
Entanglement Hamiltonian of Interacting Systems: Local Temperature Approximation and Beyond

Mahdieh Pourjafarabadi,1, ∗ Hanieh Najafzadeh,1, ∗ Mohammad-Sadegh Vaezi,2 and Abolhassan Vaezi1, †

1Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
2Pasargad Institute for Advanced Innovative Solutions (PIAIS) , Tehran 19916-33361, Iran

We investigate the second quantization form of the entanglement Hamiltonian (EH) of various subregions for
the ground-state of several interacting lattice fermions and spin models. The relation between the EH and the
model Hamiltonian itself is an unsolved problem for the ground-state of generic local Hamiltonians. In this
article, we demonstrate that the EH is practically local and its dominant components are related to the terms
present in the model Hamiltonian up to a smooth spatially varying temperature even for (a) discrete lattice
systems, (b) systems with no emergent conformal or Lorentz symmetry, and (c) for subsystems with non-flat
boundaries, up to relatively strong interactions. We show that the mentioned local temperature at a given point
decays inversely proportional to its distance from the boundary between the subsystem and the environment.
We find the subdominant terms in the EH as well and show that they are severely suppressed away from the
boundaries of subsystem and are relatively small near them.

Introduction.— Entanglement is a unique feature of quan-
tum mechanics and serves as an essential tool in quantum in-
formation, quantum gravity, identification of topological or-
der, quantum phase transition, etc [1–18]. The entanglement
Hamiltonian (EH) associated with a subregion A embedded
in a manifold M = A ∪ B is defined as ρA = e−KA . Here
ρA = TrBρM denotes the reduced density matrix (RDM) of
A, where ρM represents the total density matrix. One im-
portant question that arises from this definition is the rela-
tion between KA and HA, the Hamiltonian terms with sup-
port only in region A. In fact, this problem dates back to
the 19th century. A cornerstone of the classical statistical
mechanics is that a subsystem A at thermal equilibrium with
its environment (B) is described by a thermal ensemble with
KA = HA/T0 (kB = ~ = c = 1) where T0 is a uniform and
position independent temperature. Furthermore, the eigen-
state thermalization hypothesis conjectures that the RDM of
highly excited quantum states will look thermal, again with
KA = HA/T0, where the uniform temperature T0 in this
case is dictated by the energy density [19]. In this article,
we revisit this fundamental problem and using the density-
matrix-renormalization-group (DMRG) approach we obtain
the second quantization form of KA for a number of interact-
ing model Hamiltonians and for a variety of boundary shapes
and conditions. Comparing the components of KA and HA,
we demonstrate that the above mentioned statements are not
quite accurate and for the ground-state of local Hamiltonians,
KA is indeed well-approximated by a local and non-uniform
temperature rather than a uniform one.

The theoretical form of KA is known only for a lim-
ited class of continuum models with conformal symmetry
(or Lorentz symmetry at zero temperature) and only for cer-
tain geometries of A (e.g., half-space or ball geometry). It
is known that under these conditions: (i) KA is local, (ii)
the EH density is related to the Hamiltonian density via a
smooth local temperature, namely KA =

∫
x∈A d

dx KA(x) =
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∫
x∈A d

dxH(x)
T (x) , and (iii) T (x) approaches T0, the equilib-

rium temperature of the entire system, far away from ∂A (the
boundary of A) and grows as v

2πr(x) at distance r near ∂A.
Here, v is the group velocity of low energy excitations [1, 20–
28]. We refer to these findings as the local temperature ap-
proximation (LTA) [26, 27].

The LTA can be justified using the following intuitive ar-
gument. In thermal systems, the entropy density is propor-
tional to their temperatures. On the other hand, for ground-
states, instead of the thermal entropy, we deal with the entan-
glement entropy which is not precisely an extensive property.
Nevertheless, we can still consider and gauge the contribu-
tion of individual degrees of freedom residing inside A to the
overall entanglement entropy between A and B, SA. Indeed,
quantum mutual information can be one candidate to quan-
tify such local contributions. Due to the decay of quantum
mutual information with distance for the ground-state of lo-
cal Hamiltonians, the degrees of freedom that live near ∂A,
are more entangled with those residing at B than more distant
ones. Accordingly, we can assign an effective quantum local
temperature to different subregions of A proportional to their
contributions to SA, which as just discussed must diminish
away from ∂A.

Numerically, the EH of free fermions and free bosons can
be evaluated easily [29–31]. However, for interacting models,
it becomes highly nontrivial and challenging. Recently, sev-
eral studies have analyzed the EH of quasi-one-dimensional
conformal invariant or integrable models [32–48]. Nonethe-
less, we are still lacking a systematic derivation of the EH for
larger and generic interacting systems and for various bound-
ary geometries. In this article, we address this problem and
introduce a DMRG-based algorithm that enables us to extract
the EH for a broader spectrum of problems.
J1 − J2 Heisenberg model.– Let us first discuss the form
of KA for the J1 − J2 Heisenberg model (J1 = 1) with the
following Hamiltonian on the square lattice:

H = J1

∑
〈ij〉∈M

Si.Sj + J2

∑
〈〈ij〉〉∈M

Si.Sj. (1)
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FIG. 1: Various geometries of system and subsystem that we
consider in this article for computing the EH. The blue (red)
sites define the subsystem A (B). The dotted lines indicate
the boundary between A and B, ∂A. In (c), ∂A comprises
two disjoint surfaces since we have considered torus
geometry. The green and orange lines in (b) illustrate the
rows at which the couplings in Fig. 3 are plotted respectively.

The above Hamiltonian respects a SU(2) symmetry. Hence,
KA must respect SU(2) symmetry as well and thus expanded
as follows:

KA =
∑
i,j∈A

gJ,ij Si.Sj + · · · . (2)

Note that there is no restriction on i = (ix, iy) and j = (jx, jy)
except that both must belong to A. In our study, we have
dropped higher order terms since the retained terms already
yield satisfactory results.

The DMRG technique is based on identifying the most rel-
evant basis states of the Hilbert space [49]. Then we trun-
cate the Hilbert space and discard the less relevant states.
The number of kept states which controls the accuracy of
DMRG is called the bond dimension, χ, and its default value
equals 210 throughout this article. The procedure of find-
ing the truncation operators consecutively involves the com-
putation and diagonalization of the RDM at every step of
DMRG and for different subsystem sizes. Hence, ρA is a
natural byproduct of DMRG method and is available at ev-
ery step. Moreover, every operator component of KA (e.g.,
Si.Sj) has a matrix representation in DMRG, albeit in the
truncated subspace. The remaining task is to adjust the EH’s
couplings, gJ,ij, to bring our (simplified) guess forKA, which
we will denote as K̃A, close enough to the matrix represen-
tation of the RDM in the truncated Hilbert space achieved
via DMRG: KA = − log ρA. To this end, we need to de-
fine an appropriate cost function as a measure of the distance
between K̃A and KA. In our investigations, we mainly uti-
lized the Hilbert-Schmidt distance between the Green’s func-
tions, namely ∆1 := TrA

(
GA − G̃A

)2

, where GA,ij =

TrA (Si.SjρA) is the Green’s function matrix achieved by

DMRG for A and G̃A denotes its counterpart evaluated us-
ing the trial RDM, ρ̃A = exp

(
−K̃A

)
[50]. This cost func-

tion yields more reliable and reasonably robust results (against
changing χ) in the truncated Hilbert space than other candi-
dates, e.g., the quantum relative entropy between ρA and ρ̃A.
We find the latter to overfit to numerical noises, e.g., the trun-
cation and computer’s roundoff errors (see Appendix D for
more details). In the optimization procedure, we initialized
gJ,ij based on general expectations from LTA, e.g., the local-
ity of gJ,ij and its linear dependence on xij (the minimum dis-
tance between ij = i+j

2 and ∂A). Then, we employed the
gradient descent algorithm and let the cost function to decide
the optimum choice for gJ,ij (see the Appendix for more de-
tails).

We first focus on J2 = 0 Heisenberg model which is un-
frustrated and is known to host a Néel order on the square
lattice [51, 52]. Thus, its ground-state is a symmetry broken
phase with gapless Goldstone modes and does not respect the
full conformal symmetry (e.g., the translational and (around
the center of plaquettes) rotational symmetries are broken).
For this model, the system is always subject to the PBC along
y axis.

• As the first example, we study the manifold and subsys-
temA depicted in Fig. 1-a, where an OBC is imposed along x.
In this case, ∂A is flat and its locus is given by xb = 6 + 1/2,
the line which splits columns 6 and 7. The optimum cou-
plings, gJ,ij, which reproduce the DMRG’s Green’s functions
(with less than 0.1 % error), are plotted in Fig. 2.

Fig. 2a shows the nearest neighbor (NN) couplings along
x and y (more precisely, βJ,x (ix + 1/2) := gJ,i,i+x̂ and
βJ,y (ix) := gJ,i,i+ŷ) which are independent of iy due to the
y-axis translation preserving shape of A. Indeed, βJ ’s are the
inverse local temperature profiles. As Fig. 2a suggests, βJ,x
and βJ,y follow the same profile, albeit if we shift the argu-
ment of βx by half of the lattice spacing. This shift is due
to the fact that for gJ,x, the start and end points are located
at different positions along x, while for gJ,y , the two points
have identical x values. In Appendix D, we demonstrate the
robustness of βJ,x and βJ,y versus χ. In Fig. 2b, we have plot-
ted gJ,xy (ix + 1/2) := gJ,i,i+x̂+ŷ, gJ,yy (ix) := gJ,i,i+2ŷ,
and gJ,xx (ix + 1) := gJ,i,i+2x̂. Their values are negligible
everywhere and they all die off quickly away from ∂A. These
imply the locality of KA for the Heisenberg model when ∂A
is flat.

• We now consider the same conditions as above, but this
time with a curved ∂A as shown in Fig. 1-b. In this case,
βJ,x and βJ,y will depend on both ix and iy . In Fig. 3, we
have plotted βJ,x and βJ,y for two different rows marked by
orange and green lines. Interestingly, βJ,x and βJ,y profiles
display a somewhat smooth curve satisfying our expectations
from LTA. The position dependence of the inverse temper-
ature profile is more complicated in this problem, since the
distance between ij = (i + j) /2 and ∂A depends on both its
x and y components. In Figs. 3b and 3d the second and third
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FIG. 2: EH’s couplings for the Heisenberg model (J2 = 0)
for the subsystem geometry shown in Fig 1-a. (a) The inverse
temperature profiles βJ,a(xavg) = J−1

1 gJ,a (i, j) (a = x, y)
for the NN couplings versus the midpoint argument
xavg := 1

2 (ix + jx). (b) Second and third neighbor
couplings versus xavg.
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FIG. 3: EH’s couplings for the Heisenberg model (J2 = 0)
for the subsystem geometry shown in Fig. 1-b. Since A
breaks the translational symmetry along y, gJ,(i,j) depends on
both ix and jy . In (a) and (b), the couplings along the green
line in Fig. 1-b are plotted and in (c) and (d), those
corresponding to the orange line. The terms beyond LTA
grow substantially near ∂A for non-flat boundary geometries
compared to flat boundaries (cf. Fig. 2).

neighbor couplings are plotted for the above mentioned rows.
We see that for curved boundaries between A and B, KA re-
mains local everywhere, except close to ∂Awhere we observe
additional terms though relatively small and subdominant.

• Now, we consider the geometry illustrated in Fig. 1-c.
Since the PBC is imposed onM along both x and y directions,
we have chosen Ny = 4 to ensure χ = 210 is sufficient for
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FIG. 4: EH’s couplings for the Heisenberg model (J2 = 0)
subject to the PBC along x, for the subsystem geometry
shown in Fig. 1-c. The NN couplings follow a parabolic
curve and die off near both boundaries.

0 2 4 6x
avg

0

10

20

J

J,y

J,x

J,xy

(a)

2 4 6x
avg

0

0.5

1

g
J

g
J,yy

g
J,xx

(b)

FIG. 5: EH’s couplings for the J1 − J2 Heisenberg model
(J2 = 0.6) for the subsystem geometry shown in Fig. 1-d.
LTA is valid everywhere, except at the boundary where the
second neighbor coupling along y is non-negligible.

DMRG’s convergence. As we see in Fig. 1-c, ∂A is described
by two surfaces, one of them separates columns 6 and 7 and
the other one lies between the first and last columns. As a re-
sult, LTA predicts that βJ,x and βJ,y must follow a parabolic
form and vanish near both boundary surfaces. Fig. 4, shows
our numerical results for the nearest as well as further neigh-
bor couplings, both consistent with LTA.

• Let us now turn to the frustrated Heisenberg model with
J2 = 0.6 whose true ground-state is not well-understood,
though it is conjectured to be a spin liquid phase with no clas-
sical spin order and algebraically decaying spin-spin correla-
tions [53]. For this model, we consider the geometry depicted
in Fig. 1-d. The ground-state is expected to be more entangled
when J2/J1 ∼ O(1). Hence, we consider Ny = 4 (again
Nx = 24) to ensure that the ground-state is achieved reliably
via χ = 210 in DMRG. Since the Hamiltonian contains next
nearest neighbor (NNN) couplings, we expect significant val-
ues for the NNN in gJ,ij as well. In Fig. 5a, βJ,x, βJ,y , and
also βJ,xy (ix + 1/2) := 1

J2
gJ,i,i+x̂+ŷ are plotted. Again, we

see that all these βJ ’s follow the same curve. Furthermore,
Fig. 5b verifies the locality of KA everywhere except at ∂A
where gJ,yy is about 29% (28%) of gJ,y (gJ,xy) at that loca-
tion.
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FIG. 6: EH’s couplings for the Hubbard model at half-filling
(U = 4t1) for the subsystem geometry shown in Fig. 1-d.
LTA corrections are small (compared to the leading terms)
everywhere, particularly away from ∂A. The particle-hole
symmetry dictates the couplings in (b) to vanish. However,
due to the finite truncation error of DMRG at χ = 210, we
obtain nonzero, though negligible values.

Hubbard model.- Here, we discuss the second quantization
form of KA for the Hubbard model on the square lattice,
whose Hamiltonian is:

H =−t1
∑

〈ij〉∈M,σ

c†i,σcj,σ − µ
∑

i∈M,σ

ni,σ

+U
∑
i∈M

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
, (3)

where ni,σ = c†i,σci,σ . In this article, we consider t1 = 1, and
U = 4. The above Hamiltonian enjoys a U(1)× SU(2) sym-
metry for generic fillings. Accordingly,KA must be expanded
as follows:

KA =−
∑

i6=j∈A

gt,ij c
†
i,σcj,σ −

∑
i∈A,σ

gµ,i ni,σ

+
∑
i∈A

gU,i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
+
∑

i6=j∈A

(
gV,ij (ni − 1) (nj − 1) + gJ,ij Si.Sj

)
+ · · · ,(4)

where ni = ni,↑ + ni,↓ denotes the total electron number on
site i, and Sx,y,zi =

∑
ab

1
2c
†
i,aσ

x,y,z
a,b ci,b the three components

of the spin operator at i. Again, we have discarded higher or-
der terms as we attain satisfactory results with the above struc-
ture. In the following, we consider both doped and undoped
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FIG. 7: EH’s couplings for the Hubbard model at p = 1/8
doping level (U = 4t1, µ ≈ −0.92t1) for the subsystem
geometry shown in Fig. 1-d.

Hubbard models. In this section, we consider the geometry
shown in Fig. 1-d.

• Let us start with the half-filling case. The ground-state
on the square lattice is described by a Néel anti-ferromagnetic
spin order and the charge/Mott gap opens up at moderate val-
ues of U [54, 55]. Fig. 6, summarizes our results for the op-
timum couplings of the EH. Here, motivated by LTA, we de-
fine the following inverse temperatures: βt,x (ix + 1/2) :=
gt,i,i+x̂, βt,y (ix) := gt,i,i+ŷ, and βU (ix) := 1

U gU,i. Accord-
ing to Fig. 6, they all fairly follow an identical curve, albeit by
considering the previously discussed 1/2 shift in the argument
of βt,x. In Figs. 6b-d, we have shown the terms beyond LTA
and again the locality of couplings is confirmed. Only near
∂A, the additional terms are non-negligible. Although, gV,ij
is insignificant everywhere, gJ,ij has decent values near ∂A,
yet inferior to those of gt,〈ij〉 and gU,i.

• We now study the Hubbard model at p = 1/8 doping
which is expected to have a stripe order and some tendency to-
wards superconductivity [56–59]. The system is not expected
to exhibit the Lorentz invariance or conformal symmetry for
these symmetry breaking phases. At finite doping, we need
to define βµ (ix) := 1

µgµ,i as well (for the current example:
µ ≈ −0.92t1). As Fig. 7 implies, various β’s follow the ex-
pected trend and the locality of couplings is again verified,
albeit with growing corrections close to ∂A.

Summary.— Our DMRG-based algorithm allowed us to ac-
cess the second quantization form of the EH for several mod-
els and subsystem shapes. We showed that the EH is local and
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its dominant components are related to those of the Hamilto-
nian itself (more specifically the stress-energy tensor) up to
a single smooth local (inverse) temperature profile and con-
firmed LTA. We studied the terms beyond LTA and demon-
strated they are infinitesimal far away from ∂A and relatively
small near it. In the Appendix, we have provided more evi-
dences which further corroborate our main findings. To our
knowledge, the validity of LTA for the ground-state of local
Hamiltonians for generic models that do not satisfy confor-
mal algebra or even those with conformal symmetry but non-
flat ∂A is an unsolved problem despite active research. Our
results suggest that LTA is perhaps a legitimate assumption
and applicable to a broader class of problems.

Our findings pave the way for several applications of LTA.
For instance, it can be shown that LTA can practically solve
the long-standing sign problem in quantum Monte Carlo and
enable us to extract the ground-state properties of some un-
solved interacting models. Furthermore, LTA can be em-
ployed to enhance the performance and increase the accuracy
of the DMRG technique. It can also be used to recover the
entire spectrum and eigenstates of an unknown Hamiltonian
by having access to its reduced density matrix (or correlation
functions) associated with a rather small subregion of that sys-
tem [28].
Acknowledgements.— We gratefully acknowledge helpful
discussions with M. Dalmonte, A. Lucas, S. Nezami, Z.
Nussinov, H. Yarloo, A. Shahbazi, E. Huang, M. Kargarian,
A. Rezakhani and S. Alipour. AV acknowledges the Gor-
don and Betty Moore Foundation’s EPiQS Initiative through
Grant GBMF4302 and Stanford Center for Topological Quan-
tum Physics for partial financial support and hospitality during
the completion of this work. MSV acknowledges the financial
support from Pasargad Institute for Advanced Innovative So-
lutions (PIAIS) under supporting Grant scheme (Project No.
SG1-RCM2001-01).

APPENDIX

In this appendix, we will delve into the details of our algo-
rithm and discuss the advantages and disadvantages of a num-
ber of cost function candidates along with their pairwise com-
parison, and present more results on the entanglement Hamil-
tonian (EH).

A. Entanglement Hamiltonian in the truncated Hilbert space

In general, the entanglement Hamiltonian (EH) associated
with subsystem A which is defined as KA := − log ρA, can
be expanded in terms of a complete basis of operators (not
necessarily local) as follows: (the tensor product of Pauli ma-
trices, σa, a = x, y, z with σ0 = 1, can generate a basis for
all possible operators):

KA =
∑
α

gαÔα (5)

If we are given the reduced density matrix, ρA, we can com-
pute its logarithm (which requires a lot of considerations and
special care when performed numerically) and achieve KA

(up to computer’s round-off error). Having KA available, we
can easily find the expansion coefficients, gα, via the follow-
ing relation:

~g = M−1 ~J (6)

where

Jβ = TrA

(
KAÔ

†
β

)
,

Mαβ = TrA

(
ÔαÔ

†
β

)
(7)

In the exact diagonalization (ED) method Mα,β ∝ δα,β .

Therefore, gα ∝ TrA

(
KAÔ

†
α

)
. Consequently, we do not

need to consider other operators if we are interested in reading
the coefficient for a specific α.

On the other hand, in the density-matrix-renormalization-
group (DMRG) algorithm, instead of ρA, and Ôα, we have
to deal with ρA, and ÔA which are their counterparts in the
truncated Hilbert space and are defined as:

ρA = T †AρATA, (8)

and similarly for other operators, where TA denotes the trun-
cation (a.k.a. projection) operator. As before, we define
KA = − log ρA. Because of the numerous truncations in-
volved in DMRG, the situation is now more complicated
for a few reasons: (i) The matrix M is not diagonal, nei-
ther sparse. Due to consecutive truncations inherent to the
DMRG method, most of operators have non-vanishing over-
laps. Therefore, we must consider all possible operators, in-
cluding highly non-local ones such as string or brane opera-
tors. (ii) M can be singular and have zero eigenvalues. As
a result, it might not be invertible. (iii) The above method
applied to DMRG is very sensitive to various sources of nu-
merical noises and errors, such as the truncation, as well as
the round-off error.

Besides the possibility of singular M , another main diffi-
culty of applying the above algorithm to DMRG is the annoy-
ing part which requires taking all possible operators into con-
sideration. Below, we easily demonstrate that if KA contains
a few relevant and dominant terms, then KA contains exactly
the same couplings and structure. To this end, recall that TA
is achieved upon concatenating the dominant eigenvectors of
ρA. Therefore,

ρA = T †AρATA = T †Ae
−KATA = e−T

†
AKATA . (9)
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Therefore,

KA := − log ρA = T †AKATA. (10)

Accordingly,

KA =
∑
α

gαT
†
AÔαTA =

∑
α

gαÔα, (11)

hence, assuming KA =
∑
α gαÔα :

gα = gα. (12)

B. Algorithm and cost function

In the above mentioned method, for ED, we can ignore in-
significant couplings sinceM is diagonal. Nevertheless, when
we apply this method to DMRG, we have to retain all terms,
no matter how infinitesimal they are due to the complex form
of M . Therefore, we must come up with a better algorithm
to find gα without having to consider all irrelevant terms. For
that purpose, we must consider a valid cost function. From
our physical intuitions and expectations, we can think of the
following three choices (as of now, we drop the overline sign
and keep in mind that all operators are defined in the truncated
Hilbert space):

• Hilbert-Schmidt distance between the Green’s func-
tions (GFs): ∆1 = Tr

(
GA − G̃A

)2

, where

GA(α, β) = TrA
(
O†αOβρA

)
, and G̃A(α, β) =

TrA
(
O†αOβ ρ̃A

)
. Here ρA denotes the reduced density

matrix (RDM) achieved via DMRG for the desired sub-
system and ρ̃A denotes the one by combining the ba-
sis operators (Oα) with gα coefficients that are yet to
determine. The basis of this method is that the RDM
contains all the information about the equal time corre-
lation functions within the subsystem. Thus, if we find
a RDM which recovers all the correlation functions cor-
rectly, it must be identical to the actual one.

We would like to emphasize that in DMRG, due to finite
truncation error, the RDM yields more reliable results
for the expectation value of simple operators (e.g., two-
point correlation functions for short and intermediate
distances) and becomes less reliable for more complex
operators or at long distances. Therefore, to avoid over-
fitting to numerical errors, instead of considering all ba-
sis operators in the evaluation of ∆1, we only consider
the most physically relevant operators, i.e., simple op-
erators motivated by symmetry considerations, etc. For
example, for the Hubbard model, we consider the fol-
lowing components first:

GA,t (i, j) =
∑
σ

〈
c†i,σcj,σ

〉
,

GA,µ (i) = 〈ni〉 ,
GA,U (i) = 〈ni,↑ni,↓〉 ,

FIG. 8: We study the Hubbard model on this ladder for
U = 4, t⊥ = 0.5, and t‖ = 1 at half filling (µ = 0).
Subsystem A, whose EH is desired, is denoted by blue sites.

GA,J (i, j) = 〈Si.Sj〉 ,
GA,V (i, j) = 〈ninj〉 ,

and similarly for G̃. We then evaluate ηa =

Tr
(
GA,a − G̃A,a

)2

and by combining them:

∆1 = wtηt + wµηµ + wUηU + wJηJ + wV ηV . (13)

The exact values of wt, wµ, · · · are not crucial as long
as they all have the same order of magnitude. Nonethe-
less, in most computations, we choose wt = wU =
wµ = wJ = wV = 1 for the weights.

• Quantum relative entropy (QRE) of the two reduced
density matrices: ∆2 = Tr (ρA log ρA − ρA log ρ̃A).
In this method (which is closely related to the next cost
function), we try to tune the couplings such that ρ̃A’s
matrix form becomes very close to ρA’s. This cost
function converges significantly fast, in both ED and
DMRG method. In ED where we do not have to deal
with truncation errors, QRE is the superior cost func-
tion and achieves correct results. However, for DMRG,
(like ∆3 below), it also suffers from overfitting to nu-
merical errors, i.e., those parts of ρA which will change
upon increasing the bond dimension of DMRG, χ (i.e.,
the number of retained basis states of the Hilbert space).
It is these matrix elements which are responsible for the
issues related to the expectation value or n−point corre-
lation functions of complex operators explained above.
When χ is large enough (e.g., when the truncation er-
ror becomes less than 10−10), it yields results consistent
with ∆1’s.

• Hilbert-Schmidt distance between the two reduced den-
sity matrices: ∆3 = Tr (ρA − ρ̃A)

2. Similar to ∆2,
in this method we try to tune the couplings such that
ρ̃A’s matrix form becomes very close to ρA’s. This cost
function is slowly converging even for the ED where
no truncation is involved. Moreover, for DMRG, simi-
lar to ∆2, it suffers from overfitting to numerical errors
and its results are sensitive to the bond dimension, es-
pecially for small values of χ.

In section D of this Appendix we compare the results
achieved via all three cost functions for the two-leg ladder
Heisenberg and Hubbard models for several bond dimensions.
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FIG. 9: KA’s couplings, for the geometry illustrated in
Fig. 8, obtained via applying different cost functions and for
various bond dimensions. Couplings are translational
invariant due to the subsystem geometry. (a-c) gt,dx, gJ,dx,
and gV,dx achieved via GF distance (∆1), QRE distance
(∆2), and RDM distance (∆3) for χ = 211. Also, the
corresponding renormalized onsite couplings, gU,0 are
16.4, 14.4, 14.3 for ∆1, ∆2 and ∆3, respectively. See the text
for their definitions. (d) The variation of Ueff :=

gt,1
gU,0

versus
log2 χ. As this plot clearly indicates, ∆1 is the most reliable
cost function for DMRG and exhibits least variations.

FIG. 10: We study the Hubbard model on this ladder for
U = 4, t⊥ = 2, and t‖ = 1 at half filling (µ = 0). Subsystem
A, whose EH is desired, is denoted by blue sites.

Our results suggest that for large bond dimensions, all three
methods yield consistent outcomes. However, for relatively
small bond dimensions, it is ∆1 which performs better and re-
sults in couplings which are more consistent with the results
of larger bond dimensions.

C. Local temperature ansatz and the initial guess for couplings

Now, let us assume we study the following Hamiltonian:

H =
∑
α

JαÔα, (14)

where, due to the locality of the Hamiltonian, only certain
Jα’s are nonzero. We are interested in finding the second
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FIG. 11: KA’s couplings, for the geometry illustrated in
Fig. 10, obtained via applying GF distance (∆1 cost
function) and for χ = 211, and χ = 29. (a) Various β profiles
for ∆1 cost function for χ = 211 (see the main text for their
definitions). (b) Most significant corrections to LTA
corrections, gJ for ∆1 cost function for χ = 211. The second
and third neighbors’ corrections to gt are negligible due to
the particle-hole symmetry. Moreover, we found gV to be
irrelevant as well, and that is why they are absent in this and
the following two figures. (c-d) Same as (a-b) but for χ = 29.

quantization form of the EH expanded as follows:

KA =
∑
α∈A

gαÔα. (15)

Here, due to the renormalization procedure involved in trac-
ing the degrees of freedom outside A, gα’s can be viewed as
our running coupling constants which Jα has flown to. Thus,
in principle, any gα consistent with symmetry considerations
emerge. In practice, only a small set of them will be relevant
and non-negligible.

In our algorithm, we are trying to find gα numerically, as-
suming (a subset of relevant) correlation functions are known.
In our optimization algorithm, we initialized the coupling con-
stants of the EH, gα, using LTA’s ideal form. In LTA, the EH is
local and its coupling constants, gα’s, are nonzero only when
the corresponding couplings of the Hamiltonian (UV theory),
Jα’s, are nonzero. Another task in LTA is to assign a posi-
tion to each operator. For simple two-point operators (such
as Si.Sj in the Heisenberg model, or c†i,σcj,σ in the Hubbard
model), the position is defined as the average position of its
components, namely ij = i+j

2 . Next, we must compute the
minimum distance (geodesics) between ij and the boundary
separatingA and its environment,B. Let us call this minimum
distance, xij. Finally, at zero temperature (for ground-states)
and for the open boundary condition (OBC), LTA attributes
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FIG. 12: Same as Fig. 11 but for ∆2 cost function (QRE).
Likewise, (a) and (b) are achieved by considering χ = 211,
while (c) and (d) by χ = 29
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FIG. 13: Same as Fig. 11 but for ∆3 cost function (RDM
distance). Likewise, (a) and (b) are achieved by considering
χ = 211, while (c) and (d) by χ = 29.

the following form to gα (xij) [23]:

gα (xij) = Jα
4`

v
sin
( π

2`
xij

)
. (16)

where ` is the maximum value of xij (i.e., the linear dimen-
sion of A normal to ∂A), and v is the group velocity of low
energy excitations (quasi-particles) and is model-dependent.
In our algorithm, besides v, we also treated ` as a variational

FIG. 14: We study the Heisenberg model on this ladder for
J⊥ = 0.5, and J‖ = 1. Subsystem A, whose EH is desired, is
denoted by blue sites.
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FIG. 15: KA’s couplings, for the geometry illustrated in
Fig. 14, obtained via applying ∆1 and ∆2 cost functions and
for χ = 25, 27, 29, 211. The couplings are translationally
invariant due to the geometry of A. (a) gJ,dx obtained by
minimizing ∆1 cost function. (b) gJ,dx obtained by
minimizing ∆2 cost function. As we see, both cost functions
result in the same couplings for χ = 211. Also, ∆1 results
exhibits much less fluctuations than ∆2’s and thus are more
reliable for smaller bond dimensions (χ’s).

parameter. We first optimized and tuned v, and `. Then, we
took the optimized form of local gα (associated with v∗, and
`∗), and using the gradient descent algorithm we optimized
our cost function. We allowed all relevant couplings, includ-
ing distant neighbors and non-local terms (which were absent
in the system’s Hamiltonian) as well as the initialized local
terms to vary and deviate from their initial point. Therefore,
we have not imposed locality in our procedure, although it fi-
nally emerged naturally as the optimum solution (except at the
boundary of A with B, where farther neighbors became more
pronounced).

Similarly, for the periodic boundary condition (PBC) at
T = 0, LTA assigns the following value to gα (xij) [23]:

gα (xij) = Jα
2L

v

sin
(
π
Lxij

)
sin
(
π
L (`− xij)

)
sin
(
π
L`
) , (17)

where L is size of the entire system (M ) in the direction nor-
mal to ∂A.

D. A detailed comparison between the performance of ∆1, ∆2

and ∆3 cost functions

Here, we compare the EH’s coefficients obtained by utiliz-
ing all three cost functions for the ladder geometry and for the
Hubbard and Heisenberg models.

We first consider the undoped Hubbard model on a ladder
geometry (in which U = 4, t⊥ = 0.5, t‖ = 1) depicted in
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FIG. 16: We study the Heisenberg model on this ladder for
J⊥ = 2, and J‖ = 1. Subsystem A, whose EH is desired, is
denoted by blue sites.
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FIG. 17: KA’s couplings, for the geometry illustrated in
Fig. 14, obtained via applying ∆1 cost functions and for
χ = 27, 211.(a) and (c) show the inverse local temperatures
(βy (ix) := 1

J⊥
gJ,ix,ix , βx (ix + 1/2) := 1

J‖
gJ,ix,ix+1) for

χ = 211, and 27, respectively. (b) and (d) present the second
and third neighbor couplings of the EH.

Fig. 8. This geometry results in a highly entangled subsys-
tem, indeed a volume law entanglement entropy. We apply
all three cost functions to this system for the following five
different bond dimensions: χ = 25, 27, 29, 211. The EH for
this case is translationally invariant, namely gτ,ix,jx = gτ,dxij
(τ = t, U, J, V ), where dxij := jx − ix. In this section, the
translational symmetry is imposed on the couplings explic-
itly. We first compare the EH’s couplings achieved via apply-
ing the GF distance (∆1), QRE (∆2), and the RDM distance
(∆3) for χ = 211 (see Fig. 9). With this bond dimension, we
can nearly probe the ground-state properties. The coefficients
of local terms in the EH are almost consistent in these three
methods. On the other hand, we know that ideally the ground-
state must exhibit particle-hole symmetry. Although χ = 211

is still insufficient for true convergence in DMRG for such a
highly entangled state (χ = 212 seems to be enough), ∆1’s
results reflect the particle-hole symmetry (e.g., the (renormal-
ized) second neighbor hoppings are infinitesimal), while for
those of ∆2 and ∆3 the particle-hole symmetry is visibly vio-
lated due to overfitting issues mentioned previously. Further-
more, a previous quantum Monte Carlo based study of a sim-
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FIG. 18: Same as Fig. 17 but for ∆2 cost function. (a) and
(b) are obtained by keeping χ = 211 basis states of the
Hilbert space in DMRG, while (c) and (d) by χ = 27.

ilar situation [32] indicated the irrelevance of gV couplings
which is consistent with ∆1’s estimations. Additionally, per-
turbative studies of the EH indicate an oscillating spin-spin
couplings [39–41] (though subdominant to the renormalized
onsite interaction) which agrees well with our results via min-
imizing GF distance (∆1), while those of ∆2 and ∆3 exhibit
deviations in addition to their overestimation for the spin-spin
couplings. In Fig. 9d, we plot the normalized onsite interac-

tion strength U
(χ)
eff :=

g
(χ)
U

g
(χ)
t (1)

for all four bond dimensions

considered in our investigations. Again, as we see in Fig. 9d,
the results of the GF distance (∆1) are more robust and less
sensitive to χ, despite several orders of magnitude change in
χ, while those of the QRE and RDM distance display stronger
fluctuations.

Now, we turn to the geometry shown in Fig. 10 (where
U = 4, t⊥ = 2, t‖ = 1) and present our results for all three
cost functions in Figs. 11, 12, and 13. Here, we have defined
the following inverse local temperatures: βt,x (ix + 1/2) :=
gt,i,i+x̂, βt,y (ix) := gt,i,i+ŷ, and βU (ix) := 1

U gU,i. For
this problem, due to the PBC imposed along x direction, we
found out that even with χ = 211, there is still some room
for DMRG to converge to the true ground-state. As a result,
we still see some minor discrepancy among the results of the
three methods for χ = 211 for subdominant and correction
terms beyond LTA (though they yield highly correlated re-
sults). Nonetheless, the local terms (i.e., dominant couplings)
are reasonably consistent. We have also plotted the results of
χ = 29 for all three methods and again, ∆1’s results proved
to be more robust and ∆2 and ∆3’s less stable. Thus, in the
presence of truncation errors, we can trust the results of the
GF distance more than those of the other two candidates for
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the cost function.

For the sake of completeness, we have also explored the
robustness and the accuracy of the above three cost function
candidates for the Heisenberg model, again on a ladder ge-
ometry. To this end, we first studied the geometry shown in
Fig. 14 (where J⊥ = 0.5, J‖ = 1), and presented its results in
Fig. 15. Similar to the Hubbard model case, leads to a highly
entangled ground-state. Likewise, we expect translationally
invariant couplings, namely gJ,ix,jx = gJ,dxij . We have pre-
sented gJ,dx for χ = 25, 27, 29, 211 for the GF and QRE cost
functions (the RDM cost function yields results similar to that
of the QRE). In this case as well, the GF distance turns out to
be the most stable one.

Finally, we studied the Heisenberg model on the geometry
illustrated in Fig. 16 (in which J⊥ = 0.5, J‖ = 1). Their
results are presented in Figs. 17 and 18 for the GF distance
and QRE, respectively. For this problem, we indeed achieved
the true ground-state using χ = 211. Therefore, all cost func-
tions must achieve the same couplings. On the other hand,
for smaller bond dimensions, e.g., χ = 27, ∆1 achieves more
accurate results (relative to χ = 211) than the remaining cost
functions.
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