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Certain aspects of some unitary quantum systems are well-described by evolution via a non-
Hermitian effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Con-
versely, any non-Hermitian Hamiltonian evolution can be accommodated in a corresponding unitary
system + environment model via a generalization of Wigner-Weisskopf theory. This demonstrates
the physical relevance of novel features such as exceptional points in quantum dynamics, and opens
up avenues for studying many body systems in the complex plane of coupling constants. In the case
of lattice field theory, sparsity lends these channels the promise of efficient simulation on standardized
quantum hardware. We thus consider quantum operations that correspond to Suzuki-Lee-Trotter
approximation of lattice field theories undergoing non-Hermitian time evolution, with potential ap-
plicability to studies of spin or gauge models at finite chemical potential, with topological terms,
to quantum phase transitions – a range of models with sign problems. We develop non-Hermitian
quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising
model with complex longitudinal magnetic field, showing that observables can probe the Lee-Yang
edge singularity. The development of attractors past critical points in the space of complex couplings
indicates a potential for study on near-term noisy hardware.

I. INTRODUCTION

Non-unitary quantum dynamics of lattice field theo-
ries are of interest because of their connection to quan-
tum field theories coupled to baths at finite tempera-
ture and/or finite chemical potential, or with topologi-
cal terms. It is also important in the analysis of phase
transitions, where the behavior of the Fisher zeros, Lee-
Yang zeros, and other features of the partition function
at complex values of the parameters give insight into
the nature of various thermal and quantum phase transi-
tions (see [1–7]). Such systems have been studied in the
context of quantum computing in [8–21]. Furthermore,
a class of non-unitary dynamics corresponding to non-
Hermitian Hamiltonian dynamics (Ĥ 6= Ĥ†) generates a
class of models with sign problems, a pressing issue in
both condensed matter and high-energy particle physics.
Non-Hermitian quantum mechanics has been of great in-
terest in the past couple of decades (see [22, 23]).

To give a specific example: of particular interest are
quantum simulations of general spin models. The lattice
O(N) nonlinear sigma models are discretized field theo-
ries exhibiting phenomena like confinement, and asymp-
totic freedom which occur in gauge theories (see [24–28]).
They exhibit quantum phase transitions of various (or
infinite) orders, with condensation of topological excita-
tions characterizing the ground state. At finite chemical
potential, less is known about these models.

This is in part due to the fact that classical Monte
Carlo studies of such systems are rendered difficult by the
sign problem, which occurs because the effective Hamil-
tonians are non-Hermitian. There are important known
exceptions, where re-parameterization of the theory ad-
mits description in terms of new “dual” variables where

the partition function is manifestly real and positive, and
can be sampled effectively as well as be studied by other
analytic methods (see [29–34]). However, this may not be
feasible or possible for all systems (with lattice gauge the-
ory in D > 2 an important example of physical interest).
Quantum computing offers the possibility of directly ad-
dressing the sign problem, however quantum gates act in
a unitary fashion on input quantum states, making it un-
clear whether non-Hermitian Hamiltonian dynamics can
be efficiently simulated.

In this work, we describe quantum algorithms for the
real-time evolution of a quantum state according to the
Schrödinger equation with a non-Hermitian Hamiltonian.
This evolution (or an approximation thereof) is accom-
plished after a Suzuki-Lee-Trotter (SLT) expansion of a
unitary time evolution operator. These unitary time steps
are augmented by preparation of, and measurement on,
ancillary qubits in order to accomplish the desired non-
unitary evolution.

Two algorithms that we present take advantage of the
fact that there are unitary system + environment mod-
els (a.k.a. unital quantum channels) that are “close” to
non-Hermitian time evolution. We construct a Trotter-
ized Lindbladdian with a unitary portion corresponding
to the Hermitian component of a non-Hermitian effec-
tive Hamiltonian, a non-Hermitian evolution according
to the anti-Hermitian component, and additional “quan-
tum jump” operations that move the system away from
evolution according to the target non-Hermitian Hamilto-
nian. The algorithms are an implementation of a damping
channel. The Liouvillian that corresponds to this nearest
unital channel can potentially share physical properties of
the non-Hermitian Hamiltonian system of interest, partic-
ularly when the non-Hermiticity is small.

Second, we show it is possible to simulate a non-
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Hermitian Hamiltonian without quantum jumps, but in-
stead each Trotter step is either a step forward or back-
ward in time. “True” evolution of the system according
to a non-Hermitian Hamiltonian is always achieved, how-
ever forward time evolution is not guaranteed. Ancillary
post-selection determines not success or failure, but rather
whether a given Trotter step moved the system backwards
or forwards in time. At readout, ancillary measurement
outcomes project onto a specific map between simulation
time and computational time.

In this paper, as a first application, we test these meth-
ods on the coarsest (Z2) discretization of the O(2) non-
linear sigma model: a 1D quantum Ising spin chain in
a transverse field. Non-Hermiticity is introduced via an
imaginary longitudinal magnetic field. The model has
been well-studied (see [2–5]), both on and off the real
axis, which makes it an ideal benchmark to test discrete-
time, finite-volume quantum algorithms, and to construct
and measure observables which probe features of interest
such as phase transitions and scaling behavior in the ap-
proach to non-unitary critical points. The Lee-Yang zeros
correspond to a non-trivial Jordan-block for the lowest
energy pair (by real part) in the eigensystem of the non-
Hermitian Hamiltonian. This model also has a “true” sign
problem, in that the tensor formulation—or other “dual-
variable” formulations—of the theory does not eliminate
complex phases, and is thus an interesting case study for
quantum computation of theories with a sign problem.

We show in this paper that these algorithms have the
ability to detect the finite size quantum analog of the Lee-
Yang edge, where the partition function vanishes due to
the effective non-Hermitian Hamiltonian losing an eigen-
vector. In quantum simulation, this edge corresponds to
a point past which the time evolution develops a fixed
point at large times due to the effective ground state en-
ergy developing an imaginary part.

Recently, a noisy intermediate scale quantum (NISQ)
algorithm for imaginary time (purely anti-Hermitian) evo-
lution was designed in [15], which is efficient when corre-
lation lengths of the system are small. In the case of gen-
eral non-Hermitian hamiltonian evolution, successful SLT
evolution can be accomplished by utilizing this “QITE”
(quantum imaginary time evolution) algorithm for terms
in the Hamiltonian with imaginary couplings, and stan-
dard algorithms for the unitary part of the time-step.
Thus a simple extension of QITE is also applicable for
these non-Hermitian Hamiltonians. However, this algo-
rithm would suffer near points of interest such as phase
transitions where there is long range order that we wish
to emphasize in this paper. We leave application of QITE
to open lattice field theories of this form for future work.

This paper is organized as follows: In section II, we give
an interpretation of arbitrary non-Hermitian Hamiltoni-
ans as open quantum systems, analogous to effective mod-
els of heavy particle decay. In section III, we talk about
modeling non-Hermiticity in a system+environment set-

ting utilizing the formalism of quantum operations. In
section IV, we introduce the algorithms for simulating
general non-Hermitian Hamiltonians on a quantum com-
puter and write down the corresponding quantum oper-
ations. In section V, we talk about methods to realize
these quantum operations. In section VI, we apply our
algorithms to the transverse field Ising model with an
imaginary longitudinal field, propose quantum circuits for
a small system, and present numerical results of observ-
ables and compare with results from exact non-unitary
evolution. We conclude in section VII.

II. NON-HERMITIAN HAMILTONIANS

Effective descriptions of quantum many body systems
coupled to a bath can, in certain cases, be described
or approximated in terms of effective (and often non-
Hermitian) Hamiltonians. A common simple example of
non-Hermiticity elucidated by Feshbach [12], and initially
applied to nuclear physics, is that of spontaneous decay of
massive resonances, where a small discrete subsystem of
at-rest massive particles is weakly coupled to a infinitely
sized system of light particles with a continuous range of
momenta. Phase space suppression ensures that informa-
tion flow is overwhelmingly “one way” from the massive
system to the light one.

When supplemented with a superselection rule, there
is a sense, which we review here, in which tracing out the
light particle bath yields evolution via the Schrödinger
equation with an effective non-Hermitian Hamiltonian.
Dispersive terms in this Hamiltonian account for the de-
cay process.

Such evolution is not norm preserving (trace preserv-
ing in the density matrix formalism), so to make sense
of it, we must extend the system, as we now review. In
the case of a simple single particle decay, there is a uni-
tary system + environment model that completes a non-
Hermitian Hamiltonian model with Ĥ = −iΓ1 (Γ being
the width of the particle), and time evolution operator
e−Γt. This evolution operator acts on the otherwise trivial
1D Hilbert space spanned by the massive non-interacting
particle state, |M〉. By supplementing the one dimen-
sional single-particle Hilbert space acted on by Ĥ with a
“de-excited” vacuum state (the state of no massive par-
ticle), the trivial space is promoted to a more physical
qubit where measurement yields one of two possible re-
sults: “particle there” or “particle gone.” The operation is
the usual amplitude damping channel modeling the loss
of energy via some array of possibly unspecified decay
processes.

In the extended Hilbert space, with all decay products
traced out, an initial density matrix ρ0 = |M〉〈M | where
the particle is there with certainty, evolves in time t to
ρt = e−Γt|M〉〈M | + (1 − e−Γt)|0〉〈0|, a mixed state with
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statistics pthere = e−Γt, and pgone = 1 − e−Γt, which ob-
viously preserves the trace condition.

One can also consider more complicated systems with
additional massive particles that may interact amongst
each other non-trivially, e.g. with oscillations such as
those exhibited by the K0-K̄0 system (see [11]). Such ef-
fective Hamiltonians have Hermitian components accom-
modating oscillation, and anti-Hermitian parts modeling
decay.

In essence, we “make sense” of these simpler non-
Hermitian Hamiltonians via an enlargement of the Hilbert
space that accommodates a unital quantum channel. A
sequestered block of a block diagonal density matrix then
evolves according to a time evolution operator that is
the solution of the Schrödinger equation with that non-
Hermitian Hamiltonian.

This idea can be generalized to any non-Hermitian
Hamiltonian, and we will emphasize that in the case of
field theory, with its axiom of local interactions (and the
associated sparsity in the corresponding Hamiltonian),
such theories may be amenable to simulation on quan-
tum hardware.

To make sense of an arbitrary non-Hermitian Hamil-
tonian, consider Ĥ0 = Ĝ0 + iK̂0, with Ĝ0 and K̂0 Her-
mitian. A sensible (dispersive) model has no eigenvalues
with positive imaginary part. If Ĥ0 has eigenvalues in the
upper half of the complex plane, this can be corrected by
subtracting an overall imaginary shift in the Hamiltonian.

In fact, we shall be more conservative, and shift the
vacuum energy to ensure that −K̂0 is a positive semi-
definite operator: Ĥ0 → Ĥ0 − imax(eigenvalues(K̂0))1.
This shift creates no change to the relative eigenspectrum
of states or their characterization. It only adds an overall
universal decay rate. The positivity of −K̂0 is required so
that small time-steps according to non-Hermitian Ĥ0 can
be represented by a unitary system+environment model 1

Minimally, to accommodate the system decay associ-
ated with the shifted Hamiltonian in a unitary quantum
channel, the N -dimensional Hilbert space acted on by Ĥ0

must be increased in size by at least one additional basis
vector, which we call the “empty” state. We now consider
a new Hamiltonian acting on the larger space

Ĥ = Ĝ+ iK̂ ≡
(
Ĥ0 0
0 0

)
. (1)

1 Some non-Hermitian Hamiltonians have only real eigenvalues (see
[22]). This subtraction could possibly be unnecessary in these
special cases. Since these systems can be shown to be related to
Hermitian but generally non-local Hamiltonians [35], they may
be intrinsically difficult to simulate without the subtraction we
perform.

We consider density matrices of the form

ρ =

(
ρSys
N×N 0

0 1− Tr ρSys
N×N

)
. (2)

Our goal now is to construct a Lindblad formulation 2 of
the problem on the new N + 1 dimensional Hilbert space
that does not spoil the superselection rule forbidding su-
perpositions of the system state with the empty state.

We then aim for an evolution of ρ in the N + 1 dimen-
sional space which follows

dρ

dt
= −i

[
Ĝ, ρ

]
−
{
K̂, ρ

}
+
∑
i

2L̂iρL̂
†
i , (3)

and where the “quantum jump” terms in the sum do not
pollute the upper N × N block of the density matrix.
Trace preservation requires that K̂ = 1

2

∑
i L̂
†
i L̂i. In K̂0’s

eigenbasis, with the imaginary energy shift, we have

K̂0 = −diag(Γ1, · · · ,ΓN ), (4)

where the Γi are positive decay constants. Our require-
ments are met with N Lindblad operators given by,

L̂i =

(
0N×N ~0N[√
−K̂0

]
i

0

)
, (5)

where
[√
−K̂0

]
i
is the ith row of

√
−K̂0. For a small dis-

crete time-step, a Trotterized advancement corresponds
to an (N + 1)-element Kraus operator set:

Ê0 =

(
e−iδtĜ0eδtK̂0 0

0 1

)
,

Êi =

(
0N×N ~0N[√

1N − e2δtK̂0

]
i

0

)
, (6)

where
[√

1N − e2δtK̂0

]
i
is the ith row of

√
1N − e2δtK̂0 .

The quantum operation described by this set of Kraus op-
erators correctly advances the system up to O(δt2) terms.
Keeping with the particle decay analogy, there are N “fla-
vors” of massive particles interacting with one another in
the top left block of ρ. The Kraus operators Êi, with
i = 1, · · · , N correspond to these different “flavors” de-
caying.

Over evolution time, the system of interest is decaying
into the empty state while undergoing non-Hermitian evo-
lution. Statistics at late times will tend to be dominated

2 A pedagogical treatment of open quantum systems that includes
Lindblad evolution and the formalism of quantum operations used
here can be found in, for example, Nielsen and Chuang’s textbook,
Chapter 8 [36]
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by the empty measurement, with failure of the simulation
to yield information about the system of interest.

Novel properties of the non-Hermitian lattice system,
as a rule of thumb, would be expected to be manifest
at time scales inverse to the anti-Hermitian Hamiltonian
term’s magnitude. However, failure probabilities are ex-
pected to approach unity at time scales inverse to the
system volume multiplied by the anti-Hermitian coupling
strengths. This is the usual price of fitting non-Hermitian
evolution into completely positive maps: naive imple-
mentation comes at the cost of growing probability of a
“garbage” outcome.

For any algorithm that simulates a non-Hermitian
Hamiltonian via a trace preserving quantum operation,
the probability of success for a single Trotter step de-
pends on the way we normalize the desired evolution so
as to fit it into a trace preserving quantum operation.
As we have emphasized, −K̂0 must minimally be positive
definite, and thus probability for a successful time step on
an initial density matrix ρ without an undesired quantum
jump is bounded:

ps ≤ Tr
(
Ê0ρÊ

†
0

)
= Tr

(
eδtK̂ρeδtK̂

)
. (7)

Realistically, K̂ will not in general be diagonal in the
lattice basis, and we will not know its spectrum. Instead,
for a lattice model, we will have K̂ as a sum of locally
acting operators, K̂ =

∑
k̂I that we implement as indi-

vidual anti-Hermitian “gates,” and for which we do know
the spectra. In a simulation we must enforce positivity
of each −k̂I . This will over-compensate in general, and
in a typical simulation the bound in Eq. (7) will not be
saturated.

We next move on to study the construction of simula-
tions that target non-hermitian Hamiltonian evolution on
lattice models.

III. MODELING ANTI-HERMITICITY

Our algorithms are general, however in view of sim-
plicity of exposition and also our intention to study lat-
tice field theories with local interactions, we need only
put focus on non-Hermitian Hamiltonian terms which are
single site or involve interactions between nearest neigh-
bor degrees of freedom. In this section, we describe a
family of Kraus operator decompositions of an arbitrary
non-unitary time-step, limits of which correspond to our
“random walk through time” algorithm with probabilistic
time evolution, and damping circuits with straightforward
time evolution which minimize failure probability.

A. Single Qubit anti-Hermiticity

If the anti-Hermitian part of the Hamiltonian acts
only locally on lattice degrees of freedom, the Trotterized
transfer matrix can be separated into a unitary part en-
compassed in Ĝ and a non-unitary part from K̂ which acts
only on single system sites. We focus on finding a single
qubit quantum operation that approximates a time step
according to such an anti-Hermitian Hamiltonian. It can,
in fact, be shown that any Trotterized multi-qubit non-
Hermitian evolution can be decomposed into unitaries and
single-qubit non-unitary quantum operations, as we ex-
plain further in Section III B.

Tracing out the entire system with the exception of a
single qubit gives a reduced density matrix for the i’th
lattice site, ρi. The portion of the Trotter step that solves
Eq. (3) corresponding to anti-Hermitian evolution is

ρi → eδtk̂iρie
δtk̂i , (8)

where k̂i here is the portion of K̂ acting at site i.
This takes a form similar to a single element non-trace-
preserving quantum operation, with Kraus operator Êi0 =

eδtk̂i . As emphasized in Section 2, requiring positivity of
−k̂i guarantees that Êi

†

0 Êi0 ≤ 1, as required by unitarity.
Without loss of generality, one can always apply a unitary
transformation to rotate the single qubit anti-Hermitian
evolution to point along the z-axis. We thus consider the
specific case k̂i = Θ(σ̂z − s1̂), so that we have

Êi0 =

(
e(1−s)δtΘ 0

0 e−(1+s)δtΘ

)
, (9)

where Θ is a coupling strength, and we require s ≥ 1.
In the following section, we offer a few simple construc-

tions of Kraus operator sets that can be incorporated as
quantum channels in a circuit-based implementation of
non-Hermitian quantum dynamics. Each has its advan-
tages and disadvantages relative to each other. First, we
show that in order to implement two-qubit non-unitary
gates, it is sufficient to have the capability to implement
one-qubit non-unitary gates.

B. Decomposing Two-Qubit Gates

The aim in this section is to decompose a general N -
qubit operator into a single qubit non-unitary operation,
and N -qubit unitaries. We will first show this for the
two-qubit case and then generalize. This is valuable since
many lattice field theory interactions are non-linear, and
their quantum-computation encodings will necessarily be
reduced to single- and two-qubit gates, which may them-
selves be non-unitary. Being able to reduce two-qubit
non-unitary gates, for instance into two-qubit unitary op-
erations, and a single-qubit non-unitary operation allows
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the implementation of more complicated systems that
possess two-qubit gates.

Consider an arbitrary two qubit Trotterized evolution
operation of the form

M̂2 = e−iδtĤ2 , where Ĥ2 = Ĝ2 + iK̂2. (10)

Using the Trotter expansion, we can write it as a unitary
piece and a non-unitary piece:

M̂2 ≈ M̂UM̂NU = e−i δt Ĝ2eδt K̂2 . (11)

The unitary piece can in principle be implemented on a
quantum computer. Now, consider the Pauli decomposi-
tion of K̂2. Since K̂2 is Hermitian, the coefficients, aij of
the decomposition will be real

M̂NU = exp

δt∑
i,j

aij(σ̂i ⊗ σ̂j)

 (12)

≈
∏
i,j

M̂ ij
NU =

∏
i,j

exp{δt aij(σ̂i ⊗ σ̂j)}, (13)

where the Trotter expansion has been used in the second
equality, and i, j = 0, 1, 2, 3, with σ̂0 ≡ 12. Since M̂ ij

NU
is Hermitian ∀ (i, j), it admits a spectral decomposition
with orthonormal eigenvectors

M̂ ij
NU = Û ijΛ̂ij(Û ij)†, (14)

where Û ij is the unitary matrix comprised of the eigen-
vectors of M̂ ij

NU ordered in the decreasing order of the
eigenvalues; Λ̂ij is a diagonal matrix with the eigenvalues
in decreasing order. One can show that

Λ̂ij =

{
exp{δt a00 12} ⊗ 12, (i, j) = (0, 0)

exp{δt aij σ̂3 } ⊗ 12, (i, j) 6= (0, 0).
(15)

Using this, we can write

M̂NU = Λ̂00 ×
∏

(i,j)6=
(0,0)

Û ij(exp{δt aij σ̂3} ⊗ 12)(Û ij)†. (16)

This is the required decomposition. The Û ij ’s are two
qubit unitaries (entanglers), and the operations in the
middle are single qubit operations, one of which is always
the identity.

This decomposition is easily generalized to non-unitary
operations acting on N qubits:

M̂
{ki}
NU = Û{ki}Λ̂{ki}(Û{ki})†, (17)

where the set {ki} is a label for the Pauli basis for a
2N dimensional Hilbert space. The (ordered) eigenvalue
matrix is then

Λ̂{ki} =

{
exp
{
δt a{0} 12

}
⊗ 12N , ki = 0∀ i

exp
{
δt a{ki} σ̂3

}
⊗ 12N , ∃ i : ki 6= 0,

(18)

|ψi1〉 · · ·
(U ij)† U ij

· · · |ψ1〉

|ψi2〉 · · ·
Υ(aij)

· · · |ψ2〉

|0〉 · · · MZ XMZ · · · |0〉

|ψ1〉
MU

|ψf1 〉
|ψ2〉

Υ(a00)
|ψf2 〉

|0〉 MZ XMZ |0〉

Figure 1. Block circuit of a general Trotterized two qubit
operation in terms of single qubit non-unitaries (implemented
by Υ), and two-qubit unitary entanglers, U ij ’s.

which yields

M̂NU = Λ̂{0}×∏
{ki}6=
{0}

Û{ki}
(

exp
{
δt a{ki} σ̂3

}
⊗ 12N

)(
Û{ki}

)†
. (19)

Here, the Ûki ’s are N -qubit unitary operators . Even in
this general case, the non-unitarity can be moved to be
on just a single qubit. Note that these N -qubit entanglers
need not be efficiently implementable, generally. A block
circuit of the two-qubit case is shown in Figure 1, where
Υ is a unitary implementation of the quantum operations
we describe in section IV to implement single-qubit non-
unitary evolution using a single ancillary qubit. MZ is a
measurement of the spin in the σ̂z basis, and X ≡ σ̂x.

IV. EXPLICIT QUANTUM CHANNELS

In this section, we will elaborate on the specific quan-
tum channels based on the ideas from the previous sec-
tions. These are channels obtained by embedding the
non-Hermitian system into a bigger, unital channel using
ancillary qubits. Then, the undesired evolution can be
minimized through post-selection on the measurements of
the ancillary qubits. The first two approaches below take
the system away from the desired evolution in the even-
tuality of a wrong measurement on the ancillary qubit.
The last one solves this problem at the expense of accu-
mulating Trotter error.

The three channels described here are considered to be
implemented uninterrupted for the desired amount of evo-
lution time. This is how the numerical results in Sec. VI
were calculated. However, the channels could just as well
be supplemented with tomography of the quantum state
to “checkpoint” evolution along the way. In this way all
three approaches are able to reproduce the desired evolu-
tion up to controllable errors.
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A. System in Decline

The first channel we discuss is modeled on, and inspired
by the operation corresponding to particle decay in [11].
Implementation requires that we, at minimum, extend the
single qubit system to a qutrit, although for purposes of
utilization on standard hardware, we will instead exhibit
here a realization via extension by an additional qubit.
We refer to this new qubit as the “compensatory” system.
This qubit adds additional states for probability of the
system qubit to move into, and so “compensates” the “de-
cay” experienced by the system qubit. To write the Kraus
operators, first we will rotate into the z-axis and normal-
ize as mentioned in Sec. III A, then let us write down the
two matrices

Ω̂1 =

(
1 0
0
√

1− γ

)
, Ω̂2 =

(
0
√
γ

0 0

)
(20)

with γ = 1 − e−4δtΘ. Now, a set of two Kraus operators
acting on this 4 dimensional Hilbert space is given by

ÊSD
0 =

(
Ω̂1 0
0 1

)
, ÊSD

1 =

(
0 0

Ω̂2 0

)
. (21)

To simulate the non-Hermitian system, we impose a
super-selection rule, and, on initialization, only consider
states which populate the 2× 2 blocks lying on the diag-
onal of the 2-qubit density matrix, with the 2 × 2 block
in the upper left (the 0-state of the compensatory qubit)
representing the system that will evolve according to the
effective non-Hermitian Hamiltonian.

With the Kraus operators in Eq. (21) this quantum op-
eration is an amplitude-damping channel in which a decay
of the system’s 1-state, represented by Ê0, is compensated
for by population of the 1-state of the compensatory qubit
via Ê1. To begin describing the evolution, we write down
a density matrix for the system and compensatory qubit
in block-diagonal form, ρ0 = |0〉 〈0| ⊗ ρsys

0 + |1〉 〈1| ⊗ ρG0 .
The state ρG is a “garbage state” that contains minimal
information about the system that we intend to simulate.
Here, while we use the notation ρsys (ρG), these blocks
are not themselves individual density matrices. Evolving
the system an amount of time, δt, we find

ρ0 → ρδt = |0〉 〈0| ⊗ ρsys
δt + |1〉 〈1| ⊗ ρGδt

= |0〉 〈0| ⊗ Ω̂1ρ
sys
0 Ω̂†1

+ |1〉 〈1| ⊗ (ρG0 + Ω̂2ρ
sys
0 Ω̂†2). (22)

On any given time step, the probability, psys, for measur-
ing the compensatory qubit in the 0-state after a single
step of evolution is given using the maximal case of Eq. (7)
by

psys = Tr
(
P̂0ρδtP̂0

)
= Tr

(
Ω̂1ρsysΩ̂

†
1

)
, (23)

where P̂0 is the projector onto the 0-state of the compen-
satory qubit. In order to actually implement the quan-
tum operation described by Eq. (21), a minimal additional
third qubit must be introduced for a unitary operation as
an ancillary environment, which, when traced out, yields
the above Kraus operator set. With this operation, the
upper 2 × 2 block will evolve, up to normalization, pre-
cisely as desired up to computational error in the lab, and
finite-time Trotter error.

This is, however, at the expense of depletion of the sys-
tem of interest into the garbage state that eventually and
inevitably (without tuning) dominates the density ma-
trix, given enough iterations of the non-unitary portion
of the time-step. Longer system-evolution times are as-
sociated with greater expense in performing tomography
that yields information about the state of the target sys-
tem.

We should note that in some (or many) cases, our
damping channel will be overly conservative. Probabil-
ities of success may be arranged to be higher with more
careful construction of the operation. This is due to the
fact that the original non-Hermitian Hamiltonian may
have either purely real eigenvalues due to symmetry argu-
ments [22], or eigenvalues with a positive imaginary part
that are overcompensated for in our pursuit of ensuring
unital quantum channels to simulate local interactions.
Of course we will not typically know in advance the spec-
trum of these Hamiltonians (that being the purpose of
their simulation), and playing it safe is likely to be best
practice.

B. Damping Channels

We can also realize the non-Hermitian dynamics with-
out extending the system space with a compensatory
qubit, but rather use an ancillary qubit to elevate the
non-unitary operation to a unitary one.

The simplest way to implement the non-unitary dy-
namics may be a phase damping quantum channel, with
measurement performed on a single ancillary qubit in the
computational basis. In the framework at the end of
Sec. II, and the beginning of Sec. IIIA, this case cor-
responds to minimizing s, and having only a single ad-
ditional Kraus operator complete the set. Minimizing s
provides the single-step optimal probability of obtaining
evolution via ÊDC

0 rather than the other Kraus element.
It can be arranged so that a “0” outcome of ancillary mea-
surement corresponds to the desired ÊDC

0 evolution, and
“1” is associated with an undesired ÊDC

1 evolution. In this
case,

ÊDC
0 =

(
1 0
0
√

1− γ

)
and ÊDC

1 =

(
0 0
0
√
γ

)
, (24)

with γ = 1−e−4Θδt. Implementation of the channel is via
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a controlled y-rotation, Ry(φ), where the system qubit
acts as the control, the ancilla qubit as the target, and
φ = 2 sin−1(

√
γ).

For the phase damping circuit, a “1” measurement is
irrecoverable, destroying any entanglement built up be-
tween the ith qubit and the rest of the system, putting
the ith qubit in the pure state ρ1

i = |1〉〈1|. These
1-measurements correspond to the inevitable quantum
jumps associated with a probabilistic algorithm.

A low probability to measure the 1-state in the an-
cillary ensures errors are local and sparse. Long-range or
global properties of the system of interest may survive this
approximation to non-Hermitian Hamiltonian dynamics.
We study this numerically in section VI by comparing ob-
servables in the 1D Ising model at imaginary longitudinal
field calculated using the phase damping gate implemen-
tation, to those calculated exactly.

We note that one could just as easily consider any right-
acting unitary rotation of ÊDC

1 , such as ÊDC
1 σ̂x (which in

this case would give an amplitude damping channel).

C. Random walk through time

In contrast to the previous two approaches where a
measurement of “1” on the ancillary qubit results in a
complete loss of entanglement between the qubit and the
rest of the system, in this section, we present an algo-
rithm where an unsuccessful measurement on the an-
cilla(s) means that the system has evolved in the wrong
direction in time by a fraction of the time-step, δt. Let Âi
and B̂j be a set of N and M Kraus operators that define
the trace preserving quantum operation given by

R(ρ) =

N∑
i=1

ÂiρÂ
†
i +

M∑
j=1

B̂jρB̂
†
j , (25)

with

Âi =
√
αi exp

{
−iĜδti

}
exp
{
K̂δti

}
,

B̂j =
√
βj exp

{
iĜδt′j

}
exp
{
−K̂δt′j

}
. (26)

Here, Âi does a forward time-step by δti, and B̂j does a
backward time-step by δt′j . Note that δti, δt′j ≤ δt; the
equality is when N = M = 1.

We demonstrate here a calculation which gives the op-
timal number of Kraus operators. Under the assump-
tion that δti, δt′j � 1, the trace-preserving condition
(
∑
i Â
†
i Âi +

∑
j B̂
†
j B̂j = 1) gives the following:∑
i

αiδti −
∑
j

βjδt
′
j = 0,

∑
i

αi +
∑
j

βj = 1. (27)

The probabilities for the operators Â and B̂ are given by

ai = Tr
(
ÂiρÂ

†
i

)
= αi + 2αiδti Tr

(
K̂ρ
)

+O
(
δt2i
)
,

bj = Tr
(
B̂jρB̂

†
j

)
= βj − 2βjδt

′
j Tr

(
K̂ρ
)

+O
(
δt′ 2j

)
.

(28)

Using these, the average distance in time a single action of
the quantum operation in Eq. (25) would take the system
is

〈t〉 =
∑
i

ai δti −
∑
j

bj δt
′
j = 0, (29)

where Eq. (27) was used in the second equality. This
indeed is expected since this is a random-walk algorithm.
The quantity of interest is the root mean squared distance
in time:√
〈t2〉 =

(∑
i

ai δt
2
i +

∑
j

bj δt
′ 2
j

)1/2

=
(∑

i

αiδt
2
i +

∑
j

βjδt
′ 2
j

+ 2 Tr
(
K̂ρ
)(∑

i

αiδt
3
i −

∑
j

βjδt
′ 3
j

))1/2

≤ δt
(∑

i

αi +
∑
j

βj

+ 2 Tr
(
K̂ρ
)(∑

i

αiδti −
∑
j

βjδt
′
j

))1/2

.

(30)

Finally, using (27), we have√
〈t2〉 ≤ δt. (31)

This can be maximized using just a single ancillary qubit
using the following Kraus operators:

Ê±(δt) =
1√
2

exp
(
∓iĜδt

)
exp
(
±K̂ δt

)
, (32)

which has the statistics of a coin that has a state-
dependant O(δt) bias. This channel evolves correctly up
to O(δt2). The drawback of this evolution is that, due
to the nature of a random walk, many more Trotter steps
are required than ∼ 1/δt in order to evolve the system the
desired amount of time. This results in an accumulation
of Trotter error. Using this method a judicious choice of
post-selection must be done- for instance, if we take too
many steps in the backwards direction, it would be better
to start the simulation over.

V. CIRCUIT REALIZATION

In this section we give explicit forms of the unitary
evolution operators for each of the algorithms discussed
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in Sec. IV. These are expressed in terms of known funda-
mental gates, and Kraus operators. We also include a dis-
cussion of realizing the non-unitary evolution from a non-
Hermitian Hamiltonian using the algorithm of oblivious
amplitude amplification by expressing the non-unitary
evolution operator as a linear combination of unitaries
(see [9, 13]).

A. System in Decline realization

The algorithm described in Sec. IVA is best interpreted
as a system and “compensatory” environment. The Kraus
operators for this algorithm (Eq. (21)) contain in them
how the probability moves between system and environ-
ment during evolution. The actual implementation of
these Kraus operators is quite ambiguous, and so one only
needs to find a unitary (which is done with an additional
ancillary qubit) that applies these Kraus operators cor-
rectly. We found that a unitary that accomplishes this is
given by

ÛSD =
1

2

(
(1 + σ̂z)⊗ ÊSD

0 + (σ̂x − iσ̂y)⊗ ÊSD
1

− (σ̂x + iσ̂y)⊗ ÊSD†
1

+ (1− σ̂z)⊗ (SWAP)ÊSD
0 (SWAP)

)
, (33)

where SWAP is the standard two-qubit swap gate. Here,
the first operator in the tensor product acts on the ancil-
lary qubit, while the second operator acts on the system-
compensatory environment qubits. Note that the unitary
in Eq. (33) corresponds to the single qubit quantum chan-
nel written down in Eq. (21), which explicitly gives

ÛSD =



1 0 0 0 0 0 0 0
0
√

1− γ 0 0 0 0 −√γ 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0
√
γ 0 0 0 0

√
1− γ 0

0 0 0 0 0 0 0 1


. (34)

The gate implementation of this unitary is shown in Fig.
2. Acting with this unitary implements the evolution
shown in Eq. (22). To see this, consider the combined
system-compensatory environment qubit density matrix
of the form

ρ = |0〉c 〈0|c ⊗ ρ
sys + |1〉c 〈1|c ⊗ ρ

G, (35)

where ρG is a garbage state. The total density matrix
upon preparing the ancillary qubit in the 1-state is

ρtot = |0〉a 〈0|a ⊗ ρ, (36)

|0〉a • Ry(ϕ) •

|0〉c × X • X ×
|s1〉 × • ×

Figure 2. Gate implementation of the unitary in Eq. (34) for
the System in Decline algorithm for a single qubit Trotterized
anti-Hermitian evolution. Here, ϕ = 2 sin−1

√
1− e−4δtΘ, and

the subscripts a and c denote the ancillary and compensatory
qubits, respectively.

where the subscripts a and c correspond to the ancillary
and the compensatory environment qubits, respectively.
Evolving by Û yields

ÛSDρtot Û
SD† =

1

2

(
(1 + σ̂z)⊗ ÊSD

0 ρÊSD†
0

+ (σ̂x − iσ̂y)⊗ ÊSD
1 ρÊSD†

0 − (σ̂x + iσ̂y)⊗ ÊSD
0 ρÊSD†

1

+ (1− σ̂z)⊗ ÊSD
1 ρÊSD†

1

)
. (37)

Tracing out the ancillary qubit gives the desired evolution
in Eq. (22).

B. Damping channel realization

In this section we give an explicit representation for
the Kraus operators in the case of the damping circuit,
and show their application on an arbitrary quantum state.
In Sec. III, we have considered how to implement non-
Hermitian operations on a single qubit, and how to extend
it to two qubits. It turned out that only the technology
for single-qubit non-unitary gates is necessary, since non-
unitary two-qubit gates can be written in terms of two-
qubit unitaries, and a single-qubit non-unitary operation.
Then, it reduces to a problem of implementation of the
two-qubit unitary entanglers. However, to actually imple-
ment the non-unitary operations described in Sec. III A,
one must enlarge the space and perform a unitary opera-
tion. There are several equivalent ways to implement the
quantum operations described in Sec. IIIA. Here, we in-
clude an additional ancillary qubit in order to construct
a unitary on a larger space. A unitary that is convenient
to utilize is

ÛDC = 1⊗ ÊDC
0 − i σ̂y ⊗ ÊDC

1 , (38)

where the first operators in the tensor products act on
the ancillary qubit, and the second on the system qubit.
Acting on the total state ρtot = |0〉 〈0| ⊗ ρ, for example,
with ÛDC yields the state

ÛDCρtotÛ
DC† = |0〉 〈0| ⊗ ÊDC

0 ρÊDC†
0

+ |1〉 〈1| ⊗ ÊDC
1 ρÊDC†

1 , (39)
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which upon post-selection on the ancillary qubit yields
the desired evolution according to Ê0. Using the repre-
sentations from Eq. (24), and Eq. (38), we can write the
unitary corresponding to the damping gate as,

ÛDC =

1 0 0 0
0
√

1− γ 0
√
γ

0 0 1 0
0 −√γ 0

√
1− γ

 . (40)

Looking at the above matrix, this is nothing more than a
controlled y-rotation, with the system qubit as the con-
trol.

Now, consider an arbitrary single-qubit operator, M̂1.
M̂1 admits a singular value decomposition,

M̂1 = Û λ̂V̂ †. (41)

where both V̂ and Û are unitary, and λ̂ is a diagonal ma-
trix with positive entries and let us assume, without loss
of generality, that the entries are sorted from largest to
smallest: λ1 ≥ λ2. If we normalize by λ1, the matrix λ̂
is identical to ÊDC

0 from Eq. (24), with λ2/λ1 ≡
√

1− γ.
Then to implement the matrix M̂1, one applies the ma-
trix (1 ⊗ Û)ÛDC(1 ⊗ V̂ †) to the state |0〉 |ψ〉. In this
way, any single qubit matrix which is invertible can be
implemented.

By considering the state using the single-site reduced
density matrix, ρi, in standard (r, θ, ϕ) Bloch-ball coor-
dinates, the probability of successful implementation, ps,
is the probability associated with obtaining 0 on a mea-
surement of the ancillary qubit, as given by Eq. (7)

ps = Tr
(
ÊDC

0 ρiÊ
DC†
0

)
= 1− γ

2
(1− r cos θ), (42)

which is identical to the probability of success in the
System in Decline algorithm, since ÊDC

0 and Ω̂1 are the
same. We note that this is independent of implementa-
tion/completion of ÊDC

0 to a complete measurement pro-
tocol, and bounded below: ps ≥ 1 − γ ≈ 1 − 4δtΘ. Us-
ing this lower bound, we can compute the probability of
success after Nt applications of the operation. If we set
δt = t/Nt,

pNt
s ≥ (1− 4Θt/Nt)

Nt , (43)

which, for large Nt, approaches e−4Θt. Then, the prob-
ability of success after Nt applications is bounded from
below by e−4Θt.

This bound for success identifies a line of constant reli-
ability for the circuit. We see that if Θt = c with c small
the circuit has a relatively high probability of success af-
ter many uses. That is, the circuit works well along the
line starting with Θ large which is run for small times,
and ending with Θ small but run for long times. Notice
the success of the circuit is independent of the underlying

physics of the model. The probability of success is the
same regardless of correlation length, or phase symme-
tries, and is merely controlled by the quantity Θt.

The extension of the above to two-qubit gates is a
straightforward generalization of the single-qubit case,
however unnecessary, as we have already seen in Sec. III B,
one only needs the technology for single-qubit non-unitary
gates to implement two-qubit non-unitary gates when the
gate is a by-product of Trotterization.

C. Random walk realization

The steps in Sec. IVC show that by including a single
additional qubit, we achieve the best possible evolution
using the random walk method. For a general Hamilto-
nian, Ĥ = Ĝ + iK̂ we would like to be able to identify
a Hamiltonian which corresponds to the enlarged unitary
evolution. This would allow for a more straightforward
gate interpretation. In this section we derive it explicitly.

Consider the full, enlarged, unitary, time-evolution op-
erator, separated into the original unitary evolution from
the Hermitian part of the Hamiltonian, Ĝ, and the non-
unitary evolution from the non-Hermitian part, K̂,

ÛRW ≈ Ŵ T̂ , (44)

where Ŵ , T̂ , are the time-evolution operators for Ĝ, and
K̂, respectively. Explicitly,

Ŵ =
1

2
(1 + σ̂z)⊗ e−iĜδt +

1

2
(1− σ̂z)⊗ eiĜδt (45)

and

T̂ =
1√
2
1⊗ eK̂δt − 1√

2
iσ̂y ⊗ e−K̂δt. (46)

First we consider T̂ , and expand to order O(δt), and col-
lect terms with Ĝ, and K̂,

T̂ ' 1√
2

[
(1− iσ̂y)⊗ 1 + δt(1 + iσ̂y)⊗ K̂

]
(47)

=
1√
2

((1− iσ̂y)⊗ 1)[1⊗ 1 +
δt

2
(1 + iσ̂y)2 ⊗ K̂]

=
1√
2

((1− iσ̂y)⊗ 1)[1⊗ 1 + iδtσ̂y ⊗ K̂]

' 1√
2

((1− iσ̂y)⊗ 1)eiδtσ̂y⊗K̂ +O(δt2),

where we have worked up to linear order in δt and restored
the corrections explicitly in the last step. This is a unitary
time-evolution operator, where the non-Hermitian part of
the original Hamiltonian is now coupled to the ancillary
qubit through a σ̂y interaction.



10

Second, the unitary part, Ŵ , is similar. Expanding to
linear order in δt and collecting similar terms,

Ŵ =
1

2
(1 + σ̂z)⊗ e−iĜδt +

1

2
(1− σ̂z)⊗ eiĜδt

' (1⊗ 1)− iδt(σ̂z ⊗ Ĝ)

' e−iδtσ̂z⊗Ĝ +O(δt2). (48)

Then, the Hermitian part of Ĥ can be simulated with
an expanded Hamiltonian where the Hermitian part is
coupled to the ancillary qubit through a σ̂z interaction.
These forms allow Hamiltonian simulation regardless of
the form of Ĝ and K̂. If a qubit formulation for Ĝ and
K̂ can be found, those qubit interaction terms can be
expanded to include a σ̂z, σ̂y interaction, respectively, in
order to simulate the full Hamiltonian using the random-
walk method.

VI. THE TRANSVERSE ISING MODEL WITH
AN IMAGINARY LONGITUDINAL FIELD

To put these above algorithms into practice, and test
the realizations proposed above, we consider a simple lat-
tice model whose Hamiltonian is non-Hermitian: the one
dimensional quantum Ising model with a real transverse
field and a purely imaginary longitudinal field 3,

ĤIsing = −
∑
〈ij〉

σ̂zi σ̂
z
j −

hx
λ

∑
i

σ̂xi + i
Θ

λ

∑
i

σ̂zi . (49)

We re-scale all the couplings by the nearest-neighbor cou-
pling, and will omit it in the following, i.e. set λ = 1.

Brute force classical Monte-Carlo simulations on the
discretized imaginary time (Euclidean) partition function
(the 2D classical Ising model with an imaginary external
field) exhibits a sign problem and disastrous numerical
convergence due to the imaginary field. Due to its rela-
tive simplicity, however, the model admits study with an-
alytic methods, and much is known about the structure
of the phase diagram (see [2–5]). The model is thus an
ideal benchmark scenario for testing real-time evolution
algorithms.

With the longitudinal field set to zero and at large vol-
ume, the model exhibits a second order quantum phase
transition at hx = 1, where the system switches from a
disordered phase to an ordered (magnetized) one. In a
dual description, the transition occurs due to the con-
densation of topological “kink” excitations. The critical
point is associated with a conformal field theory where

3 This can also be understood, in discrete time evolution, as the
non-trivial part of the transfer matrix for the 2D Euclidean clas-
sical Ising model with an imaginary external field.

Ns=2
Ns=4
Ns=6
Ns=8
Ns=10

0.0 0.1 0.2 0.3 0.4 0.5
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Θ

h
x

Figure 3. The exceptional line, (θ, hx)c for different system
sizes. In the infinite volume limit, the exceptional line deviates
from the Θ = 0 line at hx = 1

ungapped kink-antikink bound pairs mediate long-range
order, and the entropy of the ground state diverges along
with the correlation length in the thermodynamic limit.

The non-Hermitian extension of the model with imag-
inary longitudinal field offers another viewpoint on the
phase transition. For hx > 1, there is an “exceptional
line,” defined by ±Θc(hx) along which the ground state
(defined here as the eigenvector(s) with smallest real
part), merges with the first excited state. This is not
a typical degeneracy or level crossing, but rather one at
which the non-Hermitian Hamiltonian can be diagonal-
ized only up to a Jordan-block form. Thus, the system
“loses” an eigenvector along this line. This corresponds to
a zero in the generating functional for correlation func-
tions (the vacuum to vacuum transition amplitude).

For |Θ| > Θc(hx), the ground state is degenerate in
its real part, but is separated into a pair of states with
energies that are complex conjugate paired. At large vol-
ume, the exceptional line converges toward the Θ = 0 line
at hx = 1, the location of the quantum phase transition
for the original Hermitian system. In Fig. 3, we show
the exceptional line for different system sizes. This is the
quantum analog of the Lee-Yang edge—zeros which lie
densely on a circle (as a function of eiβΘ) in the statis-
tical partition function in the large volume limit. Above
the critical hx, the zeros lie outside of a wedge enclosing
the real axis. As hx is reduced towards the critical point,
the wedge closes, and the zeros cluster densely in the im-
mediate vicinity of the real axis. In the thermodynamic
limit, the partition function in the hx-Θ plane develops a
branch-singularity along the hx axis.

The zeros in the classical partition function map to
the line of exceptional points associated with the non-
Hermitian Hamiltonian. They also correspond to a non-
unitary critical point in the model; a CFT with central
charge c = −22/5 (see [5, 7]). The merger (and annihi-
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lation) of the exceptional points coincides with the usual
2D Ising CFT.

Despite its non-unitarity, aspects of the complexified
Ising model described above admit quantum simulation
on a unitary machine. The techniques described in Sec. IV
can be applied, and aspects of the structure of the non-
unitary lattice theory can be probed. In part, the success
of the methods can be traced to the non-unitary features
of the model—in particular the effective ground state en-
ergies becoming complex.

The imaginary part of the ground state energy past the
exceptional line leads to the domination (from arbitrary
initial configuration) of the ground state in the long-time
limit of system evolution. We give an example of this
with 4 system sites in Fig. 4, where we plot the fidelity,
as defined in Eq. (53) of the state of the system and the
ground state as a function of time for different initial con-
figurations. This is insensitive to quantum noise that may
be associated with the algorithm itself (as in Sec. IVB),
or, if sufficiently quiet, from environmental noise as well.
This makes our algorithms viable for ground state prepa-
ration past the Lee-Yang edge. The authors are hopeful
that this will create new inroads not only for studying
non-unitary models, but also for learning about their real-
value limits. In other words, exploration of the behavior
of complex structure of the partition function can her-
ald typical real-space quantum phase transitions in fully
unitary theories.

In the next subsections, we describe explicit applica-
tion of the algorithms in Secs. IV, V to the imaginary
longitudinal field Ising model in Eq. (49), constructing
gate sequence protocols that are generalizable in principle
to arbitrary volume. We simulate Trotter evolution and
show how observables such as Rényi entropies can distin-
guish the exceptional line in the hx-Θ plane. The Rényi
entropies are good observables because they are sensitive
to the interesting physics of the Lee-Yang edge. More-
over, it is not hard to measure them experimentally (see
[37–39]). The measurements rely on interfering identical
copies of the system with each other (through applica-
tions of the SWAP gate). In this way the nth-order Rényi
entropy is probed through measurements of the parities of
sub-systems of one of the copies. The second-order Rényi
entropy is the simplest, requiring only two copies.

A. Quantum circuit - System in Decline

The anti-Hermitian part of the Ising model with an
imaginary longitudinal field described by the Hamiltonian
in Eq. (49) can be implemented straightforwardly using
the unitary in Eq. (33). The Kraus operators for this

0
1
+X
Random
Maximally entangled

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t

F(
ρ
,ρ

G
)

Figure 4. Fidelity between the state of the system and the
ground state (Θ = hx = 0.5) for five initial configurations of
the system- all in the 0-state, all in the 1-state, all in the +X
state, every qubit in a random pure state, and the maximally
entangled state.

model are

ÊSD
0 =

1 0 0 0
0
√

1− γ 0 0
0 0 1 0
0 0 0 1

 , ÊSD
1 =

0 0 0 0
0 0 0 0
0
√
γ 0 0

0 0 0 0

 ,

(50)
with γ = 1−e−4δtΘ. The circuit for a single time-step for
this model is shown in Fig. 5 for two system qubits with
one ancillary qubit and one compensatory qubit for each
of them.

Because the probability of success for this circuit is
identical to that of the damping channel circuit we leave
the numerical results to that section (see Sec. VIB). More-
over, while the physical set-up is perhaps more intuitive,
the gate structure is more complicated than in the damp-
ing circuit case, and so for ease of numerical simulation
we only study the damping channel circuit.

B. Quantum circuit - Phase damping circuit
implementation

The Ising model with a real transverse field, and a
purely imaginary longitudinal field can be implemented
almost immediately using the phase damping circuit dis-
cussed in Sec. IVB. In this case, the Kraus operator, Ê0

corresponds to

ÊSD
0 =

(
1 0
0 e−2δtΘ

)
. (51)

The actual circuit for a single time step is shown in Fig. 6
for four physical spins, supplemented by four auxiliary
qubits which are used to implement the non-unitary gates.
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|0〉a • Ry(ϕ) •

|0〉c × X • X ×

|s1〉 • • Rx(δthx) × • ×

|0〉a • Ry(ϕ) •

|0〉c × X • X ×

|s2〉 Rz(δt) Rx(δthx) × • ×

Figure 5. A single Trotter step for a two spin Ising system with an imaginary longitudinal field using the System in Decline
channel (see Sec. VA). Here, ϕ = 2 sin−1

√
1− e−4δtΘ. The quantum channel is implemented using one ancillary qubit (denoted

a) and one compensatory qubit (denoted c). The compensatory qubits are projected onto the 0-state after the desired amount
of evolution.

|0〉 Ry(ϕ) MZ XMZ

|s1〉 • • Rx(δthx) •

|0〉 Ry(ϕ) MZ XMZ

|s2〉 Rz(δt) • • Rx(δthx) •

|0〉 Ry(ϕ) MZ XMZ

|s3〉 • • Rz(δt) Rx(δthx) •

|0〉 Ry(ϕ) MZ XMZ

|s4〉 Rz(δt) Rx(δthx) •

Figure 6. A single Trotter step for a four spin Ising system with an imaginary longitudinal field. Here ϕ = 2 sin−1
√

1− e−4δtΘ.
In this circuit a measurement is defined as Mz which will return either zero or one. Subsequently the state is flipped depending
on the result.

A comparison between the method and the exact evo-
lution for six spins can be seen in Fig. 7 in the ordered
phase. In the absence of errors it is clear that the circuit,
and the method, reproduce the original dynamics almost
perfectly. Another example, this time in the disordered
phase, can be seen in Fig. 8.

In the two previously mentioned figures, the phase
damping circuit was implemented with zero probability of
measuring the auxiliary qubits in the “ruined” state. This
is the ideal case. However, it is important to see how the
algorithm can perform in the realistic case when the |1〉
state for the auxiliary qubit is measured with a non-zero
probability. To make this comparison, we calculated the
second-order Rényi entropy,

S2(t) = − log
(
Tr
[
ρ2(t)

])
, (52)

as a function of evolution time. Here ρ(t) is the reduced
density matrix for an even bipartite split of the system at

time, t. We calculate this quantity in the hx-Θ plane. In
Fig. 9 we see this calculation and a comparison between
three things: On the left, evolution of the system using the
circuit in Fig. 6, performing a measurement on the 350th

time step of size δt = 0.01, and choosing the iteration
with the least number of “1" measurements on the ancilla
for each data point, out of 350 runs; in the middle, the
calculation of S2 using the exact non-unitary evolution in
the hx-Θ plane; on the right, the fidelity,

F (ρ, σ) = Tr
√
ρ1/2σρ1/2, (53)

between the density matrices obtained using the damping
algorithm, and the one from exact evolution. The fidelity
above is symmetric in ρ and σ. The black line denotes the
exceptional line where the ground state and first excited
state merge.

We can see that the algorithm reproduces the features
of the exact evolution very well when Θ is small generally,



13

0 2 4 6 8 10
t

0

1

2

3

4

5

6 S2 phase damp
x  phase damp
z  phase damp

Exact

Figure 7. A comparison between the exact non-unitary evolu-
tion of six spins using the Ising Hamiltonian from Eq. (49), and
that using a Trotterized circuit like the one shown in Fig. 6.
The time is in units of the nearest-neighbor coupling, with
a Trotter step size δt = 0.01. Here 〈σx〉 is the expectation
value of the σx term in Eq. (49). Similarly for 〈σz〉. S2 is
the second-order Rényi entropy using a bipartite split. Here
hx = 0.5 and Θ = 0.1 placing this data in the ordered phase.
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Exact

Figure 8. A comparison between the exact non-unitary evolu-
tion of six spins using the Ising Hamiltonian from Eq. (49), and
that using a Trotterized circuit like the one shown in Fig. 6.
The time is in units of the nearest-neighbor coupling, with a
Trotter step size δt = 0.01. Here 〈σx〉 is the expectation value
of the σx term in Eq. (49). Similarly for 〈σz〉. S2 is the second-
order Rényi entropy using a bipartite split. Here hx = 2, and
Θ = 0.1 placing this data in the disordered phase.

and when hx . Θ. Overall, we see that the fidelity is good
over a modest range of the couplings, even in the presence
of many 1-measurements on the ancillary qubit.

C. Quantum circuit - Random Walk through time

Here we discuss how to apply the random-walk algo-
rithm to the transverse Ising model in an imaginary lon-
gitudinal field. Using the procedure from Sec. VC, we
can expand the Hilbert space, and create a larger, Her-
mitian Hamiltonian from the non-Hermitian Hamiltonian
in Eq. (49). The new Hermitian Hamiltonian has three
terms corresponding to a three-spin interaction and two,
two-spin interactions. The three-body interaction is the
enlarged nearest-neighbor interaction in the original Ising
model with the new ancillary qubit,

ĤN.N = −σ̂zanc

∑
〈ij〉

σ̂zi σ̂
z
j . (54)

An example of this interaction in a circuit is shown in the
third image in Fig. 10.

The second term is a Z-X interaction which comes from
the transverse field in the original Ising model. This in-
teraction is between the ancillary qubit and a spin qubit,

ĤT = −hxσ̂zanc

∑
i

σ̂xi . (55)

An excerpt of a circuit showing this part of the Hamilto-
nian can be seen in the second image in Fig. 10. The final
term is very similar, a Y -Z spin-spin interaction coming
from the longitudinal field,

ĤL = Θσ̂yanc

∑
i

σ̂zi . (56)

A figure showing the quantum circuit implementation of
this interaction can be seen in the first image in Fig. 10.

Using the above circuits, we can simulate (in an error-
free way) the random walk algorithm on a classical com-
puter. This allows us to assess the effect of the Trotter
decomposition, and the repeated retracing of the system
steps as it moves randomly forward and backward in time.
In practice, to simulate the random outcomes of mea-
surement on the auxiliary qubit, we compute the reduced
density matrix for that single qubit by tracing out the ac-
tual system, and reading the probabilities for measuring
zero or one. We then project the system accordingly into
one of the two states, re-prepare the auxiliary qubit, and
repeat the procedure.

In Fig. 11 we show an example of typical evolution for
the system. In this case we have placed a “mirror” at
Nactual
t = 0, such that if the system would evolve into

negative times we simply re-prepare the entire system in
the initial state and begin again. On the y-axis is the
number of physical times steps taken, while the x-axis is
the number of actual Trotter steps taken in the compu-
tation. We see it takes a great many steps to to move
significantly forward in physical time. Of course this is
clear from the very nature of the random-walk algorithm,
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0 0.2 0.4 0.6 0.8 1.

Figure 9. The second-order Rényi entropy, S2 calculated on a Ns = 4 lattice in the hx-Θ plane. Here the Trotter step size was
δt = 0.01 and S2 was measured on the 350th step. (left) The exact evolution; (middle) The calculation using the phase-damping
method, selecting the best out of 350 runs for each point in parameter space; (right) The fidelity between the exact evolution
and the algorithm.

|anc.〉 V • • V †

|s1〉 Rz(δtΘ)

|s2〉

|anc〉 • •

|s1〉 H Rz(δthx) H

|s2〉

|anc〉 X • X • • X • X

|s1〉 • X • • X •

|s2〉 Rz(δt)

Figure 10. Gate implementation for the random time walk Ising model in Eq. (49) with two system qubits and one ancillary
qubit. V diagonalizes the σy Pauli matrix, and H is the standard Hadamard gate. The three circuits correspond, respectively,
to the longitudinal field, the transverse field, and the nearest neighbor interactions.

and the probabilities can be seen in Fig. 12. It’s clear
while there is an inherent asymmetry in the probabilities,
they are approximately 50-50% up to O(δt).

Nevertheless, the algorithm maintains quantitative
agreement with the exact evolution. An example of mea-
sured observables—the average spin along the x- and z-
directions–can be seen in Fig. 13. Here, we have plotted
the error-free measurements (blue crosses) one can expect
in the computation as a function of the actual number
of Trotter steps that will be taken in the computation,
along with the exact spin value (orange line) that mo-
ment in physical time (See Fig. 11). We plot the actual
error associated with these observables in Fig. 14.

VII. CONCLUSION

We have presented three algorithms to simulate non-
Hermitian Hamiltonian evolution on quantum computers
using unital channels in conjunction with post-selection.
Both the System in Decline and the damping channel al-
gorithms have the maximal approach in terms of proba-
bility of success of a single Trotter step to simulating the
non-Hermitian Hamiltonian of interest. The additional
quantum jumps in these algorithms take one away from
the desired evolution, but if the imaginary coupling in the
model is small or large relative to the real couplings, the
approximate Hamiltonian that is simulated can possess
similar characteristics.
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Figure 11. An example of how the system evolves in physical
time, versus the number of Trotter steps actually taken in the
computation. On the y-axis we plot the difference between the
number of forward steps and the number of backward steps,
while on the x-axis show the number of Trotter steps taken.
This evolution is for a four-spin system with hx = 1.5, Θ = 0.5,
and δt = 0.001.
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Figure 12. Histograms showing the probabilities for measuring
zero or one over an example run of 100,000 steps. We see a
slight bias towards measuring the zero state, however this is
only at O(δt). These probabilities are for a four-spin system
with hx = 1.5, Θ = 0.5, and δt = 0.001.

For the random walk algorithm, each time step takes
the system forward or backward in time according to the
non-Hermitian Hamiltonian evolution. Because of the
larger number of steps necessary to move forward in phys-
ical time, at least an order one factor of error is accu-
mulated throughout the simulation when the number of
times steps is & 1/δt, and strict post-selection is neces-
sary. Nevertheless, for small physical times the results are
in good agreement with exact calculations.

Using these algorithms we have studied a specific
model, the one-dimensional Ising model with a real trans-
verse field and a purely imaginary longitudinal field. We
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Figure 13. A comparison between the (error free) measure-
ment of the average spin in the x and z direction (blue crosses),
and the exact expectation value of the same quantities sam-
pled at the same physical time (orange line) (See Fig. 11).
These measurements are for a four-spin system with hx = 1.5,
Θ = 0.5, and δt = 0.001.
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Figure 14. The error between the measured values and the
exact values from Fig. 13. We find reasonable quantitative
agreement over a large number of Trotter steps; however, this
is observable-dependent.

found these algorithms are able to accurately reproduce
global spin observables (e.g. magnetization), as well as
the second-order Rényi entropy in the hx-Θ plane where
the Lee-Yang edge occurs. We found the algorithms
worked exceptionally well in the region of small non-
Hermiticity where the imaginary coupling term is just a
perturbation. We also found good agreement at large
imaginary coupling relative to the real couplings, since
the real exponential pulls the system back quickly to the
desired ground state. Finally, small physical times were
simulated with excellent agreement since few errors have
the oppurtunity to happen, and in that case the algorithm
is exact up to Trotterization error. For larger values of
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the imaginary coupling where Θ ∼ hx (along with longer
simulation times) a more extensive post-selection process
is required. These conditions make these algorithms ex-
cellent candidates for near-term quantum computing.

The above demonstrates that these algorithms can be
used to simulate non-Hermitian systems on near-term de-
vices, and in fact calculations are already underway for
the Ising model studied here [40]. In addition, these algo-
rithms allow for simulations in imaginary time (Euclidean
time, or purely imaginary couplings) on quantum comput-
ing hardware. Simulations at long Euclidean times force
the system into its ground state, and so these algorithms
could be useful for ground-state studies, or studies of
slightly excited states. Furthermore, the algorithms pro-
vide simple means to implement any non-unitary single-
or two-qubit gate; however, the probability for success de-
pends on the distance of the normalized eigenvalues from
unity which generally could be quite large.
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