |ψloop-gas〉 = P |+〉⊗E . Excited states are obtained from the ground state
by relaxing eigenvalues of various plaquette operators Bf to −1, in a manner consistent with the global operator
constraint

∏
f∈F Bf = 1. Because the toric code is frustration free, to be a ground state of Eq. 1, it suffices to be a

ground state of Bf and Xe separately. As the gauge equivariant construction already ensures the system is a ground
state of Xe we simply choose a function of the elementary Wilson loops Wf (φ) for each plaquette f ∈ F

f(φ) = he
(
WC1(φ), . . . ,WCL2 (φ),WCx(φ),WCy (φ)

)
(S2)

for our network where each Ci is the elementary plaquette � for i = 1, ..., L2, Cx is a loop across the whole torus from
x-direction and Cy is a loop across the whole torus from y-direction.

We must choose a he such that Eq. S2 is a ground state for each Bf , i.e. 〈x|Bf |ψ〉 = 〈x|ψ〉 for each Bf and x. It
implies that 〈x|ψ〉 = 0 for any |x〉 such that Bf |x〉 = −|x〉. Consider two operators τxz =

∏
i∈Ce

x
Zi and τyz =

∏
i∈Ce

y
Zi.

τxz and τyz further distinguishes the four degenerate ground state, where the expectation values a, b of the two operators
are from one of the choices in {±1,±1}. Hence, we define he as follows

he
(
WC1

(φ), . . . ,WCn
(φ),WCx

(φ),WCy
(φ)
)

=
∏
i

h1(WCi
(φ))hx(WCx

(φ))hy(WCy
(φ)) (S3)

where h1(WCi(φ)) = 1 for WCi(φ) = 1 and zero otherwise, hx(WCx(φ)) = 1 for WCx(φ) = a and zero otherwise,
hy(WCy

(φ)) = 1 for WCy
(φ) = b and zero otherwise. The above construction provides an exact representation of a

one-layer gauge invariant network for each of the ground state of Z2 toric code.
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III. Gauge Equivariant Construction for Zd Toric Code

In this section we briefly review the generalization to the Zd gauge group [38]. Consider the usual L × L square
periodic lattice where each edge hosts a d-dimensional qudit. The Hamiltonian defined on H(Cd)⊗E is

H = −
∑
v∈V

∑
h∈Zd

(Av)
h −

∑
f∈F

∑
h∈Zd

(Bf )h (S4)

where Av and Bf are shown in Fig. S1 with

X =
∑
h∈Zd

|h+ 1〉〈h| , Z =
∑
h∈Zd

ωh|h〉〈h| , ω = ei2π/d (S5)

  

X

v=Av Bf =,
X

X
†

X
†

Z
†

Z

Z

Z
†

f

FIG. S1. Av and Bf in the Zd model.

To discuss the gauge equivariant and invariant construction for the Zd, we represent the basis for qudit on each
edge as {ei2kπ/d|k = 0, 1, ..., d − 1}. The action of the gauge group on the space of (L,L, 2) tensors is described as
follows. Given a square matrix Ω ∈ {ei2kπ/d|k = 0, 1, ..., d− 1}V := {ei2kπ/d|k = 0, 1, ..., d− 1}L×L, we define a gauge
transformation gΩ : CE → CE by the following rule,

(gΩ · φ)µ(v) := Ω(v)φµ(v)Ω(v + µ)∗ , (S6)

where Ω(v) and Ω(v + µ) denote the entries of the matrix Ω at the lattice location v ∈ V and the shifted lattice
location v + µ ∈ V , assuming boundaries are periodically identified.

It is straightforward to show that the gauge transformation associated with Hilbert space operator (Av)
h is given

by gΩh
v

where Ωhv is defined for each v′ ∈ V by,

Ωhv (v′) =

{
ei2πh/d, v′ = v

1, v′ 6= v
. (S7)

Given vertices v, v′ ∈ V and a directional path γ ⊆ E from v to v′, consisting of a sequence of adjacent edges with
arrow direction, we define the Wilson path as the function Wγ : CE → C given by the formula,

Wγ(φ) :=
−→∏
e∈γ

φe . (S8)

where the product is directional such that it takes original value φ when the path γ direction on the edge goes upward
and right and conjugate value φ∗ when the path γ direction on the edge goes down and left.

An exact ground state can be found starting with the uniform superposition state
(

1√
d

∑
h∈Zd

|h〉
)⊗E

and applying

the projection operator P =
∏
f∈F

1
d

∑
h∈Zd

(Bf )h. It can be shown that the amplitudes in the standard basis are of
this state are computed by the following single-layer gauge-invariant neural network,

f(φ) =
∏
f∈F

∑
h∈Zd

Wf (φ)h . (S9)

The invariant and equivariant features consist of Wilson paths corresponding to closed loops and open paths ending
on a given edge. The equivariance follows from the identity Wγ(gΩ · φ) = Ω(v)Wγ(φ)Ω(v′)∗.
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IV. Gauge Equivariant Construction for 3D Toric Code and X-cube Fracton Model

In this section, we generalize the gauge equivariant neural network construction to the 3D toric code and X-cube
fracton model. The Hamiltonian of 3D toric code is given by,

H = −
∑
v∈V

Av −
∑
f∈F

Bf (S10)

where Av :=
∏
e3vXe is the product of Pauli-X over the six edges incident on a vertex v and Bf :=

∏
e∈f Ze is the

product of Pauli-Z over each square face � of the lattice. The Gauss law constraint can be imposed using a gauge-
equivariant wavefunction in which the invariant and equivariant features are chosen to be Wilson paths corresponding
to closed loops and open paths ending on a given edge. The Wilson path function is the same form given in Eq. 7 in
the main text.

The X-cube fracton model is defined on the same cubic lattice and the Hamiltonian is given by

H = −
∑
v∈V,i

Aiv −
∑
c∈C

Bc (S11)

where each of the terms are defined in Fig. S2. The Gauss law constraint can again be imposed using a gauge-
equivariant wavefunction. Invariant features can be constructed from Wilson paths evaluated on the star-shaped
curves shown in Fig. S2. Equivariant features on an edge v′v can be constructed from Wilson paths evaluated on the
curves shown in Fig. S3.
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X
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FIG. S2. Aiv and Bc in X-cube model.

  

v

v' vv'

v

v'

FIG. S3. Equivariant features on an edge v′v in the X-cube model can be constructed from curves described by solid lines
shown.

The ground state wavefunction amplitudes of 3D toric code can be represented exactly by a gauge invariant neural
network of the form (S2) where the closed Wilson loops correspond to each square face � of the cubes. The ground
state wavefunction amplitudes of the X-cube model can likewise be represented as a product of Heaviside step functions
of Wilson paths, where now the Wilson paths correspond to each star-shape curves in x-y, y-z and x-z direction of
the cube as shown in Fig. S2.
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V. Gauge Equivariant Construction for Kitaev D(G) Models

In this section we provide gauge equivariant neural network construction for general Kitaev Models over Zd group
and non-abelian groups. Consider the usual L×L square periodic lattice where each edge has a basis {|g〉, g ∈ G} for
certain group G. We focus on finite group here and group G = Zd for Zd theory. Without loss of generality, we attach
an upward arrow for each edge in y-direction a right arrow for each edge in x-direction. We introduce operators Agv
and Bf as follows

  

x
y
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u
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gy
gz

v

ug-1

=Av
g

Av Bf x

y

z

u

= x

y

z

u

δ
1, uzy-1x-1,

FIG. S4. Agv and Bf operators.

The Hamiltonian defined on H(G)⊗E is

H = −
∑
v∈V

Av −
∑
f∈F

Bf (S12)

where Av = 1
|G|
∑
g∈GA

g
v is the Gauss’ law and the gauge constraint.

Define |+〉 = 1√
|G|

∑
g∈G |g〉, then the ground state |ψ〉 =

∏
f∈F Bf |+〉⊗E . This is because |ψ〉 is both ground state

for each Av and Bf . It is easy to verify that Bf |ψ〉 = |ψ〉. To see Av|ψ〉 = |ψ〉, notice that Av and Bf commute with
each other and Av|+〉⊗E = |+〉⊗E .

Given a configuration x on the lattice, vertices v1, v2 ∈ V and a directional path γ ⊆ E from v1 to v2, consisting of
a sequence of adjacent edges with direction, we define the generalized Wilson path as the function Wγ : GE → GE

given by the formula,

Wγ(φ) :=
−→∏
e∈γ

φe . (S13)

where the product is directional such that it takes original value g on the edge when the path γ direction agrees with
the edge direction and inverse value g−1 when the path γ direction is opposite to the edge direction.

We claim that for any open path γ, Wγ is gauge equivariant, i.e. Wγ commutes with Agv for each v and g. To see
this, we consider three cases. The first case is that Agv does not act on any edge in the path γ and it is clear that they
commute. The second case is that Agv acts on a vertex along the path γ but not v1, v2. Notice that Agv must touch
two adjacent edges at the same time and due to the arrow convention, the effect of Agv will also cancel out in the
product. The last case is that Agv is on one of the vertex v1, v2 of the path γ, it is straightforward to verify directly
Agv commutes with Wγ . Without loss of generality, we consider the a Wilson path function on the bottom edge of a
plaquette with path γ going clockwise. One can check the following
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FIG. S5. Wγ commutes with Agv.
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For a closed loop C, we also introduce a Wilson loop function WC : GE → C

WC(φ) := tr
−→∏
e∈γ

φe . (S14)

Notice that WC is gauge invariant, i.e. WC ◦Agv(φ) = WC(φ) for any v and g. This is because any Agv touches either
no edge or two adjacent edges along C. The invariance property holds clearly if no edge is touched and still holds if
two edges are touched since the effect of Agv always cancel out due to the arrow convention. Without loss of generality,
this can be verified on each plaquette as follows
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FIG. S6. WC is gauge invariant.

With Wγ and WC , we can construct gauge equivariant and invariant layer for the gauge equivariant neural network
with Eq. S15 and Eq. S16 for general Kitave model with both Zd and non-abelian group G. A gauge-equivariant
function f : CE → CE is defined for all φ ∈ CE by the rule f : φe 7→ fe(φ), where

fe(φ) := Wγe(φ)he
(
WCe

1
(φ), . . . ,WCe

ne
(φ)
)
. (S15)

and a gauge-invariant function h : CE → C is defined for all φ ∈ CE by the rule h : φe 7→ he(φ), where

he(φ) := he
(
WCe

1
(φ), . . . ,WCe

ne
(φ)
)
. (S16)

In particular, we can construct a one-layer gauge invariant network for the ground state as follows

f(φ) =
∏
i

h1(WCi
(φ)) (S17)

where each Ci is the elementary plaquette � for i = 1, ..., L2, h1(WCi
(φ)) = 1 for WCi

(φ) = tr(I) for the identity
element I ∈ G and zero otherwise. This is because Agv|ψ〉 = |ψ〉 for each v, g from the above discussion and so is
Av|ψ〉 = |ψ〉. And Bf |ψ〉 = |ψ〉 holds due to the fact that for any finite group tr(g) = tr(I) implies that g = I.

VI. Neural Network Architecture and Numerical Details

In this section we provide the details for the architecture of the gauge equivariant neural network. There are two
basic components for the network, which are the equivariant layer and the invariant layer. For the equivariant layer,
we choose γe to be u for horizontal edge and @ for vertical edge and all Cei to be � in Eq. 9. The function he is
taken to be convolutional neural network (CNN)and leaky relu activation function. One can further compose different
equivariant layers in series or in parallel. For the invariant layer, it is expressed as fe(φ) = he

(
WCe

1
(φ), . . . ,WCe

ne
(φ)
)
,

with all Cei to be � and he to be convolutional neural network. There are two outputs of he in the invariant layer,
which parameterizes the log amplitude and the phase of the wave function separately. The elu activation is used
for the log amplitude output while the softsign activation is used for the phase output. The full network is made
of composition of equivariant layers (Fig. 1(b)) followed by an invariant layer (Fig. 1(c)) in the end. For all the
8× 8, 10× 10, 12× 12 experiments, we use neural network architecture as Fig. 1 with kernel size of the CNN to be 4,
5, 5 respectively. For experiments in Fig. 2, the gauge equivariant neural network uses architecture in Fig. 1(a) with
one channel of gauge equivariant blocks and the gauge invariant neural network uses architecture in Fig. 1(c), where
the kernel size in all CNNs is 3. The RBM has hidden neurons three times as large as input neurons and outputs log
amplitude and phase for the wave function.

Stochastic reconfiguration was performed with batch size 1000 and fixed learning rate 0.05. The number of iteration
is 120 in general except that the experiments in 10 × 10 and 12 × 12 have iteration 150. The experiment in 12 × 12
starts with transfer learning of ansatzs optimized in 10×10. The convolution neural network parameters are initialized
with orthogonal initialization [39]. For sampling, we adopt the standard Monte Carlo sampling with single spin flip.
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FIG. S7. Average of expectation of plaquette 〈�〉 over all plaquettes for different external field h on L × L lattices. The
change of the slope at around h = 0.3 suggests a phase transition.

VII. Observables and Quantities across Phase Transition

We provide further figures (see Fig. S7, S8, S9, S10, S11) on observables and quantities across the phase transition.
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FIG. S8. Slope k1 of the area (AC) law fitting in log〈ŴC〉 = k1AC + b for different external field h on L × L lattices. The
changes of the slopes at around h = 0.3 suggests a phase transition.
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FIG. S9. Ratio between the sum of squared estimate of errors (SSE) of the area law fitting of log〈ŴC〉 and the SSE of the

perimeter fitting of log〈ŴC〉 for different external field h on L× L lattices.
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FIG. S10. Energy per site for different external field h on L× L lattices.
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FIG. S11. Variance for different external field h on L× L lattices.
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