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We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin
chains in their quantum chaotic and many-body localized phases (MBL). The spectral statistics
are characterized by the traces of powers t of the Floquet operator, and our approach hinges on
the fact that, for integer t in systems with local interactions, these traces can be re-expressed in
terms of products of dual transfer matrices, each representing a spatial slice of the system. We
focus on properties of the dual transfer matrix products as represented by a spectrum of Lyapunov
exponents, which we call spectral Lyapunov exponents. In particular, we examine the features of this
spectrum that distinguish chaotic and MBL phases. The transfer matrices can be block-diagonalized
using time-translation symmetry, and so the spectral Lyapunov exponents are classified according
to a momentum in the time direction. For large t we argue that the leading Lyapunov exponents
in each momentum sector tend to zero in the chaotic phase, while they remain finite in the MBL
phase. These conclusions are based on results from three complementary types of calculation. We
find exact results for the chaotic phase by considering a Floquet random quantum circuit with on-
site Hilbert space dimension q in the large-q limit. In the MBL phase, we show that the spectral
Lyapunov exponents remain finite by systematically analyzing models of non-interacting systems,
weakly coupled systems, and local integrals of motion. Numerically, we compute the Lyapunov
exponents for a Floquet random quantum circuit and for the kicked Ising model in the two phases.
As an additional result, we calculate exactly the higher point spectral form factors (hpSFF) in the
large-q limit, and show that the generalized Thouless time scales logarithmically in system size for
all hpSFF in the large-q chaotic phase.
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I. INTRODUCTION

One of the fundamental goals of quantum statistical
mechanics is to understand the basic hallmarks of chaotic
dynamics. From a practical perspective, the presence of
chaos is associated with memoryless evolution, so that
the thermodynamic description is well-justified on the
basis of the ergodic hypothesis. However, the classical
notion of chaos does not extend directly to the quantum
world, as Schrodinger evolution is linear and unitary and
cannot admit diverging trajectories in Hilbert space1.
Nevertheless, a large class of interacting many-body sys-
tems are believed to show quantum chaotic behaviour,
as embodied in the eigenstate thermalization hypothesis
(ETH)2–4. By contrast, many-body localization provides
a generic mechanism which prevents the onset of chaos in
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FIG. 1. Summary of results: Behaviour is indicated using red lines for the quantum chaotic phase and blue lines for the MBL
phase. (a): Schematic dependence of the SFF on t for many-body chaotic and MBL Floquet systems with system size L. The
dashed red line is the RMT circular unitary ensemble (CUE) behavior. The generic behavior for many-body chaotic systems
is characterized by two time scales: (i) the Thouless time tTh, which marks the onset of RMT behaviour in the SFF; (ii) the
Heisenberg time tHei, which is of the order of the inverse of mean level spacing and so scales exponentially with L. For MBL
systems with localization length ξ, the SFF grows quickly with t, reaching a plateau at a time O(qξ) that is independent of L.
(b): Schematic dependence of the leading Lyapunov exponent λ> [see Eqns. (5) and (10)] on t in the two phases. At large
t, λ> tends to zero in the chaotic phase and to a finite value in the MBL phase. (c): Schematic dependence at late times of
the leading Lyapunov exponent λ0(k) in each momentum sector on the momentum eigenvalue k [see Eq. (12)]. In the chaotic
phase λ0(k) converges to zero for all k. In the MBL phase λ0(k) converges to a smooth function of k for k 6= 0, with a distinct,
larger value at k = 0. (d): Schematic dependence at late times of the scaled cumulant generating function Ft(α) on α [see in
Eq. (3)]. The gradient of Ft(α) near α = 0 captures the L-dependence of fluctuations in the SFF. We find that Ft(α) has zero
gradient in the chaotic phase and finite gradient in the MBL phase, reflecting fluctuations of the SFF that grow rapidly with
L in the second case.

quantum systems in the presence of strong disorder5–7.
Random matrices8 have long played a key role in pro-

viding minimal prototypes for properties of quantum
chaotic systems. One important outcome is that spec-
tral correlations have been identified as an indicator of
chaotic behavior: as originally conjectured by Bohigas,
Giannoni and Schmidt9, chaotic quantum systems ex-
hibit the same spectral correlations as those of random
matrices in the appropriate symmetry class. In particu-
lar, a distinctive fingerprint of quantum chaos is the pres-
ence of level repulsion between energy eigenvalues10,11.

Spectral fluctuations can be conveniently characterized
via the Fourier transform of the two-point correlator of
eigenvalues, known as the spectral form factor (SFF):

K(t) =
∑
m,n

eı(θm−θn)t = |Tr[W (t)]|2 . (1)

Here W is the generator of the time evolution and W (t)
denotes its t-power, while {θm} are the spectral levels
of the system under consideration (energies for systems
with a time-independent Hamiltonian, or eigenphases of
the Floquet operator for a periodically driven system).
The analysis of the SFF in many-body systems has re-
cently been spurred on by the development of two novel
approaches to Floquet models, where W generates the
time evolution for a single period. Both in a long-range
version of the kicked Ising model,12,13 and in Floquet
random circuits14–17 in the limit of large local Hilbert
space dimension, the average SFF K(t) ≡ 〈K(t)〉 (where
〈. . .〉 denotes the average over an ensemble of statistically

similar systems) was shown to reproduce the RMT result
for times t larger than a scale tTh known as the Thouless
time (see Fig. 1a).

It has been reported on the basis of analytical and
numerical calculations that tTh diverges with the sys-
tem size L in generic quantum systems14–18, with the
exception of specific fine-tuned models in the absence of
conservation laws19. For this reason, it is important to
understand which features control the behavior of K(t)
for intermediate times 1 � t . tTh, which can never-
theless be arbitrarily large in the thermodynamic limit.
A simple argument suggests that, in this time regime,
K(t) is typically exponentially large in L: because of lo-
cality of interactions, different portions of the system for
t . tTh have not had time to generate correlations of
their eigenphases; as a consequence, the trace in (1) can
be factorized into contributions from the Hilbert space of
each decoupled region15. Moreover, in this regime, since
the SFF is not self-averaging20 and for many-body sys-
tems has exponentially large fluctuations in the system
size, its average may not be sufficient to characterize its
behavior.

In this paper, we study signatures of spectral statistics
of quantum many-body systems with local interactions
by using the fact that Tr[W (t)] can be expressed as a
product of dual transfer matrices, each associated with
a spatial slice of the system. The dual transfer matrix
product is characterized by a set of Lyapunov exponents,
which we dub the spectral Lyapunov exponents, and by
an associated cumulant generating function. The dual
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transfer matrix product grows exponentially with sys-
tem size: average growth rates are given by Lyapunov
exponents and sample-to-sample fluctuations in growth
rate are described by the cumulant generating function.
There are several motivations for this approach. Knowl-
edge of the Lyapunov exponents allows one to investigate
both the spectral statistics of quantum many-body sys-
tems in the thermodynamic limit and spectral statistics
at times earlier than tTh. In addition, knowledge of the
cumulant generating function allows one to study fluctu-
ations of the SFF. Finally, the study spectral Lyapunov
exponents provide a different way of characterising local-
ized systems already in the thermodynamic limit.

A summary of our results is as follows. At fixed time
t, the spectrum of Lyapunov exponents can be organized
into t momentum sectors, associated with the invariance
under discrete time translations of the evolution opera-
tor. We characterize the behavior of the leading Lya-
punov exponent in each sector, showing that there is
a clear distinction at large time ruled by the ergodic-
ity properties of the dynamics (see Fig. 1b and c): For
chaotic systems, the largest Lyapunov exponent at each
momentum sector converges to zero at large time, signal-
ing the absence of exponential growth of K(t) with sys-
tem size and the emergence of random matrix behavior in
the spectral correlations. For many-body localized sys-
tems, the Lyapunov exponents remain non-zero at large
time, with a limiting but non-universal form of their spec-
trum. We also discuss the fluctuations of the leading
Lyapunov in the zero-momentum sector (see Fig. 1d) by
introducing a (scaled) cumulant generating function. We
argue that higher cumulants are not important except in
some non-generic settings. These results are justified by
considering two different models and a combination of
analytical and numerical analyses.

As a side result, in the chaotic phase, we compute ex-
actly the higher point spectral form factors (hpSFF) in
the limit of large local Hilbert space dimension q → ∞
and thermodynamic limits. The hpSFF is closely related
to other diagnostics of chaos. As an example, the out-of-
time-order correlator21–26 is known to be related to the
hpSFF for local operators at late times27, and for global
operators28,29. We also define the generalized Thouless
times as the time after which hpSFF behaviour of a quan-
tum many-body system reduces to the RMT result. We
show that the generalized Thouless times derived from all
hpSFF scale logarithmically in system size in the large q
limit.

Our calculations complement earlier work that has
been concerned with the averaged SFF and its relation
to chaos and localization15,30,31. In Ref. [30], the growth
rate of the ensemble-averaged SFF at fixed time was stud-
ied specifically for the kicked Ising model (see Sec. III B)
across the many-body localization transition. The au-
thors introduce an appropriate ensemble-averaged trans-
fer matrix, study its symmetries, and discuss the role
of the time-momentum operator. More recently a gen-
eral picture was presented in Ref. [18] for the long-time

behaviour of the ensemble-averaged transfer matrix, to-
gether with numerical results for a random quantum cir-
cuit in the ergodic phase. Behaviour of the ensemble-
averaged transfer matrix across the MBL transition is
discussed in Ref. [32]. In contrast to this previous work,
our focus here is on the average of the log of SFF rather
than of the SFF itself, and on the notion of spectral Lya-
punov exponents and fluctuations in the growth rate of
the dual transfer matrix product.

The remainder of this paper is organized as follows.
In Sec. II we introduce the spectral Lyapunov exponents
and cumulant generating function. In Sec. III we de-
fine two quantum circuit models which each display both
a quantum chaotic phase and an MBL phase as a cou-
pling parameter is varied. In Sec. IV, we compute ex-
actly the Lyapunov exponents and the generating func-
tion for a random circuit model in the large-q limit. The
results demonstrate that the leading Lyapunov exponent
in the chaotic phase tends toward zero at large times.
In Sec. V, we discuss the Lyapunov exponents for mod-
els of non-interacting systems, systems with small cou-
pling and systems with local integrals of motion. In this
way we argue that the leading Lyapunov exponent re-
mains finite at large t in the MBL phase. In Sec. VI,
we present numerical results for the two quantum circuit
models. Within the limitations imposed by the maxi-
mum computationally accessible values of t, results are
consistent with distinct types of behaviour in each phase
as described above. Finally, we conclude and discuss the
outlook in Sec. VII.

II. SPECTRAL LYAPUNOV EXPONENTS AND
GENERATING FUNCTION

Consider an ensemble of disordered systems, each as-
sociated with a Floquet operator W which we assume
spatially inhomogeneous due to the presence of local dis-
order. Let {θm} be the eigenphases of W . We introduce
the higher point spectral form factor (hpSFF)28,33 as

〈KL(t)α〉 :=

〈[∑
m,n

eı(θm−θn)t

]α〉
= 〈|Tr[W (t)]|2α〉 ,

(2)
where 〈·〉 is the ensemble average, and the subscript de-
notes the system size L with periodic boundary condi-
tions. For α = 1, we have the standard SFF, KL(t) =
〈KL(t)〉. To study fluctuations of the hpSFF (which are
exponentially large in L) in the thermodynamic limit, we
introduce the scaled cumulant generating function

Ft(α) ≡ lim
L→∞

1

L
log〈KL(t)α〉 . (3)

As we will see below, the function Ft(α) captures the
large-L scaling of all cumulants of the SFF. Knowledge
of it gives access to the large-deviation distribution of
K(t). By definition, Ft(α) is a convex function.
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FIG. 2. Left: A diagrammatic representation of Eq. (4).
The operator W is represented as a matrix product operator
(MPO). The curly lines on the top and bottom boundaries
represent a trace of W , and ones on the left and right bound-
aries represent periodic boundary condition. Right: Each
MPO acts vertically on a physical space with dimension q,
and horizontally on an auxiliary space with dimension q̃.

The behavior of Ft(α) can be analysed by consider-
ing a dual picture34,35, using a 90-degree rotation which
exchanges space and time. To be more concrete without
losing generality, we can representW as a matrix-product
operator, where the vertical bonds have the physical di-
mension q and the auxiliary horizontal ones have dimen-
sion q̃. Then we can rewrite its trace in the dual picture
as

TrH[W (t)] = TrH̃[VLVL−1 . . . V1] = TrH̃[V (L)] , (4)

where the operators Vi are q̃t × q̃t matrices defined im-
plicitly by the diagram in Fig. 2. To avoid confusion,
we have written explicitly the Hilbert space where the
trace is taken as a subscript and we set V (L) ≡ VL . . . V1.
Since the operator W is inhomogeneous in space, the ma-
trices Vi are different one from the other and randomly
distributed due to the presence of local disorder.

At this stage, one can proceed in two ways. One possi-
bility is to perform the average over the disorder by con-
sidering 2α layers W (t)⊗ . . .⊗W (t)⊗W †(t)⊗ . . .W †(t).
By using Eq. (4), this amounts in practice to comput-
ing the disorder average of 2α replicas of the single-slice
transfer matrix Vi for integer α. The resulting trans-
fer matrix leads directly to 〈K(t)α〉. Additionally, after
averaging, the resulting transfer matrix is invariant un-
der spatial translations and so it is sufficient to study
a single slice, and its leading eigenvalues and associated
eigenvectors. This approach was employed recently in
several studies [13, 15, 18, 19, 30, 32, 36, and 37]. We
will use this method to compute analytically Ft(α) in the
limit of large local Hilbert space dimension.

Another possibility is to consider the transfer matrix
for a single layer W (t). This has the advantage for nu-
merical calculations that its size (q̃t × q̃t) is smaller and

independent of α. However, since there is no sense in av-
eraging W (t), we have to study this transfer matrix for
individual samples. That means at large L, V (L) is the
product of many random matrices. The natural quanti-
ties that characterise this product are the Lyapunov ex-
ponents. More precisely, in order to define them, we note
that the trace in Eq. (4) enforces periodic boundary con-
ditions and homogeneity in time ensures that the matri-
ces Vi are invariant under translations in the time direc-
tions. There is therefore a momentum quantum number
associated with the time direction. The spectral decom-
position of V (L) can thus be organised into the different
momentum sectors k = 2πj/t, with j = 0, . . . t−1, in the
form

V (L) =
∑
k

∑
a

|`a(k)〉 eλ(L)
a (k)L/2+ıφ(L)

a (k) 〈ra(k)| , (5)

where λ
(L)
0 (k) ≥ λ

(L)
1 (k) ≥ . . . are growth rates which

have sample-to-sample fluctuations for finite L but con-
verge with probability one to the spectral Lyapunov expo-
nents with momentum k. We refer below to these growth
rates as finite-size spectral Lyapunov exponents. The

φ
(L)
a (k)’s are the corresponding phases, while |`a〉 and
|ra〉 are respectively the left and right eigenvectors, which
are biorthogonal and normalized such that 〈ra|`b〉 = δab.
We find that the largest Lyapunov exponent always lies
in the zero-momentum sector, so for convenience we de-
note

λ
(L)
> ≡ λ(L)

0 (k = 0) . (6)

Furthermore, for any finite t, there is always a gap ∆λ(L)

between λ
(L)
> and the other Lyapunovs, so that at large

L

KL(t) =
∑
k,k′

∑
a,a′

e(λ(L)
a (k)+λ

(L)

a′ (k))L/2eı(φ
(L)
a (k)−φ(L)

a′ (k′))

∼ eλ
(L)
> L +O(e−L∆λ) . (7)

From Eq. (3) it follows that

Ft(α) = lim
L→∞

1

L
log〈eαλ

(L)
> L〉 , (8)

and that derivatives of Ft(α) at α = 0 provide cumulants
of the largest finite-size Lyapunov exponent:

dn

dαn
Ft(α)

∣∣∣∣
α=0

= lim
L→∞

Ln−1〈[λ(L)
> ]n〉c . (9)

In particular, when L → ∞, we extract the average and
variance

F ′t (α = 0) = lim
L→∞

〈λ(L)
> 〉 ≡ λ> , (10)

F ′′t (α = 0) = lim
L→∞

Lvar(λ
(L)
> ) . (11)

Therefore, provided F ′′t (α = 0) is not divergent, in the
limit L → ∞, the distribution of λ> is concentrated on
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its mean λ> almost surely and the function Ft(α) en-
codes its large deviations. In contrast with KL(t), the
Lyapunov exponents are thus self-averaging. In general
we will denote

λa(k) = lim
L→∞

〈λ(L)
a (k)〉 , (12)

which defines the spectral Lyapunov exponents. In the
following, we will study the k-dependence of the leading

Lyapunov exponents λ0(k) and the fluctuations of λ
(L)
>

as encoded by the generating function F (α) for chaotic
and MBL systems.

III. MODELS

For our analytical and numerical analysis we will
consider two main models: the random phase model
(RPM)15 and the kicked Ising model (KIM)19,30. Below,
we summarise their definitions and main features.

A. Random Phase Model (RPM)

The RPM consists of q-state ‘spins’ arranged with
nearest-neighbour coupling on a one-dimensional lat-
tice. We use site labels n = 1 . . . L and orbital labels
an = 1 . . . q on the n-th site. The qL × qL Floquet oper-
ator W = W2 ·W1 is a product of two factors.

W1 = U1 ⊗ U2 ⊗ . . . UL (13)

generates rotations at each site n, with q× q unitary ma-
trices Un chosen randomly and independently from the
circular unitary ensemble (CUE). W2 couples neighbour-
ing sites and is diagonal in the basis of site orbitals. The
phase of the diagonal elements is a sum of terms depend-
ing on the quantum states of adjacent sites, so that

[W2]a1,...aL;a1,...aL = exp

(
ı
∑
n

ϕ(n)
an,an+1

)
. (14)

We take each ϕ
(n)
an,an+1 to be an independent Gaussian

random variable with mean zero and standard deviation
ε, which effectively controls the coupling between neigh-
bouring spins.

For fixed q, the model exhibits a many-body local-
ization transition as a function of ε15,38, with a criti-
cal value εc separating an MBL (ε < εc) from a chaotic
phase (ε > εc). We will employ this model for exact an-
alytic calculations within the chaotic phase, in the limit
q →∞. Note that accessing the MBL phase in this limit
is problematic as εc → 0 when q →∞. We will therefore
complement the analysis with numerical studies at q = 3,
for which the model has εc ≈ 0.2515.

B. Kicked Ising Model (KIM)

The kicked Ising Model (KIM) is a Floquet Ising spin-
1/2 chain defined by the time evolution operator W =
W2 ·W1 with

W1 = eı
∑
i hiσ

z
i eı

∑
i bσ

x
i , (15a)

W2 = eı
∑
i Jσ

z
i σ
z
i+1 , (15b)

with hj , J and b real parameters. Similarly to the RPM,
this model has a many-body localization transition at
a critical coupling strength Jc = 0.23 [30], so that it
exhibits a MBL phase for J < Jc and a chaotic phase for
Jc < J ≤ π/4.

This model has recently received a lot of attention, be-
cause of the existence of a “self-dual point” in the param-
eter space: |J | = |b| = π/4 and arbitrary local longitudi-
nal fields hj . For these special values of the parameters,
not only the evolution operator W , but also its duals Vj
(see Eq. (4) and Appendix B for the detailed definition)
acting in the space direction, can be chosen to be unitary
and with the same form of Eq. (15). In this case, at all
times t, not only the average SFF19, but also its higher
moments are in perfect agreement with the prediction
of an appropriate random matrix ensemble which takes
care of all the symmetries13. Indeed, unlike the RPM,
this model is time-reversal invariant, and consequently,
the behaviour of SFF for tHei > t & tTh is expected to
follow the circular orthogonal ensemble (COE), which is
given in the limit of large random matrices for t � tHei

by

KCOE ∼ 2t . (16)

At the self-dual point, additional discrete symmetries
have been identified for the dynamics induced by
Eq. (15), but they become irrelevant at large t13,19,30.

Although solvable, the behavior at the self-dual point is
not generic39, as it implies for instance that tTh does not
diverge with the system size but remains O(1). Here, we
will mainly use this model for numerical analysis without
restricting to the self-dual point, taking advantage of its
particularly small finite-time corrections near the self-
dual point.

IV. THE CHAOTIC PHASE

A. General behavior

We start by focusing on systems belonging to the CUE
symmetry class and on the case Ft(α = 1), which is sim-
ply related to the usual average of the spectral form fac-
tor 〈K(t)〉. We make use of the defining property Eq. (3)
to estimate the behavior of Ft(α = 1) at large t in the
chaotic phase. As observed in [15–18], for systems in the
CUE symmetry class, the SFF approaches the random
matrix prediction

〈KL(t)〉 ∼ KCUE(t) = t , t & tTh(L) . (17)
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The specific details controlling the behavior tTh(L) are
not yet fully understood, but in different set-ups15–17 one
expects tTh ∝ Lν , with ν > 040. As a consequence, as
already stated, the Thouless time tTh(L) → ∞ when
L → ∞. Although Ft(α) is formally defined only in the
limit L → ∞, we expect it to capture well the finite-L
behavior of KL(t) when t ∼ tTh(L). From Eq. (3), we
can write

KL(t) = exp[L(Ft(α) + o(1))] (18)

and this suggests that, in order for the exponential
growth in L of KL(t) to be suppressed, we must have
FtTh

(α = 1) . 1/L. We thus deduce the scaling

Ft(α = 1) . t−1/ν . (19)

This argument can be extended to other values of α and
we reach the conclusion that the chaotic phases must be
characterized by

lim
t→∞

Ft(α) = 0 , ∀α ≥ 0 . (20)

In the next subsection, we will quantitatively justify this
statement by computing explicitly Ft(α) for the RPM in
the limit q →∞.

Additionally, we see that not only the leading Lya-
punov in the zero-momentum sector λ>, but t Lyapunov
exponents have to vanish in the large-t limit in order to
reproduce the linear growth in time in (17). The most
natural assumption is that the t vanishing Lyapunov ex-
ponents correspond to the different λ0(k) in the t mo-
mentum sectors. Similarly, for systems belonging to the
COE symmetry class, in order to fulfill Eq. (16), we ex-
pect two vanishing Lyapunov exponents for t → ∞ in
each momentum sector. We support these conjectures
with numerical simulations in Sec. VI

B. Ft(α) for RPM at q →∞

As a solvable model of the chaotic phase in a spatially
extended many-body quantum system we consider the
RPM15, and compute analytically Ft(α) and λ> in the
large-q limit. We first of all consider integer values of
α = n. We map the computation of 〈K(t)n〉 to the par-
tition function of a one-dimensional statistical mechani-
cal problem with nearest-neighbour interactions. As ex-
plained above, we introduce a transfer matrix in the space
direction which allows the exact computation of 〈K(t)n〉
in the limit of large q: the value of Ft(n) corresponds
to the leading eigenvalue of the transfer matrix for the
statistical mechanics problem, in a way that generalises
the approach described in [15]. Lastly, we analytically
continue Ft(α) to non-integer α and obtain λ>.

To derive the transfer matrix for 〈K(t)n〉, we construct
the associated Hilbert space by performing the Haar-
average overW1 for each site independently, as illustrated
in Fig. 3. This independent averaging over W1 is legiti-
mate because the 1-gates are drawn independently across

FIG. 3. Construction of the Hilbert space associated with
the transfer matrix for a statistical mechanics problem. (a)
Diagrammatic representation of 〈K(t)n〉. Space and time are
represented by the horizontal and vertical directions. The
boxes and ellipses represent the Haar-random 1-gates and the
diagonal 2-gates respectively. The white and grey sheets rep-
resent W (t) and W †(t) respectively. The curly lines on top
and bottom represent traces. (b) Diagrammatic representa-
tion of a single site, where the 2-gates are omitted. (c) and
(d): Two examples of single site configurations after the en-
semble average over W1 in the large-q limit.

different sites, and because W2 consists of diagonal 2-
gates only. Using the procedure explained in [14] and
[15], we find a total of n! tn diagrams at each site in the
limit of large-q. To each diagram we associate a state in
the Hilbert space, labelled by a vector v in Znt and by
p = (σ(1), σ(2) . . . σ(n)) where σ belongs to the permuta-
tion group Sn of n elements. Fig. 3a is the diagrammatic
representation of 〈K(t)α〉. Fig. 3b is the diagrammatic
representation of a given site where each Haar-random
1-gate is represented by a single dot.41 Upon averaging,
the j-th loop (out of n loops) on the left is paired with
the pj-th loop on the right in Fig. 3b. Furthermore, the
pairing of j-th loop will have 1 out of t possible configu-
rations, labelled by vj . Fig. 3c and d are two examples.

The average over W2 in the large-q limit gives the ma-
trix elements of the transfer matrix T

〈p,v|T (t, n) |p′,v′〉 = exp(−ε n t) exp

[
εt

n∑
j=1

δpj ,p′jδvj ,v′j

]
,

(21)
which is constructed by counting the unmatched config-
urations and pairings between configuration (p,v) and
(p′,v′), since each unmatched configuration gives a fac-
tor of exp(−εnt). As an example, the matrix element
between the states in Fig. 3c and d is exp(−6ε), since
n = 3, t = 2 and none of the pairings or configurations
match. In summary, we have shown that the evaluation
of 〈K(t)n〉 can be mapped to a one-dimensional statisti-
cal mechanical model where each site has n!tn states and
where the interaction is defined by Eq. (21).

In Appendix A, we compute the leading eigenvalue
Et(α) of T and analytically continue the result from in-
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teger n to arbitrary α ≥ 0 to obtain

Et(α) = e
1−x
tx (tx)αΓ

(
α+ 1,

1− x
tx

)
, (22)

where Γ(a, b) denotes the incomplete Gamma function
and we parameterize x = e−tε. As a consistency check,
at ε = 0, Et(α) = α!tα as expected since all the entries
of the transfer matrix are unity. In general, we have the
relation

lim
q→∞

Ft(α) = logEt(α) . (23)

At large times (x� 1), we obtain the expansion

Ft(α) = α(t−1)x+
1

2
x2((α2−2α)t2 + 2αt−α) +O(x3) .

(24)
Using the replica trick, the Lyapunov exponent can be
computed as

λ> = e
1−x
tx Γ

(
0,

1− x
tx

)
+ log (1− x) . (25)

These analytical solutions are plotted in Figs. 4 and 5.
Fig. 4 shows that Ft(α) becomes flat as t (main panel)
and ε (inset) increase, which implies λ> tends to zero
for increasing ε and t. This behaviour of λ> in time is
shown more explicitly in Fig. 5. Note that for small t (in
particular t = 1) λ> is negative. We will see that this
short-time feature also appears in the finite-q numerics.
Fig. 5 inset shows the analytic result for the log of the
averaged SFF.

We use Eq. (24) to define a generalized Thouless time

t
(α)
Th associated with the hpSFF as the time after which

hpSFF behaviour (of a quantum many-body system) co-
incides with the RMT result. For the CUE in the large-q
limit, the hpSFF is exactly α!tα due to the same diagram-
matic approach explained in Fig. 3. The transfer matrix
(21) becomes the identity matrix in the limit of large-t,
and its trace gives the hpSFF CUE result as expected.

To compute the t
(α)
Th , we demand the L-th power of the

leading Lyapunov exponent to be O(1), i.e. Ft(α) ∼ 1/L.

Using Eq. (24), we see that t
(α)
Th = O(logL) independent

of α. This result generalises the logarithmic scaling ob-
tained in [15] at α = 1.

V. THE MBL PHASE

In this section, we discuss the general features of Ft(α)
and of the Lyapunov spectrum λ0(k) in the MBL phase.
In order to obtain some intuition, we first treat the case
of uncoupled sites by analyzing the RPM at ε = 0. Then
we consider systems with small coupling using a pertur-
bative analysis applicable to both the RPM and KIM.
Lastly, we analyze the leading Lyapunov exponent for
an effective model of MBL in terms of local integrals of
motion (LIOM).

FIG. 4. Main panel: Large-q analytical results for Ft(α) vs
α for different t at fixed ε = 1 for the RPM. The rainbow
colours correspond to different values of t, from t = 3 in red
to t = 8 in blue in steps of 1. Solutions for t > 8 are very
small on the scale shown. Inset: Large-q results for Ft(α) vs
α at t = 10 for the RPM. The rainbow colours correspond to
different values of ε, from ε = 0 in red to ε = 0.8 in steps of
0.1. Results for ε & 0.8 are very small on the scale shown.

FIG. 5. Main panel: Large-q analytical results for λ> vs
t for the RPM. The rainbow colours correspond to different
values of ε, from ε = 0.05 in red to ε = 1 in blue in steps of
0.05. Inset: Large-q analytical results for Ft(α = 1) vs t for
the RPM. The rainbow colours correspond to different values
of ε, from ε = 0 in red to ε = 1 in blue in steps of 0.05.

A. Uncoupled sites

We use the RPM at ε = 0 as a toy model for the
MBL phase. In this case W2 is simply the identity and
the model reduces to L non-interacting spins, each inde-
pendently evolving with a random CUE matrix. From
Eq. (2), we obtain for all moments

〈KL(t)α〉 = 〈|Tr[U(t)]|2α〉LCUE , (26)

where the average is performed within the CUE from
which U is drawn. Given the trivial dependence of (26)
on the system size L, we see from (7) that except for
λ0(k = 0), all the other Lyapunov exponents (thus in-
cluding all λ0(k 6= 0)) are degenerate with the value −∞:
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this is a general feature of models with uncoupled sites.
From (3), we obtain an expression for Ft(α) in terms of
average of a single CUE matrix. In particular, for q = 2,
we obtain the explicit formula

lim
t→∞

Ft(α) = ln

[
4αΓ(α+ 1/2)

Γ(α+ 1)

]
, q = 2 . (27)

Note that the large time limit washes away many micro-
scopic details and this expression holds more generally
for non-interacting spins 1/2 with an arbitrary distribu-
tion of random fields, thus including the KIM at J = 0,
as well as disordered free fermions in one dimension, i.e.
the Anderson model42. For q > 2, one cannot get an an-
alytic expression; nevertheless at large q but t � q, one
can use that Tr[U(t)] behaves as a gaussian-distributed
complex random variable with zero average and variance
q, leading to

Ft(α) ∼ ln[qαΓ(α+ 1)] , t� q � 1 (28)

Note that in realistic models, the limit of large time
is reached quite quickly, whenever t is larger than the
single-spin Heisenberg time, i.e. t� q = O(1).

By contrasting (27) and (28) with (20), we observe a
first indication of the different behaviour in a non-ergodic
phase: Ft(α) converges to a non-zero function at large t.
In the next sections we will see that this feature also
characterises the MBL phase.

While accessing numerically the whole function Ft(α)
can be problematic, we will show in Sec. VI that the
neighbourhood of α = 0 can be studied efficiently. In-
deed, with the exception of special cases (e.g. for non-

interacting spin 1/2, Eq. (27) leads to F ′t (0)
t→∞−→ 0), the

behaviour F ′t (0) 6= 0 at large times provides a sufficient
indication of a non-ergodic phase.

B. Perturbative analysis at small coupling

The dual transfer matrix provides an interesting frame-
work in which to perform a perturbative expansion at
small coupling between sites. The technique can be ap-
plied to both the KIM and the RPM, but we focus on the
first. In Appendix B and C, we show that the transfer
matrix Vi corresponding to the two-layer structure intro-

duced in Eqs. (15) can be written as Vi = V
(1)
i V

(2)
i where

V1 ≡
t∏

µ=1

(eıJ1µ + e−ıJσxµ) , (29a)

V2,i ≡
[ ı

2
sin(2b)

]t/2
eıhj

∑t
µ=1 σ

z
µ+f(b)σzµσ

z
µ+1 , (29b)

and f(a) = arctanh(e−2ıa). Note the resemblance with
Eqs. (15) whose unitary form is recovered at the self-
dual unitary point |b| = |J | = π/4 [19]. Here, we fo-
cus on b = π/4 and small J . The operator V1 is eas-
ily diagonalised, and at small J the leading eigenstate

is |0〉 = |+ . . .+〉, with σx |±〉 = ± |±〉. Every spin flip
σzj |0〉 is suppressed by a power of J . At the leading order
in J , we thus truncate the Hilbert space of the trace in (4)
to states only involving up to one spin flip σzµ |0〉, where
we use Greek letters µ = 0, . . . , t− 1 to parameterise the
position in time in the dual Hilbert space. Additionally,
we employ the translational invariance in the time di-
rection so that, within this truncation, we have a single
magnon in each momentum sector k

|k〉 =
1√
t

t−1∑
µ=0

eıkµσzj |0〉 , k =
2πn

t
. (30)

We can thus obtain an expression for λ0(k) for every
k 6= 0, which takes the form (see Appendix C for the full
derivation)

λ0(k) = ln | 〈k|V2|k〉 |2 + . . . ∼ 2 ln |J |+∫
dhP (h) ln

[
cos(h)2

(2− cos(h)2)(cos k + sin(h)2)2

]
+O(J2) ,

(31)

where P (h) is the probability distribution of the random
fields hi. A comparison between Eq. (31) and numeri-
cally exact results is shown in Fig. 7. Note that at first
order in J , the time variable does not appear explicitly
in Eq. (31). We can thus take the t → ∞ limit, where
k becomes a continuous variable k ∈ [−π, π]. We leave
for further investigation the study of the convergence of
higher order corrections, but quite interestingly Eq. (31)
provides an explicit result in the limits of both large times
and large system sizes.

The case k = 0 needs a different treatment because
even at the leading order, O(J), the zero-momentum
sector is two-dimensional, containing |0〉 and the zero-
momentum magnon |k = 0〉 in Eq. (30). This fact is at
the origin of the discontinuity observed in the spectrum
at k = 0 (see Fig. 7). The resulting Lyapunov exponents
λ0(0) and λ1(0) cannot be written analytically but can
easily be computed numerically (see Appendix C).

C. Local Integrals of Motion

To describe the general behavior of the (fully) MBL
phase, we consider an effective model based on the hy-
pothesis that the MBL phase is characterised by an ex-
tensive number of LIOM with exponentially decaying
interactions43,44,

H =
∑
i

J
(1)
i τzi +

∑
i<j

J
(2)
i,j τ

z
i τ

z
j +

∑
i<j<k

J
(3)
i,j,kτ

z
i τ

z
j τ

z
k + . . . ,

(32)
where the operators ταi with α = x, y, z form a spin
1/2 representation for each i but have an exponentially-
decaying support in real space around the physical site
i, i.e. ||[τzi , σzj ]|| = O(e−|i−j|/ξ), with ξ the localization
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FIG. 6. The leading (solid lines) and sub-leading (dashed
lines) Lyapunov exponents vs time for different ratios between
the variances J2

2,1 and J2
1 . For any finite ratio J2

2,1/J
2
1 > 0,

the leading exponent is finite at sufficiently large t. Note that
the sub-leading Lyapunov at J2

2,1/J
2
1 = 0 converges to a large

negative number and is not shown in the plot.

length, and || · || the operator norm. The τzi provide an
extensive set of integrals of motion that do not relax.
Relaxation for real spins σzi operators is thus induced by
the accumulating random phases between different com-
ponents of the system. This dephasing dynamics in MBL
is the origin of logarithmic growth of entanglement45,46

and power-law relaxation of local observables47,48.
For simplicity, we focus on the two-body model where

J
(n)
i,j,... = 0 for n ≥ 3, and where J

(2)
i,i+r are independently

and Gaussianly distributed for each i and r, i.e.

〈(J (1)
i )2〉 = J2

1 , 〈(J (2)
i,i+r)

2〉 = J2
2,r . (33)

Furthermore, we will consider the simplest non-trivial
LIOM in the main text where J2,1 6= 0 and J2,r = 0
for all r > 1.

To analyze the behaviour of Lyapunov exponents in
LIOM, we construct a 2 × 2 transfer matrix for all time
t,

Vi =

 e
−ıt
(
J

(1)
i+1+J

(2)
i,i+1

)
e
−ıt
(
J

(1)
i+1−J

(2)
i,i+1

)
e
−ıt
(
−J(1)

i+1−J
(2)
i,i+1

)
e
−ıt
(
J

(1)
i+1+J

(2)
i,i+1

)
 , (34)

such that TrH̃[V (L)] = TrH̃[VLVL−1 . . . V1]. We numer-
ically compute the two Lyapunov exponents using the
method of QR decomposition described in Sec. VI. We
see that for any finite ratio J2

2,1/J
2
1 > 0, the leading ex-

ponent λ> ≡ λ0 and sub-leading exponent λ1 converge to
positive and negative finite values respectively, as shown
in Fig. 6.

Moreover, we analyze 〈K(t)α〉 for the LIOM (32) with
two-body terms for integer α in Appendix D. We map
〈K(t)α〉 to the partition function of stacked spin chains
with two-body interactions, which can be written in
terms of another transfer matrix, whose size increases
as α increases and as we include longer range two-body

terms in (33). We numerically diagonalize the transfer
matrix and show that the Ft(α) for integer α are qual-
itatively consistent with the Lyapunov exponents calcu-
lation above, and with the form of Ft(α) computed for
the RPM and KIM in MBL regime, as discussed below
in Sec. VI.

We have used the LIOM picture to show that the lead-
ing Lyapunov exponent converges to a finite value as
a function of time. We expect the existence of a pos-
itive finite λ> to persist for general LIOM with expo-
nentially decaying support (see examples in Appendix
D) and higher-body interaction terms. As one includes
interaction terms of larger supports in the analysis, the
size of the transfer matrix (34) and, consequently, the
number of Lyapunov exponents increases. However, in-
triguingly, there is not a notion of time-momentum sec-
tors for the Hamiltonian in Eq. (32) once expressed in
the LIOM basis. This seems to indicate the possibility
of a further structure for the LIOM effective Hamilto-
nian which would retain the notion of a time-momentum
quantum number. We will leave the analysis of Lyapunov
exponents for Hamiltonian systems for future studies.

VI. NUMERICS

The advantage of the dual formulation is that the Lya-
punov exponents can be computed efficiently via an iter-
ative procedure at arbitrarily large L. Indeed, by using
the QR decomposition, we can write

V1 = Q1R1 ,

V2Q1 = Q2R2 ,

VL . . . V2V1 = QLRLRL−1 . . . R1 ,

(35)

where Qi is an orthogonal matrix and Ri is an upper
triangular matrix. An estimate of the a-th Lyapunov
exponent in the momentum sector k is then

λa(k) =
2

L

L∑
i=1

µa,i(k) , (36)

where we define for convenience

µa,i(k) ≡ ln[Ri]aa . (37)

By iteratively acting with the matrices Vi and project-
ing onto the momentum sector k, we can generate a large
number L of µa,i. In this way we can obtain the behavior
of Ft(α) for α in the neighbourhood of 0. However, in
order to access larger values of α & 1, it is necessary to

access values of λ
(L)
a 6= 〈λ(L)

a 〉 whose probability is ex-
ponentially suppressed in L. This requires repeating the
calculation in Eq. (36) several times in order to sample

the tail of the distribution of λ
(L)
a at finite L. To this

end, we define

λ
(`)
> :=

2

`

∑̀
j=1

µ0,j(k = 0) , (38)
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where ` is chosen such that the spatial correlation be-
tween µ0 and µ` is sufficiently small. Our data sug-
gest that, for both the RPM and KIM simulations, it
is sufficient to have ` = 10, which we will take hereafter.
We then define an effective cumulant generating function
that approximates Eq. (3) as

Ft,`(α) :=
1

`
log〈e2α`λ

(`)
> 〉 . (39)

where 〈·〉 denotes the average over all realizations of `
consecutive µ’s in (38).

We can perform this numerical procedure exactly and
the main limitation is represented by the exponential
growth in the size of the matrices Vi with t. Alterna-
tively, one can adopt some approximate scheme based
on matrix-product states (MPS) and the density-matrix
renormalization group (DMRG) algorithm. However, we
will see below that this is effective only deep in the MBL
phase.

Using these methods, we compute the leading Lya-
punov spectrum λ0(k), focusing in particular on two main
representative cases λ> ≡ λ0(k = 0) and λ0(k = π) as
functions of time t. We also extract the cumulant gen-
erating function Ft,`(α) in the chaotic and MBL phases.
At late time in the MBL phase, we expect λ0(k) to have
a non-uniform shape as a function of k with a positive
finite λ> in the k = 0 momentum sector. In the chaotic
phase, we expect the leading Lyapunov λ0(k = 0) to ap-
proach zero at late time, and we further conjecture that
the largest Lyapunov exponents in the other momentum
sector approach zero as well, so that λ0(k) is flat in the
chaotic phase. Finally, we expect Ft,`(α) to have a finite
positive gradient in the MBL phase, and to have zero
gradient in the chaotic phase.

We summarize the result of numerics as follows: For
the KIM, the data are in agreement with the theoretical
expectations above. Note that, exactly at the self-dual
point of the KIM, Vi is unitary. Consequently, the SFF
does not grow exponentially in space, and λ> is identi-
cally zero at the self-dual point. For this reason, even
away from the self-dual point, the finite-time corrections
are small. For RPM with on-site dimension q = 3, the
data are compatible with the theoretical expectations,
but agreement is not conclusive due to the limited times
that are accessible within our numerics.

In Fig. 7 and 8, we show the largest Lyapunov expo-
nents λ0(k) in each momentum sector k for the KIM and
RPM respectively. For the KIM in the chaotic phase,
λ0(k) is very small for all k. On the other hand, in the
MBL phase, λ0(k = 0) is positive (except for very small
J , see below), and λ0(k 6= 0) is negative. In Fig. 7 we
include data for J as small as 0.001 and show that, for
k 6= 0, it agrees well with the result from perturbation
theory given in Eq. (31) (full equation in (C12)), and that
for k = 0 it agrees with the result from degenerate pertur-
bation theory evaluated numerically. Note that in Fig. 7
we observe a peculiarity in λ0(k = 0) for J = 0.001, 0.01,
where the λ0(k = 0) have small negative values. We find

FIG. 7. Main panel: λ0(k) vs k for KIM with t = 18 for a
range of values of J . (Recall that the critical coupling strength
for KIM is Jc = 0.23). We include data for λ0(k) at values
of J as small as 0.001 and compare it with the result from
perturbation theory, Eq. (31), labelled in grey (full equation
in (C12).) Inset: λ0(k = 0) for different values of J with the
same colour coding as the main panel.

FIG. 8. Main panel: λ0(k) vs k for RPM with t = 12 for
a range of values of ε. (Recall that the RPM at q = 3 has
εc ≈ 0.25.) Inset: λ0(k = 0) for different values of J with the
same colour coding as the main panel.

that the window of J where λ0(k = 0) < 0 gets smaller
as t gets larger and we expect this to be only a finite-time
effect. For RPM, the data shown in Fig. 8 are limited by
finite-t effects, but they are compatible with and seem to
tend towards the expected behaviours.

Next, in order to characterize the t-dependence of
the spectral Lyapunov exponents, we focus on two dis-
tinctive cases: k = 0, π. In Fig. 9 and 10, we show
λ> ≡ λ0(k = 0) and λ0(k = π) respectively as a function
of t for the KIM. Consistently with our picture, in the
chaotic phase both λ0(k = 0) and λ0(k = π) are small at
large t. In the MBL phase, λ0(k = 0) converges towards
a positive value while λ0(k = π) tends towards a finite
negative value as t increases. Note that there are decay-
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ing oscillations in time with a periodicity of 4 for small
J which are still visible at the accessible time with exact
matrix multiplication (t ∼ 20). In order to access larger
values of t, we employ a variation of the DMRG algo-
rithm: after the application of each transfer matrix, we
re-project the dual Hilbert space onto a matrix product
state at fixed bond dimension χ. With this method, we
can access much larger times (t ∼ 40) and confirm that
the oscillations are suppressed in t, as shown in Fig. 11.
However, the accessible values of ξ are limited by the
necessity of using periodic boundary conditions in the
time direction, and the non-unitarity of the dual trans-
fer matrix. In the chaotic phase, the DMRG algorithm
applied in the dual picture cannot be exploited for large
t since the Lyapunov exponents obtained in this way do
not converge for accessible values of χ.

In Fig. 12 and 13, we show λ0(k) against t for the
RPM for k = 0 and π respectively. In the MBL phase,
λ0(k) behaves as expected for both momentum sectors.
However, the behaviour of λ0(k) in the chaotic phase is
affected by the finite time effects. While λ0(k = π) for
the chaotic phase tends towards zero and is small relative
to the corresponding Lyapunov exponents in the MBL
phase, λ0(k = 0) remains finite for the accessible values
of t.

In Fig. 14 and 15, we show the cumulant generating
function (39) computed for the KIM and RPM respec-
tively. Recall that the first and second cumulants of λ>
are the first and second derivatives of the cumulant gen-
erating function at α = 0. For the KIM, Ft,`(α) shows
obviously distinctive behaviours in the chaotic and MBL
phases. In particular, Ft,`(α) has zero derivative in the
former phase, which is consistent with the expectation
that λ> = 0, discussed in earlier sections. However,
again, for RPM, Ft,`(α) does not show such a clear dif-
ference in behaviour between the two phases for the ac-
cessible t (Fig. 15).

Finally, we recall the different symmetry classes of the
KIM and RPM, namely COE and CUE respectively. The
former symmetry class hasKCOE ≈ 2t. Therefore, for the
KIM, it is natural to expect in the chaotic phase at large
times that there are 2t (not just t) zero Lyapunov expo-
nents contributing to K(t) ∼∑k,a e

λa(k)L, two from each
of the tmomentum sector. In order to check this, we com-
pute the gaps ∆λa(k) ≡ λa(k)−λa+1(k) in Appendix. E,
and verify that ∆λ0(k) is indeed small at large t in the
chaotic phase for the KIM. In RPM, the corresponding
computation shows that the gap ∆λa(k) is much larger.

VII. CONCLUDING REMARKS

We have proposed a new set of physical quantities, the
spectral Lyapunov exponents, which allow us to explore
the fluctuations and the generic behaviour of the SFF
in the thermodynamic limit. We have shown that the
spectral Lyapunov exponents have distinct long-time be-
haviours in the chaotic and MBL phases: For chaotic

FIG. 9. λ> vs t for KIM for different values of J .

FIG. 10. λ0(k = π) vs t up to t = 20 for KIM with four
different values of J . Note that the data for J = 0.69 and
J = 0.78 lie on top of each other.

FIG. 11. λ> vs t for KIM for J = 0.1 with data from MPS
projection on bond dimensions χ = 4, 6, 8, 10. For compari-
son, data from exact diagonalisation are shown with a dashed
line.

systems, the largest Lyapunov exponent in each momen-
tum sector k converges to zero at large time, implying the
absence of exponential growth of K(t) with system size
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FIG. 14. Ft,`(α) vs α for the KIM with t = 22 and ` = 10 for
four values of J inside the MBL and chaotic phases.

and the onset of random matrix behavior in the spec-
tral correlation. For MBL systems, the Lyapunov ex-
ponents remain non-zero with a non-universal form of
the spectrum which encodes the residual spectral corre-

lations. We further propose a scaled cumulant gener-
ating function Ft(α) associated with the hpSFF, which
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FIG. 15. Ft,`(α) vs α for the RPM with t = 13 and ` = 10
for four values of ε inside the MBL and chaotic phases.

encodes the fluctuations of the leading Lyapunov expo-
nent in the zero-momentum sector. We argue on the
basis of analytical and numerical analyses that the av-
erage F ′t (0) = limL→∞ L−1〈lnK(t)〉 provides a sufficient
characterization of the MBL / chaotic phase in generic
settings.

Our results for behaviour of the spectral Lyapunov ex-
ponents in each phase are complementary to and consis-
tent with recent studies based on a transfer matrix that
generates the average SFF18,32.

There are many interesting directions to pursue in the
future. First, it would be exciting to look at the be-
havior of spectral Lyapunov spectrum when the MBL-
ETH transition is approached and where universality is
expected and could manifest itself both in the fluctua-
tions Ft(α) and the spectrum λ0(k). Second, it remains
to understand how the existence of conserved quantities
affects the behavior of the spectral Lyapunov exponents.
One possible extension would be the inclusion of a U(1)
charge conservation16. More generally, one could look
at the behavior of Hamiltonian systems for which the en-
ergy provides a natural conserved quantity. In such cases,
the time variable in the dual picture is continuous and
the time momentum operator becomes a local conserved
quantity in contrast to the Floquet case. This should
be at the origin of the different scaling expected for the
Thouless time in these systems.
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50 Marko Žnidarič, “Entanglement in a dephasing model and
many-body localization,” Phys. Rev. B 97, 214202 (2018).

Appendix A: Derivation of λ> and Ft(α) in chaotic phase

In this Appendix, we compute 〈K(t)α〉 for the RPM in the limit of large q and large L by obtaining the leading
eigenvalue of the transfer matrix (21). Furthermore, we analytically continue the results to compute Ft(α) and λ>(t)
in the same limits.

To obtain the leading eigenvector of the transfer matrix (21) with integer α = n, note that all of its matrix
elements are non-negative. So there is a unique largest real eigenvalue and a corresponding eigenvector with non-
negative components due to the Perron-Frobenius theorem. Furthermore, due to the symmetry of the diagrams, the
eigenvector must be invariant under permutation, and hence we find (1, . . . , 1)T as the leading eigenvector.

To find the leading eigenvalue E1, we sum over any given row of T , and obtain

E1 =

(
t

1 + ty

)n n∑
d=0

P (n, d) (1 + y)n−d (A1a)

P (n, d) =
n!

(n− d)!

d∑
j=0

(−1)j

j!
(A1b)

y =
etε − 1

t
(A1c)

where P (n, d) is the number of elements in Sn with distance d from any given reference permutation49, say the identity
p = (1, 2, . . . , n); C(t, ε, n, d) =

∑
v′ 〈(1, . . . , n), (1, . . . , 1)|T |p,v′〉 is the sum of tn matrix elements at fixed p. From

the leading eigenvalue in (A1a), we can then recover Ft(n) = logE1.
Above we derived an expression for 〈K(t)α〉 at integer α = n. Now we re-express Eq. (A1) in a different form where

the dependence on α can be easily analytically continued to real values. First of all, we can rewrite the sum in (A1b)
as

d∑
j=0

(−1)j

j!
=

1

e
−
∞∑
k=0

(−1)k+d+1

Γ(k + d+ 2)
(A2)

where e is the Neper number. Plugging (A2) in (A1b), we can exchange the order of sums in (A1a) and perform the
sum over d. After some manipulations, the final result takes the compact form valid for arbitrary α ≥ 0

E1 = ey
(

1

t
+ y

)−α
Γ(α+ 1, y) , (A3)

and

lim
q→∞

Ft(α) = logE1 . (A4)
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Leaving the large-q limit implicit, we can now compute the leading Lyapunov exponent

λ> = F ′t (α = 0) = lim
L→∞

1

L
〈logK(t)〉 = lim

L→∞

1

L

∂

∂α
〈K(t)α〉|α→0 . (A5)

The derivative of the incomplete Gamma function can be evaluated as

∂

∂α
Γ(α+ 1, y)

∣∣∣∣
α→0

= e−y log(y) + Γ(0, y) . (A6)

After some straightforward manipulations, we arrive Eq. (25), reproduced below,

λ> = eyΓ(0, y)− log

(
1 +

1

yt

)
. (A7)

Appendix B: Explicit form of the dual circuit

Here, we derive an explicit form for the dual transfer matrix for the two models introduced in Sec. III. Both models
are composed of a layer W1 of single-site unitaries and a layer W2 of 2-site unitaries diagonal in the computational
basis. We will therefore treat them both at once. To be more specific, we use the notation introduced in Sec. III A
for the RPM in Eqs. (13, 14), i.e.

W1 = U1 ⊗ U2 . . . UL , (B1a)

[W2]a1,...,aL;a′1,...a
′
L

= δa1,a′1 . . . δaL,a′L exp

(
ı
∑
n

ϕ
(n)
an,an+1

)
an ∈ 1, . . . q . (B1b)

For the RPM, the unitary matrices Uj are drawn from the CUE and the phases φan,an+1 are Gaussian variables
with zero average and standard deviation ε. With the same notation, the KIM can be recovered setting q = 2, with

Uj = eıhjσ
z
j eıbσ

x
j and ϕ

(n)
an,an+1 = Jeıπ(an+an+1) (an = 1, 2).

In order to deduce the form of the transfer matrix in the space direction we write explicitly the trace in (4). We
introduce a compact notation for the indices a = (a1, . . . , aL) and we have

TrH[W (t)] =
∑

{a1,...,at}

[W ]a1,at . . . [W ]a3,a2 [W ]a2,a1 =
∑

{a1,...,at}

L∏
j=1

t∏
µ=1

e
ıϕ

(j)

a
µ
j
,a
µ
j+1 [Uj ]aµ+1

j ,aµj
. (B2)

We now introduce a dual Hilbert space H̃ = ⊗tµ=1Cq with dimension Ñ = qt and the computational basis b =

{b1, . . . , bt} with each bµ = 1, . . . , q. Then, defining the j-dependent dual layers

[V1,j ]b,b′ =

t∏
µ=1

e
ıϕ

(j)

bµ,bµ′ , (B3a)

[V2,j ]b,b′ =

t∏
µ=1

[Uj ]bµ+1,bµδb,b′ , (B3b)

and Vj = V2,jV1,j , we have that

TrH[W t] =
∑

{b1,...,bL}

[V1]b1,b2
[V2]b2,b3

. . . [VL]bL,b1
= TrH̃[V1V2 . . . VL] . (B4)

Note that in the dual formulation the 1-body unitary matrices in W1 are converted into 2-body diagonal matrices in
V2, while the 2-body phases in W2 are converted into the 1-body V1.

Appendix C: Weakly coupled spins

In this Appendix we provide the details of the calculation of the Lyapunov spectrum in the limit where different
sites are weakly coupled. This corresponds to J → 0/ε → 0 respectively for the KIM/RPM. For the sake of clarity,
we will focus on the KIM, although the discussion can be easily adapted to the RPM.
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From Eqs. (B3), we have

V1 ≡
t∏

µ=1

(eıJ1µ + e−ıJσxµ) = [2ı sin(2J)]t/2e
∑
µ f(Jj)σ

x
j (C1a)

V2,j ≡ 2−teıhj
∑t
µ=1 σ

z
µ

t∏
µ=1

(eıb1µ,µ+1 + e−ıbσzµσ
z
µ+1) =

[ ı
2

sin(2b)
]t/2

eıhj
∑t
µ=1 σ

z
µ+f(b)σzµσ

z
µ+1 (C1b)

where in the last equalities we used the matrix identity holding for any operator O2 = 1

eıa + e−ıaO = [2ı sin(2a)]1/2ef(a)O (C2)

and f(a) = arctanh(e−2ıa). Setting σx |±〉 = ± |±〉, we define

V1 |0〉 = (2 cos J)t |0〉 , |0〉 ≡ |+ . . .+〉 (C3)

V1 |µ1, . . . , µM 〉 = (ı tan J)M (2 cos J)t |µ1, . . . , µM 〉 , |µ1, . . . , µM 〉 ≡ σzµ1
. . . σzµM |0〉 (C4)

At small J , the largest eigenvalue is associated with the vacuum ferromagnetic state |0〉 and spin flips are suppressed
with powers of tan(J). At the leading order in J , we can restrict our Hilbert space to a single spin flip (M = 1 in

(C4)). In order to compute the trace in Eq. (B4) in this limit, we need the matrix elements of V
(j)
2 between pairs of

single spin-flip states. They can be written explicitly by going back to the original time direction as

〈µ|V2,j |ν〉 = 2−t Tr[σzU `jσ
zU t−`j ] , ` = |ν − µ| (C5)

where the trace is performed in the Hilbert space of a single spin.
Additionally we can make use of the translational invariance in the time direction to decompose the trace in (B4)

in momentum sectors. We thus define a spin wave with momentum k as

|k〉 =
1√
t

∑
µ

eıµk |µ〉 , k =
2πn

t
, n = 0, . . . , t− 1 (C6)

The trace in the single spin flip of momentum k 6= 0 can then be written as

Trk[V (1)V
(2)
1 . . . V (1)V

(2)
L ] = (2 cos J)tL(ı tan J)L 〈k|V (2)

1 |k〉 . . . 〈k|V
(2)
L |k〉 (C7)

We deduce

λ0(k)
J�1∼ 2t ln |2 cos J |+ 2 ln | tan J |+ ln[| 〈k|V2|k〉 |2] (C8)

Setting

θh = arccos(cos(b) cos(h)) , αh = arccos

(
sin(h) cos(b))

sin(θ)

)
, (C9)

we can rewrite

Uj = eıθhj~n·~σj , ~n =
1

sin(θ)
(sin(b) cos(h),− sin(b) sin(h), cos(b) sin(h)) (C10)

which can be easily diagonalized and we arrive at the final expression

ln[| 〈k|V2|k〉 |]2 = −t log 2 +

∫
dhP (h) ln

[
sin(αh)2 sin(2θh) sin(tθh)

cos(k)− cos(2θh)

]2

. (C11)

At large t, we can make the replacement inside the integral ln | sin(tθh)|2 → −2 log 2 and for b = π/4, we get the final
expression

λ0(k)
J�1∼ 2t ln | cos J |+ 2 ln | tan J |+

∫
dhP (h) ln

[
cos(h)2

(2− cos(h)2)(cos k + sin(h)2)2

]
. (C12)
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FIG. 16. (a) Representation of 〈K(t)〉 with nearest-neighbour 2-body interactions, which is mapped to the partition function
of a pair of spin chains with 1-body (red) and nearest-neighbour (blue) 2-body interactions. The grey regions illustrate the
Hilbert space associated with the transfer matrix for 〈K(t)〉, which has 4 d.o.f. (b) Representation of 〈K(t)〉 with up to next-
to-nearest-neighbour 2-body interactions, which is mapped to spin chains with additional next-to-nearest-neighbour (green)
2-body interactions. The associated Hilbert space has dimension 16. (c) Representation of 〈K(t)2〉 with nearest-neighbour
2-body interaction, which is mapped to four spin chains with 1-body (red) and nearest-neighbour terms (blue). Again, the
Hilbert space dimension is 16.

For the zero momentum sector, instead two states can contribute to the trace, i.e. the vacuum |0〉 and the zero-
momentum magnon |k = 0〉. The trace in this sector can then be rewritten as

Trk=0[V (1)V
(2)
1 . . . V (1)V

(2)
L ] = (cosJ)tL Tr[M1 . . .ML] (C13)

where the matrices Mj = M(hj) and M(h) take the form

M(h) =

(
2 cos(tθh) −2ı

√
t cos(αh) sin(θht)

2 tan(J)
√
t cos(αh) sin(θht) 2ı tan(J)

(
t cos(θht) cos(αh)2 + cot(θh) sin(θht) sin(αh)2

) ) (C14)

By computing the two Lyapunov exponents η0, η1 associated with the sequence of random matrices Mj (see the
method explained in Sec. VI)

Tr[M1 . . .ML] −→ A0e
η0L +A1e

η1L (C15)

we have the approximation

λ0(k = 0) ∼ 2t ln | cos(J)|+ 2η0 , λ1(k = 0) ∼ 2t ln | cos(J)|+ 2η1 . (C16)

Appendix D: 〈Kn(t)〉 in the MBL phase

In this Appendix we analyze 〈K(t)α〉 for the LIOM model (32) with 2-body nearest-neighbour terms for integer α.
We map 〈K(t)α〉 to the partition function of stacked spin chains with 2-body interactions, which can be written in
terms of a transfer matrix50. We numerically diagonalize the transfer matrix constructed from the LIOM and show
that the results are qualitatively compatible with the numerical results from the RP and KIM model in MBL regime.

It is instructive to construct the transfer matrix for 〈K(t)〉 for (32) with nearest-neighbour 2-body terms, and then
generalize the procedure for general 2-body terms and hpSFF. Before averaging, the argument of the (1st point) SFF
is

K(t) =
∑
{m,n}

L∏
k=1

exp

[
ıtJ

(1)
k (mk − nk) + ıtJ

(2)
k,k+1 (mkmk+1 − nknk+1)

]
, (D1)
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where m = (m1,m2, . . . ,mL), mk = ±1, and the first sum is over all possible values of m and n. J
(1)
k and J

(2)
k,k+1 are

distributed according to (33). The ensemble average gives

〈K(t)〉 =
∑
{m,n}

L∏
k=1

exp

[
− 1

2
t2J2

1 (mk − nk)
2 − 1

2
t2J2

2 (mkmk+1 − nknk+1)
2

]
. (D2)

This is the partition function of a stack of two spin chains whose state is specified by m and n, see Fig. 16a. Consider
the basis, (mk, nk) with mk, nk = ±1. Eq. D2 can then be re-written using a transfer matrix in terms this basis as

T =

 1 h1h2 h1h2 1
h1h2 h2

1 h2
1 h1h2

h1h2 h2
1 h2

1 h1h2

1 h1h2 h1h2 1

 , (D3)

where h1 = exp(−t2J2
1 ) and h2 = exp(−t2J2

2 ), and

〈K(t)〉 = Tr
(
TL
)
, (D4)

for the periodic boundary condition (the case of open boundary condition can also be evaluated). The diagonalization
of T gives two eigenvalues of 0 with eigenvectors (−1, 0, 0, 1)T and (0,−1, 1, 0)T . The non-vanishing eigenvalues are

E± = 1 + e−2J2
1 t

2 ±
√

4e−2t2(J2
1+2J2

2) + e−4J2
1 t

2 − 2e−2J2
1 t

2
+ 1 (D5)

and we have in this case

Ft(α = 1) = lnE+ (D6)

while E− corresponds to the second Lyapunov exponent. As a consistency check, in the uncoupled regime where
J2 = 0, we have only a single non-degenerate exponent,

E+ = 2 + 2e−2J2
1 t

2

(D7)

E− = 0 . (D8)

With periodic boundary condition, 〈K(t)〉|J2=0 = (2 + 2e−2J2
1 t

2

)L → 2L at large t as expected.
The evaluation of 〈K(t)〉 can be generalized to LIOM (32) with general (not just nearest-neighbour) 2-body terms.

We take the variance of 2-body coupling between spins separated by r sites to be 〈(J (2)
i,i+r)

2〉 = J2
2 e
−2(r−1)/ξ ≡ J2

2,r.
Using the same approach, the ensemble average becomes

〈K(t)〉 =
∑
{m,n}

L∏
k=1

exp

[
− 1

2
t2J2

1 (mk − nk)
2 −

rmax∑
r=1

1

2
t2J2

2,r (mkmk+r − nknk+r)
2

]
. (D9)

This is the partition function of a stack of two spin chains with 2-body interactions up to a distance of rmax.
Consequently, the Hilbert space associated with the transfer matrix is a tensor product of rmax copies of on-site Hilbert
spaces, and contains degrees of freedom labelled by (mk, nk, . . . ,mk+rmax−1

, , nk+rmax−1
), where nk,mk · · · = ±1. The

cases of rmax = 1 and 2 are illustrated in Fig. 16 a and b. The resulting transfer matrix has 4rmax eigenvalues:
a genuine MBL phase has an infinite number of non-trivial Lyapunov exponents which are recovered in the limit
rmax →∞.

We can further generalize this approach to the evaluation of 〈Kn(t)〉 with integer exponent n and with only 2-body
nearest-neighbour terms. In this case we have

〈Kn(t)〉 =
∑

m(1),n(1),m(2),n(2)...

L∏
k=1

exp

{
− 1

2
t2J2

1

[
n∑
i=1

(
m

(i)
k − n

(i)
k

)]2

− 1

2
t2J2

2

[
n∑
i=1

(
m

(i)
k m

(i)
k+1 − n

(i)
k n

(i)
k+1

)]2}
,

(D10)

which is the partition function of 2n copies of spin chains with 2-body nearest-neighbour interaction, as illustrated in
Fig. 16 c, so that the transfer matrix Hilbert space size grows as 4n. We numerically diagonalize the transfer matrix,
and plot the value of Ft(α) in Fig. 17 for integer α up to α = 5. Although this approach does not allow analytical
continuation of 〈Kn(t)〉, we see that the form of Ft(n) is compatible with the expectation that λ> = F ′t (α = 0) is
finite, as discussed in Sec. V.
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FIG. 17. Ft(α) vs integer α for LIOM with 2-body nearest neighbour terms at J1 = J2 = 1 and t = 1, 10, 100, 1000, represented
by different symbols. Other finite values of the ratio J1/J2 give qualitatively similar behaviour for Ft(α).
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FIG. 18. ∆λ0(k) vs k for KIM at t = 18. Deep in the chaotic phase, ∆λ0(k) are small for all k

Appendix E: Gaps in Lyapunov spectrum

In Fig. 18 and 19, we show ∆λa(k) ≡ λa(k)− λa+1(k) with a = 0 computed for the KIM and RPM. In particular,
in the chaotic phase of the KIM, the gap in the Lyapunov spectrum is small. This supports the expectation that, in
each time-momentum sector, there are two vanishing Lyapunov exponents contributing to 〈K(t)〉 ∼ ∑k,a e

λa(k)L at

long times. In the chaotic phase of the RPM, the corresponding computation suggests that ∆λa(k) remains gapped.
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FIG. 19. ∆λ0(k) vs k for RPM at t = 12. Deep in the chaotic phase ∆λ0(k) remains gapped for all k.
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