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We develop a theory of the excitonic phase recently proposed as the zero-field insulating state
observed near charge neutrality in monolayer WTe2. Using a Hartree-Fock approximation, we
numerically identify two distinct gapped excitonic phases: a spin density wave state for weak non-
zero interaction strength and spin spiral order at stronger interactions, separated by a narrow
window of non-excitonic quantum spin Hall insulator. We introduce a simplified model capturing key
features of the WTe2 band structure, in which these phases appear as distinct valley ferromagnetic
orders. We link the competition between the excitonic phases to the orbital structure of electronic
wavefunctions at the Fermi surface and hence its proximity to the underlying gapped Dirac point in
WTe2. We briefly discuss collective modes of the two excitonic states, and comment on implications
for experiments.

I. INTRODUCTION

When the ground state of a semimetal or narrow-
gap semiconductor becomes unstable to electron-hole
Coulomb attraction, it is replaced by an equilibrium con-
densate of electron-hole pairs (excitons) [1–7]. This new
excitonic state of matter is typically insulating, but sepa-
rated by a phase transition from a conventional band in-
sulator. Although theoretically proposed over half a cen-
tury ago, the excitonic state has proven to be remarkably
elusive experimentally, with significant progress towards
this goal only coming in the past decade or so [8–15].

Recent transport and tunneling measurements on ultr-
aclean monolayers of the transition-metal dichalcogenide
WTe2 have been argued to be consistent with an exci-
tonic insulating ground state near the charge neutrality
point [16, 17]. Signatures of this state develop only at
low temperatures, indicating an electron ordering transi-
tion. Strikingly, despite being insulating at zero field [16–
20], WTe2 shows robust Shubnikov-de Haas oscillations
at high magnetic fields [17]. This suggests that the insu-
lator is either highly unconventional, or else transitions to
a conductor with increasing field. Improving the under-
standing of the zero-field insulating state is a necessary
first step to exploring this intriguing system.

An obstacle to this goal is posed by the complex band
structure of WTe2 which, in the absence of interactions,
consists of a pair of over-tilted Dirac cones [21], weakly
gapped by spin-orbit coupling (SOC). This leads to a
pair of conduction band minima (electron pockets) at
an incommensurate wavevector ±qc, flanking a single
valence band maximum (hole pocket) at the Brillouin
zone Γ point. The anisotropic pockets, strong SOC, the
twofold ‘valley’ index labelling electron pockets, and pos-
sibly nontrivial orbital structure on the Fermi surface
(FS) due to the near-Dirac band structure are in stark
contrast to the simplified starting point that, with few ex-
ceptions [22, 23], underlies studies of the excitonic state.
A theory of excitonic insulators in WTe2 must incorpo-
rate these complexities and clarify their role in influenc-

FIG. 1. Bottom: Hartree-Fock phase diagram and evolu-
tion of excitonic pairing scale ∆exc with interaction strength
ε−1 (star indicates estimated experimental value). Excitonic
order is present (absent) in the SDW and spin spiral (SS)
(semimetal (SM) and insulator (I)) phases. Top: charge/spin
order and schematic pairing structure for SDW/SS. Fermi
pockets of the non-interacting k · p model are schematically
shown with dotted grey lines.

ing its phase structure.
Here, we explore the phase diagram of WTe2, focus-

ing on spin and valley pseudospin order in the excitonic
states and its interplay with the orbital structure of the
energy bands. We first map out the phase diagram
numerically (Fig. 1) within a Hartree-Fock (HF) treat-
ment of interactions. We find two distinct excitonic in-
sulators, corresponding to spin-density wave (SDW) and
spin spiral (SS) orders, for different interaction strengths.
We introduce a simplified analytically tractable model
that captures the low-energy structure of the interaction-
renormalized bands in WTe2. This gives an intuitive
picture where individual SDW/SS excitons are degen-
erate, but compete due to exciton interactions. We link
this competition to the orbital content of the conduction
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band, which can be tuned experimentally. We sketch
qualitative features of the SDW/SS collective modes and
discuss their experimental signatures. We close by spec-
ulating on possible implications for high-field transport.

II. WTe2 MODEL

We begin with a k · p theory [16, 24] valid near the

WTe2 Γ-point, H0 =
∑

k hαβ(k)c†kαckβ , where α, β are
composite spin-orbital indices, and

ĥ(k)=ε+(k)+[ε−(k)+δ]τz + vxkxτxsy + vykyτys0. (1)

The Pauli matrices τµ, sµ act in orbital and spin space
with τz = ±1 (sz = ±1) referring to d, p orbitals
(↑, ↓ spins) respectively, ε±(k) = 1

2 (εd(k)± εp(k)) where

εd(k) = ak2 +bk4 and εp(k) = − k2

2m , with a = −3 eVÅ
2
,

b = 18 eVÅ
4
, m = 0.03 eV−1Å

−2
, vx = 0.5 eVÅ,

vy = 3 eVÅ are chosen to match the ab initio band struc-
ture of Ref. [16]. δ controls the band overlap, with δ < 0
(δ > 0) corresponding to a semimetal (semiconductor).
We take δ = −0.45 eV which sets the Fermi energy (EF )
of the noninteracting bands at charge neutrality to EF '
−0.493 eV, yielding a hole pocket at Γ, and two electron
pockets with minima at qc = ±0.3144 Å−1x̂, incommen-
surate with the reciprocal lattice vector Gx = 1.81 Å−1.
H0 respects parity P̂ = τz and time-reversal T̂ = isyK̂

symmetries (K̂ is complex conjugation), and hence its
bands are twofold degenerate. Absent SOC (vx = 0),
H0 has overtilted Dirac cones at qD = ±0.2469 Å−1x̂.
SOC gaps the Dirac point, and yields an indirect neg-
ative band gap; however it retains Us(1) spin rotation
symmetry about the y axis, that we assume henceforth.

We now rewrite interactions, which are density-density
in spin and orbital space, in the band eigenbasis defined

by diagonalizing (1), H0 =
∑

knσ ε
n
kd
†
knσdknσ. Here,

d†knσ =
∑
α u

α
knσc

†
kα where the sum is over spins/orbitals

and uαknσ are the relevant Bloch functions, which we make
diagonal in spin space by choosing the spin quantization
axis along y, and n = a, b correspond to valence and
conduction bands. In this basis, we find

Hint =
1

2A

∑
q

U(q) :ρ†qρq :, (2)

where A is the system area, : . . . : denotes normal or-
dering with respect to the Fock vacuum, and U(q) =
e2

2εε0q
tanh qξ

2 is a dual-gate screened interaction. [Ex-

periments correspond to a screening length ξ = 25 nm,
and relative permittivity ε ' 3.5.] We consider ε−1

as a parameter that tunes the overall strength of in-
teractions. Eq. (2) introduces the band-projected den-

sities ρq ≡
∑
nn′kσ F

nn′;σ
k−q,kd

†
nσ,k−qdn′σk and form factors

Fnn
′;σσ′

k,k′ = 〈uknσ|uk′n′σ′〉. Apart from constraints im-

posed by P̂ and T̂ (which respectively require Fnn
′;σ

kk′ =

Fnn
′;σ

−k,−k′ and Fnn
′;σ

kk′ = [Fnn
′;σ̄

−k,−k′ ]
∗), the latter can generi-

cally vary as the bands traverse the BZ.

III. HARTREE-FOCK PHASE DIAGRAM

The Hamiltonian H = H0+Hint defined by (1) and (2)
captures the key features of WTe2 relevant to studying its
low-energy behaviour near charge neutrality. We numer-
ically study the phase diagram via self-consistent HF cal-

culations with momentum cutoffs |kx| < 3qc
2 , |ky| < Gy

4 ,

where Gy = 1.01 Å−1 is the reciprocal lattice vector in
the y direction. Anticipating a possible excitonic insta-
bility, we allow for translational symmetry breaking at
wavevector qc. More details of the self-consistent Hartree
Fock calculations can be found in Appendix A.

Fig. 1 shows the phase diagram as a function of the in-
teraction strength ε−1. In the non-interacting limit, the
system starts off with three Fermi pockets, as sketched
by the grey dotted lines in the middle row of Fig. 1.
As ε−1 is increased, the system remains semimetallic un-
til ε−1

c0 ≈ 0.05 where it transitions into a gapped SDW
phase. This phase possesses non-trivial excitonic or-
dering, diagnosed by the integrated q = qc coherence

∆exc ≡
√∑

α,β |〈c
†
kαck+qcβ

〉|2 and exhibits both SDW

order in the xz spin plane (orthogonal to the SOC axis)
at wavevector qc, and charge density (CDW) wave or-
der at 2qc (see Fig. 3). The SDW preserves combined

P̂ T̂ symmetry, so its bands remain doubly degenerate.
Excitonic order is suppressed in a small window around
ε−1
c1 ≈ 0.11 in favor of a non-excitonic quantum spin Hall

insulator, which yields to a second excitonic P̂ T̂ -broken
phase that we dub the spin spiral (SS). Unlike the SDW,
SS has no CDW order (at least at purely electronic level),
and the local spin polarization is of constant magnitude
and rotates in the xz spin-plane with wavevector qc. Fi-
nally, for ε−1 ≥ ε−1

c2 ≈ 0.35, ∆exc vanishes and the system
is a non-excitonic trivial insulator. For the experimental
interaction strength ε−1 ≈ 0.28, the ground state is a
SS exciton insulator with an indirect gap of ∼ 230 meV

(see Fig. 4) and local spin polarization of ∼ 0.002µBÅ
−2

.

[Enforcing P̂ and T̂ gives a single excitonic phase with
slightly higher energy [16, 25].]

At large ε−1, ∆exc receives contributions from k-states
across much of the folded BZ, suggesting that it distorts
the bands even far from EF . However throughout the
SDW and in the SS near ε−1

c1 , excitonic coherence is local-
ized in k-space around the centers of the Fermi pockets.
This suggests that we can understand excitonic coher-
ence and competition between the SDW/SS phases in
this regime by focusing only on states near EF .
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IV. EFFECTIVE MODEL

We now construct a simplified effective model that cap-
tures low-energy features of the renormalized symmetry-
preserving band structure most relevant to the excitonic
order. The use of self-consistent HF bands (without exci-
tonic distortion) as a starting point is crucial: since (2) is
normal-ordered with respect to the Fock vacuum, bands
will naturally deform due to self-exchange when the k ·p
model is half-filled (consistent with charge neutrality).
Therefore it is only sensible to consider the interplay of
the band structure with excitonic condensation after in-
corporating such renormalization effects. Consequently,
the parent state for the excitonic phases is an insulator
with a small indirect band gap (even though we began
with a semimetal at ε−1 = 0).

Since we are in the regime where excitonic pairing is
only peaked around Γ and ±qc, we restrict attention to
Bloch states within three small ‘pockets’ centered about
these special momenta [2]. We treat electrons from the
two conduction band minima as separate species distin-
guished by a ‘valley’ pseudospin λ = +,−, and describe

them using independent creation operators b†kσλ, where

k is measured from λqc. We also introduce a†kσ, an elec-
tron creation operator for the valence band maximum.
The momentum takes all values within some pocket cut-
off |k| < kcut large enough to encompass the region of
excitonic pairing. We approximate the dispersions by

best-fit effective-mass parabolas εa,bk at extrema of the
self-consistent bands at ε−1 (ignoring small ‘teardrop’
corrections to the band structure). We model the form
factors of the valleys as arising from a gapped Dirac
cone, with the Dirac point displaced by some wavevector
−λk0x̂ from the minimum of the dispersion to capture
the tilted structure relevant to WTe2. Accordingly, in
our model we take the valley-λ Bloch function |ũλkbσ〉 at
k (see Fig. 2) to be the positive eigenvector of

hσ,λ(k) = λṽx(kx + λk0)τz + ṽykyτy + λσm̃τx. (3)

Though valence band Bloch functions can be modeled
similarly in principle, in practice they do not affect the
SDW-SS competition. The effective Hamiltonian,

Heff =
∑
q

εaqa
†
qσaqσ+

∑
λ

εbqb
†
qσλbqσλ+

U(q)

2A
:ρ†qρq :, (4)

is normal ordered with respect to the filled valence band.
The natural hierarchy of inter- and intra-pocket in-

teractions U(qc)/U(0) ' 0.025 admits a physically intu-
itive separation of scales [2]. In the dominant term ap-
proximation (DTA), we retain only the band dispersion
and interaction terms with small intra-pocket momen-
tum transfers q � qc (form factor effects are negligible
within each pocket since we can choose a smooth gauge
where Fnn;σ

k,k+q → 1 as q → 0). At this order, we de-
termine the existence of an excitonic instability and the
momentum structure of excitonic pairing. The DTA has

an enhanced U(4) symmetry and hence does not distin-
guish between exciton phases with distinct spin and val-
ley orders. This degeneracy is resolved at beyond-DTA
(bDTA) level, where the neglected q ∼ qc, 2qc interac-
tions split the various states, with the orbital structure of
the bands playing a crucial role. The influence of orbital
structure on energetic competition is evident already in
the few-exciton problem about the insulating state where
the valence (conduction) bands of Heff are filled (empty).
As demonstrated in Appendix E, single excitons with the
symmetries of SS/SDW are degenerate, but are split at
two-exciton level by inter-valley 2qc interactions of their
constituent electrons, which are sensitive to orbital struc-
ture via form factors.

V. VARIATIONAL STATES

To fully explore excitonic order, we consider the ex-
tended HF states (generalizing [2])

|Φ〉 =
∏
k,σ

α†kσ |0〉 , αkσ = ukakσ + vk
∑
sλ

wσsλbksλ, (5)

where the parameters are chosen to minimise 〈Heff〉Φ
with uk, vk real and even in k, u2

k + v2
k = 1,∑

sλ w
σ
sλw̄

σ′

sλ = δσσ′ , and overbar denotes complex conju-
gation. Eq. (5) describes a state obtained by first folding
the BZ by qc, so that all three pockets are centred at Γ,
and then introducing excitonic coherence between the va-
lence band and a specific spin-valley combination in the
conduction band parametrized by w. At DTA level, the
energy is w-independent, and uk, vk (which set the mo-
mentum structure of excitonic coherence) are determined
by self-consistently solving the coupled integral equations
√

2vk =
(

1− ξk/
√
ξ2
k + ∆2

k

)1/2

, ∆k =
∑

k′ U(k−k′)gk′ ,
where gk = ukvk, ξk = 1

2 (ε̄bk − ε̄ak), with ε̄ak = εak +∑
k′ U(k − k′)v2

k′ and ε̄bk = εbk −
∑

k′ U(k − k′)v2
k′ . For

small ε−1 in the exciton phases of Fig. 1, we find that
gk ∼ 〈ab†〉, which is a direct measure of excitonic pair-
ing, qualitatively matches the momentum-resolved con-
tributions to ∆exc in the HF, justifying the use of the
effective model. The w-dependence is restored upon per-
turbatively evaluating the bDTA splitting terms:

δE[w] = D|TrW+−|2 −
∑
ss′

Jss′W
++
ss′ W

−−
s′s + Ẽ [w], (6)

D = U(2qc)|
∑
k

v2
kF
↑
kk|

2 = U(2qc)|
∑
k

v2
kF
↓
kk|

2,(7)

Jss′ =
1

2

∑
kk′

v2
kv

2
k′U(k − k′ + 2qc)[Fs

∗

k′kFs
′

k′k + c.c],(8)

where Wλλ′

ss′ ≡
∑
σ w

σ
sλw

σ∗

s′λ and Fskk′ ≡ 〈ũ
−
kbs|ũ

+
k′bs〉, the

sole potentially nontrivial form factor in our model, de-
pends on the valley Bloch parametrization (3). Terms in

Ẽ [w] give identical energies for SDW/SS; as these are not
central to our discussion we relegate them to Appendix D.
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FIG. 2. Sketch of λ = + valley dispersion and orbital struc-
ture for the two limits of (3) appropriate to (a) SDW and (b)
SS phases; red star marks location of gapped Dirac point.

We now identify the SDW and SS phases in terms of
w. As shown in Fig. 1, the in-plane SDW is described by

SDW: wσs+ =
ieiα√

2

(
0 e−iφ

eiφ 0

)
σs

, wσs− = w̄sσ+, (9)

which has spin density ρs(r) ∼ sin(qcx −
α)[sinφ, 0, cosφ], charge density ρc(r) ∼ cos[2(qcx − α)]

and bDTA splitting δE = D − J↑↑
2 . (Though Ref. [2]

identifies SDW is the ground state for F → 1, we find
that in reality SS is favored in this limit.) In the SS,

SS: w↓↑+ = e−iα, w↑↓− = eiα (10)

with spin density ρs(r) ∼ [sin(qcx + α), 0, cos(qcx + α)]
and δE = 0. Inversion exchanges valleys, yielding a
spiral with opposite handedness. [Up to global rota-
tions/translations, the most general xz-spin order is an
elliptic spiral, ρs(r) ∼ [cosχ sin(qcx), 0, sinχ cos(qcx)].
As discussed in Appendix F, assuming H has Sy-rotation
symmetry, this generates a CDW with Fourier compo-
nent ρc(2qc) ∼ |ρs(qc)|2 ∝ cos(2χ), but here energetics
force χ → ±π/4, 0, corresponding to a circular SS with
no CDW, or a pure SDW without spiral order [26] – the
cases we consider.]

Using (9) and (10) in (6), we find that the competi-
tion between SDW and SS is tuned by D and J↑↑: as
in our two-exciton warmup problem (Appendix E), these
describe |q| ∼ 2qc interactions between the valleys. D is
a Hartree term that directly penalizes 2qc CDW order,
while J reflects intervalley exchange. SS is unaffected by
both contributions due to its perfect spin-valley locking,
but the SDW is energetically favored if 2D < J↑↑. The
central role played by the orbital structure/form factors
is apparent in two limiting cases of (3). For k0 → ∞,
where the Dirac physics is invisible to low-lying conduc-
tion electrons near the band minimum (recall EF is in
the renormalized band gap) that participate in excitonic
pairing, the Bloch functions are uniform and identical in
both valleys, because hσ,λ(k) ∼ τz. Since F ' 1, we
have D ' J↑↑, hence stabilizing the SS state. On the
other hand for k0 = 0, there is a cancellation of phases in
the k-sum in Eq. 7, suppressing D: the orbital content
of the valleys winds in a manner that suppresses the 2qc
CDW even when 〈b†+b−〉 6= 0. J generically remains non-
zero, so if the Hartree cost for charge order (parametrized

by D) is lowered sufficiently, the SDW can beat out the
SS. Revisiting the HF numerics, we indeed find that the
effective positions of the gapped Dirac points shift away
from the minima towards Γ as ε−1 is increased, consistent
with this scenario. This clarifies the relevance of Dirac
and spin-orbit physics to the excitonic order in WTe2.

VI. COLLECTIVE MODES

The distinct broken symmetries in the two excitonic
phases lead to distinctive collective mode spectra [2, 27].
The three candidate continuous global symmetries of the
system (besides charge conservation, assumed through-
out) are: (i) the ‘excitonic’ U(1)eh symmetry of treating
electrons and holes (alternatively, conduction and valence
electrons) as separately conserved [28–30], generated by
aσ → aσe

iθeh , bσλ → bσλe
−iθeh ; (ii) the U(1)v symme-

try corresponding to independent conservation of elec-
trons in the two valleys (bσλ → bσλe

iλθv ); and (iii) the
U(1)s spin rotation symmetry about the y-axis, manifest
in H0 + Hint (aσ → aσe

iσθs , bσλ → bσλe
iσθs). The first

two of these are explicitly broken at a microscopic level,
since interactions mix bands, but are present in the DTA.
However as we show in Appendix D, at bDTA level, in-
teraction terms ∼ a†a†b+b− (in Ẽ [w]) destroy the U(1)eh
symmetry, while U(1)v is preserved. Accordingly in the
DTA/bDTA regime (throughout the SDW and in the SS
for ε−1 ∼ ε−1

c1 ) we expect that interactions only weakly
gap any U(1)v pseudo-Goldstone modes but strongly gap
the ‘excitonic’ U(1)eh mode. At this level, we take the
U(1)s symmetry of H0 +Hint to be exact, though as it is
not symmetry-required it may be weakly broken beyond
the k · p limit. Finally, since exciton condensation oc-
curs at a finite wavevector the breaking of U(1)s and/or
U(1)v is intertwined with translational symmetry break-
ing at qc. Hence we expect a minimum (or gapless point)
in the collective mode dispersion at q ' qc in the original
WTe2 BZ.

The SDW breaks U(1)s, with the corresponding free-
dom parameterized by φ in (9), leading to a standard
magnon mode (gapless in the interacting k · p model).
In addition, since the conduction band minima are not
at high-symmetry points and hence generically incom-
mensurate with the undistorted lattice, we expect a pha-
son mode (captured by α) generated by U(1)v rotations,
which will be weakly gapped as the latter is only an
approximate symmetry. In contrast the SS only has a
phason mode, since spin and valley are locked. We an-
ticipate this will again be weakly gapped, with the gap
increasing for higher interactions. Owing to the broken
inversion symmetry in the SS, it also hosts domain walls
separating regions with opposite handedness of spin ro-
tation. An out-of-plane magnetic field explicitly breaks
U(1)s; on symmetry grounds this allows SS to induce a
small CDW amplitude, which might be one route to its
detection. Since spectroscopy of collective modes can be
a diagnostic of exciton condensation [9, 28–30], investi-



5

gation of the collective excitation spectrum in WTe2 is
likely to be a fruitful avenue of study.

VII. DISCUSSION

We have proposed that two distinct gapped excitonic
phases can be generated by interactions in monolayer
WTe2, with one (SS) likely relevant to recent experi-
ments [16]. Using an effective model, we have linked
energetic competition between SS and a proximate SDW
phase to the orbital structure of the renormalized bands
near the Fermi energy. Since these depend on both the
interaction strength and the initial semi-metallic Fermi
surfaces — which can be tuned by adjusting the interac-
tion screening length and the electrostatic displacement
field respectively — it is possible that the SDW phase
can be stabilized experimentally. The SDW and SS may
be distinguished by their broken symmetries (especially
the presence or absence of a 2qc charge modulation, and
their distinct qc-spin orders) and the resulting differences
in their collective excitations.

The unusual oscillations in high field magnetoresis-
tance [17] occur on a scale (∼ 100 MΩ) typical of in-
sulators, yet their temperature dependence is not ac-
tivated. The latter fact appears to rule out explana-
tions centred on modulation of the excitonic gap [31–33].
Other proposed mechanisms for quantum oscillations
in insulators [34–36] would manifest only in thermody-

namic quantities but not magnetoresistance. A more ex-
otic explanation invokes a fractionalized Fermi surface of
neutral ‘composite exciton’ quasiparticles, whose quan-
tum oscillations can give a weak metallic contribution
to charge transport superimposed on an activated back-
ground [37, 38]. Given the typical fragility of fraction-
alized phases, it seems unlikely to be energetically com-
petitive at zero field with the large-gap broken-symmetry
states found here. We therefore conjecture that if such
a fractionalized phase exists, some yet-unknown mecha-
nism must stabilize it at high fields. Potential alternative
explanations invoking the field-induced CDW order in SS
may also be interesting to pursue. Investigating the high-
field phase structure is a subtle and urgent question for
future work.
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Appendix A: k · p Model and Hartree-Fock (HF)

The setup here closely follows the supplement of Ref. [16]. In the basis {|d ↑〉 , |d ↓〉 , |p ↑〉 , |p ↓〉}, the k·p Hamiltonian
of monolayer WTe2 is

H0 =

(
ak2 + bk4 +

δ

2

)1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+

(
− k

2

2m
− δ

2

)0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

+ vxkxτxsy + vykyτys0 (A1)

a = −3, b = 18, m = 0.03, δ = −0.9, vx = 0.5, vy = 3 (A2)

where energies are measured in eV and lengths in Å. The symmetries are inversion P̂ = τz and time-reversal T̂ = isyK̂,

leading to a two-fold degeneracy of the bands under P̂ T̂ . With the above parameters, the bandstructure at charge
neutrality consists of a hole pocket at the zone centre, and two electron pockets with minima at qc = ±0.3144x̂. The
undistorted lattice has reciprocal lattice vector lengths Gx = 1.81 and Gy = 1.01. The Fermi energy is EF ' −0.493.
Without the SOC term, the bandstructure contains two overtilted Dirac cones at qD = ±0.2469x̂. The U(1)s
symmetric SOC term gaps the Dirac point, leading to an indirect negative band gap.

The interaction Hamiltonian is taken to be density-density in spin and orbital space

Hint =
1

2NΩ

∑
k,p,q

∑
α,β

U(q)c†k+q,αc
†
p−q,βcp,βck,α (A3)

U(q) =
e2

2εε0q
tanh

qξ

2
(A4)

where N is the total number of unit cells in the system, Ω is the real-space unit cell area, and α, β are combined
orbital/spin indices. The interaction potential is of dual-gate screened form, with ξ the gate distance and ε the relative
permittivity of the encapsulating hBN. Experimentally relevant parameters are ε ' 3.5 and ξ ' 250. Since we are
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FIG. 3. Self-consistent HF results for the excitonic, spin and charge order parameters as a function of interaction strength
ε−1. Note that ρSDW and ρSS in the middle panel measure the average local spin population imbalance (number per square
nanometer) due to the corresponding order.

working with a k ·p model, our calculations require a momentum cutoff, which is taken to be |kx| < 3qc
2 , |ky| < Gy

4 . The
prefactor in Eq A3 is set by the density of momentum points, which would be ABZ/N . However in our calculations
our momentum cutoff has area Akp with Nkp points, so we should replace NΩ→ NkpΩ

ABZ
Akp

.

Anticipating excitonic pairing at ±qc, we perform self-consistent HF calculations allowing for coherence by multiples

of qc, i.e. 〈c†kαck+nqcβ
〉 can take non-zero values for integer n. Representative (folded) band structures are shown in

Figure 4. We allow the HF solution to break various symmetries such as time-reversal and inversion. To ensure that we
find the lowest energy mean-field solution, we minimize over multiple random seeds for the initial density matrix. The

presence of excitonic condensation is diagnosed by the integrated order parameter ∆exc ≡ 1
Nkp

√∑
α,β |〈c

†
kαck+qcβ

〉|2.

The spin-valley nature of the ordering is diagnosed by computing (finite-momentum) charge/spin densities

ρcQ =
1

Ã

∑
σka

〈c†k−Qσackσa〉 (A5)

ρsQ =
1

Ã

∑
σσ′ka

σσσ′〈c†k−Qσackσ′a〉 (A6)

where a runs over the orbital degree of freedom, and Ã = NkpΩ
ABZ
Akp

. Since there are no ferromagnetic states, the

relevant densities for characterising the excitonic order are ρcqc , ρ
c
2qc ,ρ

s
qc ,ρ

s
2qc . In real space, the number densities for

spin and charge are

ρc(r) =
∑
Q

eiq·rρcQ (A7)

ρs(r) =
∑
Q

eiq·rρsQ. (A8)

Self-consistent HF reveals that there are two energetically competitive types of excitonic insulator, the spin spiral
(SS) and spin density wave (SDW) which both occur at qc. Consider the magnitude of the local spin density in the
presence of spin order which occurs at a single wavevector qc

ρs(r) · ρs(r) = 2ρsqc · ρ
s∗
qc + (ρsqc · ρ

s
qce

iqcx + c.c.). (A9)

Therefore the following quantities are useful to diagnose the presence of SS and SDW order

ρSDW =
√

2|ρsqc · ρsqc | (A10)

ρSS =
√

2ρsqc · ρs∗qc −
√

2|ρsqc · ρsqc |. (A11)

A pure SS state has a local spin polarization that rotates with constant magnitude (comparing points with the
same intra unit cell coordinates), while a pure SDW state has an oscillating local spin magnitude whose oscillation
wavelength is longer than the monolayer unit cell.
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FIG. 4. Folded HF band structures for different interaction strengths—in order of increasing ε−1, the phases are semimetal,
SDW, non-excitonic quantum spin Hall insulator (diagnosed by using the Fu-Kane formula [39]), spin spiral, spin spiral (at
experimentally relevant ε−1), trivial insulator. Labeled momentum points are M ′ = (−qc/2, Gy/4), Y ′ = (0, Gy/4), X =
(−qc/2, 0). Given the momentum cutoff of the k · p theory, there are 12 bands per momentum in the folded BZ. All phases

except the spin spiral have doubly-degenerate bands due to P̂ T̂ symmetry. Calculations were done on a 75 × 25 momentum
grid.

Self-consistent Hartree-Fock results for the various order parameters are shown in Figure 3. Note that SDW order
is accompanied by charge order at 2qc.

HF calculations were also performed without allowing for excitonic coherence, in order to obtain the ‘parent’ self-
consistent states appropriate for an analytic weak-coupling treatment of excitonic pairing. Representative results are
shown in Figure 5.

Appendix B: Trial Excitonic Insulator States

For generality, consider the situation with one valence pocket at Γ, and Nλ equivalent conduction valleys at Q(λ).
The insulating excitonic trial states considered in the main text are of the following form

|Φ〉 =
∏
k,σ

α†kσ |0〉 , αkσ = ukakσ + vk
∑
sλ

wσsλbksλ, (B1)

where uk, vk are real and even, u2
k + v2

k = 1,
∑
sλ w

σ
sλw̄

σ′

sλ = δσσ′ , and overbar denotes complex conjugation. uk, vk
parameterizes the (small)-momentum structure of exciton coherence, while wσsλ parameterizes the spin-valley structure
of pairing. Note that, for a fixed choice of gauge for the Bloch operators, the choice of orthonormal complex vectors
w↑, w↓ in C2Nλ uniquely specifies the trial state without any redundancy—there is no gauge redundancy corresponding
to unitary rotation within occupied orbitals.

Now specialize to the case of two valleys λ = ±, so that Q(λ) = λqc. The trial states considered by Ref. [2] are a
strict subset of Eqn. B1, and can be parameterized by

wσsλ = lM (+)
σs δλ+ +mM (−)

σs δλ− (B2)

where l2 +m2 = 1, and the M matrices are unitary. This can describe the SDW, but can only describe the spin spiral
if l and m are allowed to be σ-dependent.
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FIG. 5. HF band structures along the kx axis, when the HF is restricted to forbid translation symmetry breaking. Calculations
were done on a 75 × 25 momentum grid.

It can be shown that global spin-rotation Ûs and valley-rotation Ûv act as

Ûs : wσsλ →
∑
σ′s′

U†σσ′w
σ′

s′λUs′s (B3)

Ûv : wσsλ →
∑
λ′

wσsλ′Uλ′λ (B4)

where U = exp
(
iθ
2 n̂ · σ

)
is a SU(2) unitary. U(1)eh rotations corresponding to separate conservation of conduction

and valence populations act as wσsλ → wσsλe
iθ.

Appendix C: Dominant Term Approximation (DTA) Equations

The DTA equations [2, 5] determine the internal momentum structure of excitonic coherence (i.e. the coefficients
uk, vk). The starting point is an effective model that describes the band extrema of a self-consistent non-excitonic
band structure, which can be semimetallic or insulating. For simplicity consider the ‘two-pocket’ case (one conduction

minimum b†kσ and valence maximum a†kσ)—the multi-valley case can be treated analogously. In the DTA, only intra-
pocket interactions are included, and the gauge is chosen smooth so that Fnn;σ

k,k+q ' 1 for small momentum transfer q,
leading to the Hamiltonian

ĤDTA =
∑
knσ

εnkd
†
nkσdnkσ +

1

2

∑
kk′qnn′σσ′

U(q)d†n,k+q,σd
†
n′,k′−q,σ′dn′,k′,σ′dn,k,σ. (C1)

Therefore there is an emergent U(1) symmetry corresponding to separate conservation of conduction and valence
band electrons. There is also now global SU(2)s spin rotation symmetry, as well as SU(2)v valley rotation symmetry.

We consider an insulating excitonic ansatz |Φ(w)〉 described by the operator for the filled bands

αkσ = ukakσ + vk
∑
s

wσs bks,
∑
s

wσsw
σ′∗

s = δσσ′ . (C2)

where uk, vk are real and even, and u2
k + v2

k = 1. We now recall that the parameters of the model are extracted from
a self-consistent band structure. Therefore when counting the interactions of any distorted state, we need to measure
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the density relative to the reference self-consistent state Φ0:

EDTA[Φ(w)] = const + 2
∑
k

v2
k(εbk − εak)− 1

2

∑
kk′nn′σσ′

U(k − k′)〈d†nk′σdn′k′σ′〉
′〈d†n′kσ′dnkσ〉

′ (C3)

〈a†kσakσ′〉
′ = (u2

k −N0
ak)δσσ′ (C4)

〈b†kσakσ′〉
′ = gkw

σ′

σ (C5)

〈b†kσbkσ′〉
′ = (v2

k −N0
bk)δσσ′ . (C6)

where gk = ukvk, and N0
nk is the filling of Φ0 (for the insulating parent state in the main text, we have N0

ak = 1).
The direct contributions with q = 0 are canceled by the neutralizing background. Evaluating the interaction term,
we obtain the DTA energy

EDTA = const + 2
∑
k

v2
k(εbk − εak)−

∑
kk′

U(k − k′)
[
(u2
k −N0

ak)(u2
k′ −N0

ak′) + (v2
k −N0

bk)(v2
k′ −N0

bk′) + 2gkgk′
]

(C7)

which is independent of w, leading to a huge degeneracy at DTA level. We minimize this energy with respect to vk

0 = ∂vpEDTA = 4(εbp − εap)vp − 4
∑
k

U(k − p)

(2v2
k − 1 +N0

ak −N0
bk)vp + gk

1− 2v2
p√

1− v2
p

 (C8)

→

[
εpb −

∑
k

U(k − p)
(
v2
k −N0

bk

)
− εpa +

∑
k

U(k − p)
(
u2
k −N0

ak

)]
vp =

1− 2v2
p√

1− v2
p

∑
k

U(k − p)gk (C9)

→ 2ξpvp =
1− 2v2

p√
1− v2

p

∆p (C10)

where we have defined

ε̄ak = εka −
∑
k′

U(k − k′)(u2
k′ −N0

ak′) (C11)

ε̄bk = εkb −
∑
k′

U(k − k′)(v2
k′ −N0

bk′) (C12)

ξk =
1

2
(ε̄bk − ε̄ak) (C13)

∆k =
∑
k′

U(k − k′)gk′ . (C14)

The minimization condition can be recast as the coupled integral equations

vk =

√√√√1

2

(
1− ξk√

ξ2
k + ∆2

k

)
(C15)

which are solved by iteration.

The energy bands of the excitonic state are given by

Ekα =
ε̄ak + ε̄bk

2
−
√
ξ2
k + ∆2

k (C16)

Ekβ =
ε̄ak + ε̄bk

2
+
√
ξ2
k + ∆2

k. (C17)

If we have two valleys, we will have an additional energy band Ekγ = εbk which remains unaltered. In this case it is
possible that the excitonic state remains semimetallic if the parent state is semimetallic.
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Appendix D: Beyond Dominant Term Approximation (bDTA) Splitting Terms

While the DTA equations determine uk, vk, the choice of w can only be resolved by considering the neglected
inter-pocket interactions [2]. Assuming a good DTA/bDTA separation of scales, we can use first-order perturbation

theory to evaluate the neglected terms of 〈Φ(w)|Ĥ|Φ(w)〉. In the two-valley case, we obtain

δE[w] =
∑
σσ′

(
Bσσ′(w

σ
σ+ + w̄σ̄σ̄−)(w̄σ

′

σ′+ + wσ̄
′

σ̄′−)− 2ReCσσ′w
σ′

σ+w
σ
σ′−

)
(D1)

+
∑
σσ′ss′

(
Dwσs+w̄

σ
s−w̄

σ′

s′+w
σ′

s′− − Jss′wσs+w̄σs′+wσ
′

s′−w̄
σ′

s−

)
(D2)

Bσσ′ = U(qc)
∑
k

gkF
ab;σ∗

k,k+qc

∑
k′

gk′F
ab;σ′

k′,k′+qc
(D3)

Cσσ′ =
∑
kk′

gkgk′U(k − k′ + qc)F
ab;σ∗

k′,k+qc
F ba;σ′

k′−qc,k (D4)

D = U(2qc)|
∑
k

v2
kF

bb;σ
k−qc,k+qc

|2 (D5)

Jss′ =
1

2

∑
kk′

v2
kv

2
k′U(k − k′ + 2qc)[F

bb;s∗

k′−qc,k+qc
F bb;s

′

k′−qc,k+qc
+ c.c.]. (D6)

where B is Hermitian, J,C are symmetric, and the spin-quantization axis is chosen along the preserved direction
(SOC is U(1)s preserving). The F refer to the form factors of the effective model, and the momentum labels are

absolute momenta measured from the zone center. For example, F bb;σk−qc,k′+qc is an intervalley form factor because

the k, k′ always represent ‘small’ momenta. The B-term and D-term are Hartree terms that penalize charge density
wave modulations at wavevector qc and 2qc respectively. The C-term and J-term are exchange terms at momentum
transfer q ∼ qc and 2qc respectively. In the limit of vanishing SOC, and specializing to a restricted class of states
(that includes the SDW but not the spin spiral), we recover the bDTA expression of Ref. [2].

Using the transformations in Eqns B3,B4, it can be shown that δE[w] is invariant under U(1)s and U(1)v symmetries.
U(1)s is present because the starting model was already assumed to have this symmetry. U(1)v can be seen by
investigating the possible inter-pocket interaction terms which conserve momentum. This symmetry ceases to be
sensible once excitonic coherence remains strong out to momenta k ∼ qc/2 in the folded BZ, since then the division of
the relevant low-energy Bloch states into small ‘pockets’ fails, and the weak-coupling perspective is no longer useful.
There is no U(1)eh symmetry corresponding to separate conservation of valence/conduction electrons, because bDTA

contains interaction terms ∼ a†a†b+b−. These U(1)eh-violating terms are reflected in the B- and C-terms of the
bDTA energy functional.

Appendix E: Spiral/SDW Competition for Two Excitons

In this section we argue that the spin spiral vs SDW competition outlined in the main text is invisible to a single

exciton, and is a selection mechanism at the many-exciton level. Let |Φ0〉 =
∏
kσ a

†
kσ |vac〉 be the parent insulating

state of the effective model. An exciton creation operator (with net momentum q = 0 in the folded BZ) can be
parameterized as a linear combination of single particle-hole operators:

B†σ(w) =
∑
ksλ

fkw
∗
sλb
†
ksλakσ (E1)

where fk, satisfying
∑
k f

2
k = 1, is real and even, and parameterizes the exciton momentum structure (predominantly

determined by q ∼ 0 interactions), while w indicates the valley/spin structure of the electron.
We focus on the q ∼ 2qc components of the interaction Hamiltonian, since these were found to mediate the

SDW/spiral competition. Consider a single exciton state

|σw〉 = B†σ(w) |Φ0〉 . (E2)

This vanishes under the action of q ∼ 2qc interaction terms, since b†b†bb will always annihilate the above state. Hence
a single exciton is not sensitive to the competition described in the main text.
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Now we consider the interaction energy of two-exciton states. For simplicity we assume the quasi-boson approxi-
mation and consider the following two-exciton states

|σw;σ′w′〉 = B†σ(w)B†σ′(w
′) |0〉 (E3)

where we neglect the normalization. We will be interested in cases where the w,w′ describe excitons with spin/valley
structures corresponding to spiral or SDW phases. Focusing on the q ∼ 2qc contributions again, we obtain after some
algebra

〈σw;σw′|Ĥq∼2qc |σw;σw′〉 =
2

N

[
U(2qc)|

∑
k

f2
kF
↑
k,k|

2
∑
ss′

(ws+w̄s−w̄
′
s′+w

′
s′− + c.c.) (E4)

− 1

2

∑
kk′ss′

f2
kf

2
k′U(k − k′ + 2qc)(Fs

∗

k′kFs
′

k′kws+w̄s′+w
′
s′−w̄

′
s− + c.c.)

]
. (E5)

For w,w′ corresponding to the spin spiral (Eqn 10 in main text), the above contributions vanish as expected since
there is no 2qc coherence. For w,w′ corresponding to the SDW (Eqn 9 in main text), we recover the competition
between the direct and exchange terms, which take analogous forms to the D- and J-terms in the bDTA. We note
that these calculations (involving q ∼ 0 and q ∼ qc terms as well) can be generalized to derive the interaction terms
of an effective quasi-boson Hamiltonian.

Appendix F: Elliptical Spin Spirals and Charge Order

In this section we consider the more general class of elliptical spin spirals, which encompasses the limiting cases
of SDW and (circular) spin spiral discussed in the main text. The spin/valley structure of these states can be
parameterized using the language of Eq B1

w↑↓+ = e−i(α+φ) sin(χ− π

4
) (F1)

w↑↓− = ei(α−φ) cos(χ− π

4
) (F2)

w↓↑+ = ei(−α+φ) cos(χ− π

4
) (F3)

w↓↑− = ei(α+φ) sin(χ− π

4
). (F4)

The spin spiral is recovered for χ = ±π/4 (corresponding to the two senses of rotation), while χ = 0 corresponds to
the SDW. The spin and charge densities for these states are

ρs(r) ∼

sinχ cosφ cos
[
qcx+ α

]
+ cosχ sinφ sin

[
qcx+ α

]
0

sinχ sinφ cos
[
qcx+ α

]
+ cosχ cosφ sin

[
qcx+ α

]
 (F5)

ρc(r) ∼ cos 2χ cos
[
2(qcx+ α)

]
. (F6)

Hence the principal axes of the elliptical spiral are controlled by φ and lie along [cosφ, 0, sinφ] and [− sinφ, 0, cosφ],
while α controls the position along x. χ is related to the ellipticity of the spin order, and also controls the strength
∼ cos2 2χ of the associated 2qc charge density wave.

To further understand the relation between the ellipticity of the spiral and the charge order, we can analyze their
coupling within Landau theory [26]. With the constraints given by TRS, U(1)s about sy, and translation (there are
no Umklapp processes since qc is not at a high-symmetry point), the lowest order coupling between charge density
ρc and x− z spin density ρs,⊥ is

F ∼
∫
dxρc(x)

[
ρs,⊥(x)

]2 ∼∑
p,p′

ρc−p−p′ρ
s,⊥
p · ρs,⊥p′ (F7)

where we have used the fact that there is no order along the y-direction. Since the spin order has non-trivial
contributions for momenta p = ±qc, we focus on the case p = p′ which couples to the 2qc charge order. With
appropriate choice of coordinate and spin axes, the spin order parameter of the elliptical spiral can be chosen as

ρs,⊥(x) ∼ [cosχ sin(qcx), sinχ cos(qcx)], with Fourier components ρs,⊥±qc ∼ [±i cosχ, sinχ], leading to ρs,⊥±qc · ρ
s,⊥
±qc ∼
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cos 2χ. Hence the coupling between 2qc charge order and qc spin order contains a multiplicative factor of cos 2χ.

This vanishes for the circular spiral, which can be intuited from the fact that
[
ρs,⊥(x)

]2
is spatially uniform. This

argument holds for higher order terms in Landau theory, since in-plane spin must enter as
[
ρs,⊥(x)

]2
due to U(1)s.

In the bDTA, the energy of the elliptical spiral is EbDTA = −2ReC↑↓+cos2 2χ
(
D − J

2

)
. Hence the energetics mean

that we have χ→ ±π/4, 0 depending on whether D − J
2 is positive or negative.

U(1)s symmetry breaking and CDW modulation in a circular spiral phase: Note that when U(1)s
symmetry in the xz spin plane is broken (e.g., by a magnetic field perpendicular to the monolayer), the reduction in
symmetry admits additional terms such as (ρs,xρs,x − ρs,zρs,z)ρc, allowing even a circular spiral to generate a CDW
modulation.
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