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We consider a model arising in facilitated Rydberg chains with positional disorder which features
a Hilbert space with the topology of a d-dimensional hypercube. This allows for a straightforward
interpretation of the many-body dynamics in terms of a single particle one on the Hilbert space
and provides an explicit link between the many-body and single particle scars. Exploiting this
perspective, we show that an integrability-breaking disorder enhances the scars followed by inhibition
of the dynamics due to strong localization of the eigenstates in the large disorder limit. Next,
mapping the model to the spin-1/2 XX Heisenberg chain offers a simple geometrical perspective
on the recently proposed Onsager scars [PRL 124, 180604 (2020)], which can be identified with
the scars on the edge of the Hilbert space. This makes apparent the origin of their insensitivity to
certain types of disorder perturbations.

Introduction. The understanding of thermalization
and relaxation dynamics is at the forefront of research on
quantum many-body systems out-of-equilibrium. Since
the formulation of the eigenstate thermalization hypoth-
esis1–3, predicting fast thermalization following a quench
from most many-body states, many exceptions to this be-
haviour have been identified. The prominent examples
are integrable4,5 and many-body localized (MBL) sys-
tems6–14. A recently added category are quantum many-
body scars (QMBS)15,16, which are particular eigenstates
responsible for slow decay and oscillatory behaviour of
observables following a quantum quench from certain ini-
tial states, typically close to a product state, as observed
in Ref.17 realizing the so-called PXP model18. This has
triggered a great interest in QMBS in settings ranging
from constrained to driven19–64 and recently also disor-
dered systems65.

QMBS owe their name to the single-particle quantum
scars66,67 which were in turn inspired by particle motion
in classical billiards. In both the quantum and classical
cases, it is the shape of the billiard boundary, such as the
celebrated Bunimovich stadium or cardioid shape68,69,
which causes the motion of the particle to be generically
ergodic. The exception to this rule is a set of periodic
trajectories, around which the density of certain wave-
functions - the scars - is enhanced in the quantum case.

Here we analyze a model of spins-1/2, which describes
a chain of Rydberg atoms with open boundaries under a
facilitation condition70. Representing the Hilbert space
as a graph, we show that it corresponds to a truncated
hypercube with the dimension given by the number of
spin clusters (cf. below for definition).

This allows us to identify the QMBS as single particle
scars on the Hilbert space. Building on the graph repre-
sentation of the Hilbert space, an approach also exploited
in the studies of MBL6,7,31,71–76, we demonstrate that
the scar signatures are enhanced in the presence of dis-
order, naturally emerging from the positional disorder of
the atoms. Finally, exploiting the mapping of the present

model to the Heisenberg spin-1/2 XX chain77, we identify
the recently proposed Onsager scars78,79 with scars cor-
responding to sparse eigenstates residing at the “edge” of
the Hilbert space. This provides intriguing connections
between QMBS and single-particle scars and highlights
the utility of a graph-theoretical approach to many-body
dynamics, which has been advocated also in the stud-
ies of quantum chaos80–84, integrability85, QMBS86 and
fermionic and exchange models87,88.
The model. We consider a one dimensional chain of M

Rydberg atoms along the z-axis, with open boundaries
and spaced by r0. We denote the ground and excited
(Rydberg) state as |↓〉, |↑〉. The corresponding Hamilto-
nian reads

HRy =
∑
k

Ω

2
σxk + ∆nk +

∑
l>k

V (|rk − rl|)nknl, (1)

where σxk = |↑k〉 〈↓k| + |↓k〉 〈↑k|, nk = |↑k〉 〈↑k|, and
V (r) = Cα/r

α, r = |r|. Cα, which we take to be positive,
is the interaction strength coefficient with α = 3 (6) for
dipole-dipole (Van der Waals) interaction. The positions
of the atoms are rk = (0, 0, (k − 1)r0) + δrk, where δrk
describes the disorder which induces the disorder in en-
ergy. Denoting VNN = V (r0) and VNNN = V (2r0), we
define an energy shift for a pair of nearest neighbours
δVk = VNN − V (|rk+1 − rk|).

It has been shown in70 that under the facilitation con-
dition ∆ = −VNN and in the regime VNN � Ω, δVk the
Hamiltonian (1) effectively reduces to

Heff = ∆Ncl +
∑
k

Ω

2
σxkP〈k〉+δVknknk+1 +VNNNnknk+2,

(2)
where P〈k〉 = nk−1 + nk+1 − 2nk−1nk+1 and Ncl =∑
k nk(1−nk+1), n0 = nN+1 = 0, denotes the number of

clusters, which are blocks of consecutive spin excitations

(e.g. the configuration ↓↓ ↑↑ ↓ ↑↑↑ contains two clus-

ters highlighted by boxes). The projector P〈k〉 ensures
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FIG. 1. (a) Hilbert space structure for M = 5 in the Ncl = 1
sector. The (blue, red) boxes highlight the respective phases
(-,+) of basis states constituting a specific sparse eigenvector
(a scar). (b,c) The occupation Eq. (9) with (Ωτ0,Ωτ1) =
(175, 700) for a quench from the initial state Eq. (8) with
w = 2 and the initial momenta p and positions x̄0 indicated
in the insets.

the clusters cannot merge nor disappear and hence their
number represents a conserved charge, [Ncl, Heff ] = 0.
For each Ncl, the topology of the Hilbert subspace of (2)
is that of a truncated hypercube of dimension d = 2Ncl

89.
In what follows we will be particularly focusing on the

Ncl = 1 sector for which the Hilbert space can be rep-
resented as a square lattice with a triangular boundary.
Each site (x̄, ȳ) of this lattice corresponds to a state

|x̄〉 ≡ |x̄, ȳ〉 = |[↓]x̄ ↑ . . . ↑ [↓]ȳ〉 , (3)

Here, [↓]` labels a string of consecutive down spins of
length `. The boundaries are determined by the natural
conditions x ≥ 0, y ≥ 0 and x+ y < M , cf. Fig. 1a. Heff

projected on the Ncl = 1 sector can be written as

H = H0 +Hpot +Hdis (4a)

H0 =
Ω

2

∑
x̄∈H\b

|x̄〉 (〈x̄ + 1x̄|+ 〈x̄ + 1ȳ|) + H.c. (4b)

Hpot = VNNN

∑
x̄∈H

max(0,M − 2− (x̄+ ȳ)) |x̄〉 〈x̄| (4c)

Hdis =
∑
x̄∈H
|x̄〉 〈x̄| δVx̄ (4d)

where 1x̄,ȳ are unit vectors in the direction x̄, ȳ, H =
{|x̄〉 | 0 ≤ (x̄, ȳ) < M ∧ x̄ + ȳ < M}, b = {|x̄〉 | x̄ + ȳ =
M − 1} and δVx̄ is specified in Eq. (10).
H0 can be solved exactly89 with eigenenergies

2Ω−1Em,n = 2 cos

(
mπ

M + 2

)
+ 2 cos

(
nπ

M + 2

)
(5)

and eigenvectors

|wm,n〉 =
∑
x,y

(um(x)un(−y)− um(−y)un(x)) |x, y〉 (6)

where

um(x) =

√
2

M + 2
sin

(
πm

M + 2
(x̄+ 1)

)
(7)

with m,n ∈ {1, 2, . . . ,M + 1}, m > n, x = x̄ − M/2
and x̄ ∈ H. All energies are non-degenerate, except for
dM/2e zero-energy states for which m + n = M + 2. It
can be shown that the zero-energy subspace is spanned
by eigenvectors, which are sparse in the basis Eq. (3)89.
Due to its simple structure, they can be identified as
scars in the Hilbert space, cf. Fig. 1a. Consequently, one
can directly apply the single-particle perspective used in
quantum scars on discrete lattices90. In what follows
we examine the dynamics following a quantum quench.
Motivated by the use of Gaussian wavepackets as probes
for single particle scars66,67,91,92, we introduce effective
“Gaussian” initial states defined as (up to normalization)

|ψp,w
x̄0

(t = 0)〉 ∝ P
∑
x̄

e−
(x̄−x̄0)2

2w2 e−ip·x̄ |x̄〉 (8)

where p = (px, py) are the phases specifying the initial
direction of propagation of the “wavepacket” and for sim-
plicity we project the state by P on four basis states
with maximal weight. For future convenience, we de-

fine |ψG〉 ≡ |ψp=(π/2,π/2),w=2
x̄0=(0,0) 〉. We also define the time-

averaged occupation of the basis states in the Hilbert
space as

〈nψ(x̄)〉 =
1

τ1 − τ0

∫ τ1

τ0

dt |〈x̄|ψ(t)〉|2 , (9)

where |ψ(t)〉 is the time evolved initial state.
In Fig. 1b,c we show 〈nψ(x̄)〉 for different initial states

Eq. (8). It is apparent that the the occupation clearly
reveals the scar behaviour in the Hilbert space in exact
analogy to the single-particle case.
Disorder. Since H0 is integrable, a natural way to

break the integrability is provided by positional dis-
order of the atoms. Denoting δrk = (xk, yk, zk),
the initial position of the k-th atom is drawn
from a Gaussian probability distribution p(δrk) =

(2π)−3/2(
∏
ν=x,y,z σν)−1exp

[
−
∑
ν=x,y,z

ν2
k

2σ2
ν

]
70,93,94.

While the primary focus of this article is the analysis of
the model (2),(4), to provide a description applicable to
a realistic experimental realization, the time dependence
of the atom motion rk(t) has to be taken into account.
To set up the stage a few remarks are in order.

First, we consider both the ground and the Rydberg
states to be subject to the same harmonic trapping po-
tential Htr =

∑
k

∑
ν=x,y,zmω

2
νν

2
k/2

95, where ων are the
trap frequencies which determine, together with the in-
verse temperature β = 1/kBT , the disorder through σν =√

1/(βmω2
ν) and m is the atom mass. We parametrize

the trap frequencies as ω = (ε−1, 1, 1)ω0/d which leads to
the dimensionless disorder s = (sx, sy, sz) ≡ (ε, 1, 1)ds0,
where s0 = σ0/r0 for some σ0 and motivated by70 we
choose s0 = 0.03. Here ε and d tune the shape and the
overall strength of the trapping potential where typically
ε > 1 in a tweezer experiment70,77,93.

Second, we note that the interaction V (|rk − rl|) leads
to dynamics entangling the motional and internal degrees
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FIG. 2. (a) An example of the autocorrelation A(t) =
| 〈ψG|ψ(t)〉 |2 for M = 11. (b) The threshold time tc vs. dis-
order strength for various system sizes M . (c-e) Examples
of the occupation Eq. (9) for various disorder strengths indi-
cated by circle, cross and triangle respectively in pane (f). (f)
Fr (blue) and the r-statistics (orange) vs. disorder strength
d (here α = 6, s0 = 0.03, ε = 9, (Ωτ0,Ωτ1) = (50, 250) and
VNN/Ω = 4).

of freedom necessitating a fully quantum treatment. This
is a difficult problem limiting the applicability of meth-
ods such as exact diagonalization to few sites and small
phonon number96. To proceed, we treat the atomic mo-
tion rk(t) as that of a classical particle in a harmonic
potential with coordinates νk(t) = Cν,k cos(ωνt + φν,k),

where Cν,k =
√
νk(0)2 + (qν,k(0)/m)2/ω2

ν) and φν,k =
arccos (νk(0)/Cν,k) which are fully specified by the ini-
tial position νk(0) = δrk,ν(t = 0) and momentum qν,k(0).
Here, the latter is drawn from an isotropic Boltzmann
distribution p(qν,k) ∝ exp(−βq2

ν,k/(2m)).

The third and final comment is that for V ∝ 1/rα, the
distribution p(δrk) leads to the energy probability distri-
bution p(δV ) with undefined moments, a consequence of
rare events when two atoms come arbitrarily close to each
other93. This is an artefact, not expected to occur under
realistic experimental conditions, of the algebraic form
of V . For this reason and in order to gain an analytical
control, we use a small-displacement approximation

δVx̄ =

M−ȳ−1∑
k=x̄+1

[
Cα

|rk+1 − rk|α
− VNN

]

≈ −
M−ȳ−1∑
k=x̄+1

αVNN

[
δ̃z,k +

1

2

(
δ̃2
x,k + δ̃2

y,k − (1 + α)δ̃2
z,k

)]
,

(10)

where δ̃ν,k = (νk+1 − νk)/r0. In order to get the oc-
cupation (9) with the time-dependent Hamiltonian (4a)
we solve the corresponding Schrödinger equation for the

wavefunction. In particular we are interested in the
properties of the occupation as a function of the dis-
order. The results for |ψ(0)〉 = |ψG〉 are shown in
Fig. 2a,f with examples of 〈nψG(x̄)〉 for three different
values of disorder shown in Fig. 2c-e. The solid blue
line in Fig. 2f corresponds to a quantity Fr which char-
acterizes the overlap of the occupation with the occupa-
tion 〈nψ(x̄)〉0 generated by the idealized Hamiltonian H0,
Eq. (4b). It is defined as Fr = (F −Fu)/(1−Fu), where
F =

∑
x̄ 〈〈ñψ(x̄)〉〉 〈〈ñψ(x̄)〉〉0, Fu is given by F with the

replacement 〈ñψ(x̄)〉 →
√

2/(M + 1)M , the tilde denotes

the occupations normalized as
∑

x̄ 〈〈ñψ(x̄)〉〉2 = 1 and
the double brackets denote the averaging over disorder
realizations (initial conditions). The rationale behind Fr
is that Fr = 1 when the occupation is that of the ide-
alized scenario of Fig. 1b and Fr = 0 for a featureless
uniform occupation. For comparison, the orange solid

line shows the level statistics r = 〈〈min(∆Ei,∆Ei+1)
max(∆Ei,∆Ei+1) 〉〉 tak-

ing the initial conditions, i.e. quenched positional disor-
der, where the average is taken over all energy differ-
ences ∆Ei = Ei − Ei−1 of adjacent ordered eigenener-
gies Ei ≥ Ei−1 of H. The values r ≈ 0.39, 0.53 cor-
responding to the Poisson and Wigner-Dyson statistics
are indicated by the horizontal dashed lines. It is ap-
parent from Fig. 2 that increasing the disorder enhances
the many-body scars appearing in the occupation. which
can be explained in terms of the eigenstate localization:
as the disorder is increased from zero, the eigenstates of
H become more and more localized on the Hilbert space
square lattice. This initially enhances their overlap with
the initial state along the scar path. We observe similar
enhancement also for other initial states and values of
disorder and discuss quantitatively the energy landscape
of the Hilbert space in89.
Thermalization. Next we investigate how the scars af-

fect the capacity of the system to thermalise. To this end
we consider the time evolution of the (second Rényi) en-
tanglement entropy (EE) S(t) = −log Tr[ρA(t)2], where
ρA(t) is the reduced density matrix of subsystem A which
we choose to be a half-chain of length

⌊
M
2

⌋
. In Fig. 3a

we plot the time evolution of EE for a quench in the non-
integrable regime d = 0.12 from the Gaussian state |ψG〉
(blue), a mid-spectrum eigenstate |ψmid〉 of H (orange)
and a random state |ψrand〉 ∝

∑
x̄ cx̄ |x̄〉 (green), where

cx̄ are drawn from a uniform random distribution. Here,
|ψmid〉 and |ψrand〉 are defined on the half-chain so that
S(0) = 0. After the initial rise we observe a slow growth,
cf.89 for extended discussion, for all the states which we
attribute to superscarring, i.e. the fact that each basis
state either belongs to a scar in the Hilbert space or is
adjacent to it. We also note the initial rise for the Gaus-
sian state happening for Ωt ≈ M/2, which corresponds
to the geometrical distance from the tip [x̄ = (0, 0)]
to the base of the triangular-shaped Hilbert space, cf.
Fig. 1a. We note that the scar enhancement is not re-
flected in the standard deviation of the saturated entropy
std(S(t → ∞)) shown in Fig. 3b, where the dominant
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FIG. 3. (a) Evolution of half-chain entanglement entropy S
for d = 0.12 and M = 25 following a quench from |ψG〉 (blue),
|ψrand〉 (green) and |ψmid〉 (orange). The vertical dashed lines
indicate the (scaled) times τ0, τ1 used in Fig. 2 and the inset
shows the detail of the late-time evolution. (b) The standard
deviation of the saturated S vs. d. Data obtained with 10 re-
alizations of the initial conditions (a) and 300 realizations (b),
where static disorder was considered for numerical reasons,
yielding a value of the average saturated entropy compatible
with (a) within std(S(t→∞)).

peak around d ≈ 0.3 corresponds to the transition from
non-integrable to integrable as quantified by r13,74,97 and
hints towards a possible MBL-like phase77.

Relation to Onsager scars. It has been shown in77

that the spin flip part of Heff , Eq. (2), can be mapped to
the spin-1/2 XX Heisenberg spin chain of length M + 1

∑
k

σxkP〈k〉 → HXX =

M∑
k=1

µxkµ
x
k+1 + µykµ

y
k+1, (11)

where µx,y,z the Pauli matrices in a {|0〉 , |1〉} basis. It
is related to the {|↓〉 , |↑〉} basis through the mapping
↑↑, ↓↓→ 0, ↑↓, ↓↑→ 1, where the ambiguity is lifted by
including fictious boundary spins (↓) to the left and right
ends of the chain. Consequently, σxk = µxkµ

x
k+1, σ

y
k =

(−1)k+1
∏k−1
l=1 µ

z
l µ

y
kµ

x
k+1, σ

z
k = (−1)k+1

∏k
l=1 µ

z
l and δV

of Eq. (2) maps to non-local disorder given by a string of
µz operators77.

Crucially, the structure of the Hilbert space (connec-
tivity between the basis states) remains unchanged as
it is given solely by the spin flip terms89. Recently,
Ref.78 proposed a class of spin models with n spin com-
ponents featuring so-called Onsager scars, which are
states with perfect revivals of the integrated autocorre-
lation subject to certain types of integrability-breaking
disorder. The simplest instance n = 2 of this class
is HXX, Eq. (11), with the Onsager scar |ψ(β)〉 ∝
exp[β2Q+] |0 . . . 0〉 =

∑d(M+1)/2e
Ncl=0

(β2Q+)Ncl

Ncl!
|0 . . . 0〉 and

Q+ =
∑
k(−1)k+1µ+

k µ
+
k+1. We have intentionally in-

dexed the summation in the definition of |ψ(β)〉 by Ncl

as each term corresponds to a superposition of Ncl pairs
|. . . 1k1k+1 . . .〉, i.e single Rydberg spins ↑. The projec-
tion of |ψ(β)〉 on the Ncl = 1 sector is nothing but the
scar indicated in Fig. 1a.

This allows for the following identifications: (i) The
d(M + 1)/2e eigenstates which form the special band in
the plot of the eigenstate’s EE, cf. Fig. 2a in78, corre-
spond to different cluster sectors of Heff . (ii) The projec-

tion of |ψ(β)〉 on Ncl = 1 sector is the scar corresponding
to the (0,M−1)−(M−1, 0) diagonal, i.e. the edge of the
Hilbert space, cf. Fig. 1a, which is comprised only of sin-
gle Rydberg spin excitations. This interpretation bears
to other Ncl as well. Furthermore, the simple structure
of the Hilbert space allows for a straightforward visuali-
sation of why certain types of the integrability-breaking
disorder do not affect the Onsager scars, such as Eq. (13)
in78. Another example naturally realized in the Rydberg
systems is the disorder of Eq. (2) which affects all but
the isolated Rydberg spins.
Experimental considerations. We have simulated the

time evolution with the assumption that the atomic tra-
jectories are that of classical particles in a harmonic po-
tential, independent of their internal state. To estimate
the effect of the Rydberg interactions on the atomic
motion and hence the disorder energies, we consider
〈δV (nNN)〉 to be the expectation value of δVx̄, Eq. (10),
corresponding to basis state |x̄〉 containing nNN nearest
neighbours and evaluated using p(δrk). Analogously, we
define 〈δV (nNN)〉int where the equilibrium positions of
the atoms are taken in the presence of the interactions89.
The difference between the two provides an estimate for a
threshold timescale beyond which the atomic motion can-
not be treated as independent of the internal state and we
define tc ≡ 2π~/(〈δV (M − 1)〉int − 〈δV (M − 1)〉). The
plot of tc vs. d is shown in Fig. 2b with an example of tc
indicated in Fig. 2a. Thus, for d ≈ 0.1, the present analy-
sis holds for Ωt = O(100) for M of few tens, sufficient to
capture the behaviour of the time-averaged occupation
in a realistic experimental setting.

Outlook. In this work we have highlighted how the
structure of the Hilbert space, resembling that of a hy-
percubic crystal, provides useful insights in the non-
equilibrium dynamics in spin chains. This allowed us
to identify quantum many-body scars as single parti-
cle scars in the Hilbert space, link them to the Onsager
scars and show how their signature is enhanced by dis-
order. This provides a number of interesting openings,
such as the interpretation of the disordered Heisenberg
XXZ spin chain as that of an Anderson model on a hy-
percubic lattice, which is relevant to the ongoing discus-
sion about the scaling of the Thouless time in many-body
systems98,99. It would be also interesting to explore the
role of sparse eigenvectors, which play an important role
in various applications, such as in the signal analysis of
networks100,101, in the context of many-body Hamiltoni-
ans and their graph-theoretic representations85,87,88,102.
Finally, to describe the entangling dynamics between
the motional and internal degrees of freedom, new ap-
proaches, such as the variational ansatz based on non-
Gaussian states103, need to be investigated.
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SUPPLEMENTAL MATERIAL

I. EIGENSTATES OF H0

In the absence of disorder, the mapping Eq. (11) allows for exact solution of the model through the Jordan-Wigner
transformation. Nevertheless, the simple structure of the Hilbert space associated with the spin flip Hamiltonian allows
for the following more explicit construction. Focusing on H0, Eq. (4b) and Fig. 1a, the eigenstates and eigenergies
can be found as follows.

We first embed the square lattice with triangular boundaries in a larger lattice with square boundaries, where the
side of the square is comprised of M + 1 sites and the lower left corner of the square has coordinates x̄ = (0, 0). Lets
now consider a hopping on an open chain of M +1 sites, such that the positions of the sites x̄ = 0, . . . ,M respectively.
It is straightforward to find the eigenfunctions of such hopping Hamiltonian which read

um(x̄) =

√
2

M + 2
sin

(
πm

M + 2
(x̄+ 1)

)
(S1)

for m = 1, . . . ,M + 1. This can be understood as that the eigenfunction has to vanish beyond the boundaries of
the chain, i.e. for x̄ = −1 and x̄ = M + 2. The eigenvectors of H0 can then be obtained simply as a product of
the open-chain solutions (S1) with the extra requirement that the coefficients of the eigenvectors have to vanish on
the diagonal x̄ : (0,M + 1) − (M + 1, 0) of the embedding square. To this end it is convenient to transform to the
coordinates symmetric with respect to the centre of the square, namely

x = (x, y) = x̄−
(
M

2
,
M

2

)
. (S2)

The Eq. (S1) becomes

um(x) =

√
2

M + 2
sin

(
πm

M + 2
x +

πm

2

)
=

(−1)
m−1

2 cos
(
πmx
M+2

)
m odd

(−1)
m
2 sin

(
πmx
M+2

)
m even.

(S3)

The solutions on the Hilbert space of H0 are then obtained by requiring that the wavefunctions vanish on the diagonal
y = −x of the embedding square. This is achieved by the antisymmetrization of the solutions (S3) leading to

|wm,n〉 =
∑
x,y

(um(x)un(−y)− um(−y)un(x)) |x, y〉 , (S4)

where the solutions of the Hamiltonian H0 are given by, with the help of (S2), x̄, ȳ ∈ {0,M−1}, x̄+ ȳ < M and m > n,
which yields M(M + 1)/2 eigenvectors, a number equal to the dimension of H0. The corresponding eigenenergies are

2Ω−1Em,n = 2 cos

(
mπ

M + 2

)
+ 2 cos

(
nπ

M + 2

)
, (S5)

which posses the inversion symmetry EM+2−n,M+2−m = −Em,n.

A. Scars as sparse eigenstates

Given a basis H = {|bj〉} and a state |vi〉 =
∑
i cij |bj〉 we define

S|vi〉 = {|bj〉 | 〈vi|bj〉 6= 0} (S6)

which is a set of all basis states with non-zero overlap with |vi〉. We then define the sparsity of the state |vi〉 in the
usual sense as

S|vi〉 =
|H| − |S|vi〉|
|H|

. (S7)

We note that there are dM/2e zero-energy eigenstates Em,n = 0 for m + n = M + 2. By inspecting the structure
of the Hilbert space, cf. Fig. 1a, one can define a unitary transformation of the degenerate eigenstates (S4) such
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that the new states correspond to the scars such as the projected Onsager scar - highlighted in the Fig. 1a or the
scars appearing in the time-averaged occupations, Fig. 1b,c. Specifically, for M even all of these states have the same
|S| = M while for M odd, there are dM/2e − 1 zero-energy eigenstates with |S| = M and one with |S| = (M + 1)/2,
which corresponds to the scar appearing on the diagonal (0, 0)− ((M − 1)/2, (M − 1)/2), cf. Fig. 1b. It is apparent
that these scar eigenstates are sparse according to Eq. (S7)

S|vi〉 =
M(M+1)

2 −O(M)
M(M+1)

2

M→∞→ 1. (S8)

II. HARMONIC APPROXIMATION AND GAUSSIAN INTEGRATION

A standard assumption in a quench protocol for atoms (or ions) with disorder is to consider an initial state of the
form ρin = |ψ(0)〉 〈ψ(0)| ⊗ ρm, where ρm = e−βHtr/Tr

(
e−βHtr

)
is the mixed state of the motional degrees of freedom

corresponding to the trap Hamiltonian Htr =
∑
k

∑
ν=x,y,zmω

2
νν

2
k/2 and |ψ(0)〉 〈ψ(0)| is the pure state of the spins96.

Let’s next consider a chain of M atoms which are either all in the ground (κ = 0) or excited (Rydberg) state
(κ = 1). We also assume that each atom experiences the same trapping potential described by Htr. This is motivated
by the ongoing experimental efforts in trapping the atoms once they are excited in their Rydberg state in optical
tweezer setups95 and we note this assumption has been used in other theory works dealing with the motion of the
Rydberg atoms96. We thus define a classical potential Hamiltonian

Hcl(κ) = Htr + κδV, (S9)

where

δV =

M−1∑
k=1

Cα
|rk+1 − rk|α

− VNN

=

M−1∑
k=1

Cα
(λ2δx2

k + λ2δy2
k + (r0 + λδzk)2)

α
2

∣∣∣∣∣
λ=1

− VNN

≈
M−1∑
k=1

αCα

2rα+2
0

[
−2r0δzk − (δx2

k + δy2
k) + (1 + α)δz2

k

]
+O(λ3)

= VNN
α

2

1

r2
0

×[
−(x2 − x1)2 − (x3 − x2)2 − . . .− (xM − xM−1)2

− (y2 − y1)2 − (y3 − y2)2 − . . .− (yM − yM−1)2

+ (1 + α)
[
(z2 − z1)2 + (z3 − z2)2 + . . .+ (zM − zM−1)2

]
−2r0 [(z2 − z1) + (z3 − z2) + . . .+ (zM − zM−1)]]

=
1

2β
RTAV R− 1

β
BTR

=
1

2β
(R− µV )TAV (R− µV )− 1

2β
BTA−1

V B. (S10)

Here δνk = νk+1 − νk, ν = x, y, z and in the third line we have expanded to second order in the small parameter λ.
In the last two lines, R = (x1, . . . , xM , y1, . . . , yM , z1, . . . , zM )T , µV ≡ A−1

V B and we have introduced AV and B, see
Eqs. (S12b)-(S12e) below for definitions. In words, for κ = 1 the motion of the atoms is a result of the effect of the
trapping potential combined with the mutual interactions between the Rydberg atoms [where only nearest neighbour
interactions are considered, in agreement with the assumptions of the validity of Heff , Eq. (2)].

We define the following probability distributions of the atomic positions

p(R) ≡ e−βHcl(κ=0)

Tr
(
e−βHcl(κ=0)

) ∝ e−
1
2 RTAtrR (S11a)

pint(R) ≡ e−βHcl(κ=1)

Tr
(
e−βHcl(κ=1)

) ∝ e−
1
2 RTAR+BTR. (S11b)
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In Eqs. (S11a), (S11b), A = ⊕ν=x,y,zA
(ν), B = ⊕ν=x,y,zB

(ν) are block diagonal matrix and vector respectively such

that A(ν) = A
(ν)
tr +A

(ν)
V with components

A
(ν)
tr = βmω2

ν 1M×M = σ−2
ν 1M×M (S12a)

A
(x)
V = A

(y)
V = −VNN

αβ

r2
0

AV (S12b)

A
(z)
V = VNN

αβ

r2
0

(1 + α)AV (S12c)

B(x) = B(y) = 0TM (S12d)

B(z) = VNN
αβ

r0
(−1, 0, . . . , 0, 1)TM . (S12e)

In Eqs. (S12d), (S12e), the vectors are of length M and 0M is a zero vector. In Eqs. (S12b),(S12c) AV is a M ×M
tridiagonal matrix

AV =



1 −1

−1 2
. . .

. . .
. . .

. . .

. . . 2 −1
−1 1


M×M

. (S13)

The probability distributions (S11a), (S11b) can be written, including the normalization factors, as

p(R) =
1√

(2π)3M |A−1
tr |

e−
1
2 RTAtrR. (S14a)

pint(R) =
1√

(2π)3M |A−1|
e−

1
2 (R−µ)TA(R−µ), (S14b)

where µ = (µ1, . . . , µ3M ) with µj ≡
∫

dR pint(R)Rj and dR =
∏
ν=x,y,z

∏M
k=1 dνk. In particular, comparing (S11b)

with (S14b) and using the fact that A = AT , we get µ = A−1B, where zero values are implicitly assumed for the
singular part of A−1 corresponding to the x, y blocks. As a result, only µ(z) 6= 0M and an example of the equilibrium
atomic positions in the presence of (repulsive) interactions is shown in Fig. S1. It is apparent that in an open chain
considered here, the presence of interactions is mostly affecting the outermost atoms.

FIG. S1. Equilibrium atomic positions µ(z) along the z-axis for M = 11 and (a) d = 0.12 and (b) d = 1. The insets show the
positions of the atoms of a half chain k > dM/2e. Motivated by the experimental values from70, T = 50µK, ωz = 2π×91.4 kHz,
m = 87mu, where mu is the atomic mass unit, we set s0 = 0.03.

With the above definitions at hand, we are in position to evaluate the expectation values of the disorder energies.
Using the relation∫

dR
1√

(2π)3M |C−1|
e−

1
2 (R−µ)TC(R−µ)(R− η)TD(R− η) = Tr(C−1D) + (µ− η)TD(µ− η), (S15)
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FIG. S2. The rescaled fidelity Fr vs. the disorder strength d for various anisotropies of the traps ε (blue, orange and green for

ε = 1, 9 and 20) and initial states |ψG〉 (solid lines) and |ψ′G〉 ≡ |ψ
p=(π/2,−π/2),w=2

x̄0=(0,4) 〉 (dashed lines) [cf. Figs. 1b,c]. The results

are for M = 11 and 10 realizations of the initial conditions.

where C,D are 3M × 3M matrices, we will specifically evaluate the expectation values with the probabilities (S14a),
(S14b). The results read

〈δV 〉 ≡
∫

dR p(R)δV =
1

2β
Tr(A−1

tr AV ) = (M − 1)αVNN

[
(1 + α)s2

z − (s2
x + s2

y)
]

(S16a)

〈δV 〉int ≡
∫

dR pint(R)δV =
1

2β

(
Tr(A−1AV ) + (µ− 2µV )AV µ

)
. (S16b)

In Eq. (S16a), sν = σν/r0, where σν =
√

1/(βmω2
ν). Using the parametrization of the disorder s = (ε, 1, 1)ds0 then

leads to the Eq. (S17). Since A,AV are symmetric tridiagonal matrices, they can be diagonalized analytically104–109

and thus in principle evaluate also the Eq. (S16b), yielding nevertheless rather cumbersome expressions. For this
reason we evaluate Eq. (S16b) numerically.

III. HILBERT SPACE ENERGY LANDSCAPE

In Fig. 2f of the main text, we have evaluated the fidelity Fr of the QMBS obtained with the Hamiltonian (4a)
compared to the ones obtained with H0, Eq. (4b), corresponding to the (truncated) square lattice where all sites (basis
states) have the same energies. We note that the addition of the potential term Hpot, Eq. (4c), creates a characteristic
staircase potential with energy difference of VNNN between the adjacent diagonals (0,m)− (m, 0),m = 0..M −2 (there
is no energy difference, in the absence of disorder, between the (0,M − 1) − (M − 1, 0) and (0,M − 2) − (M − 2, 0)
diagonals corresponding to blocks of a single and two consecutive up spins respectively). We next define the total
number of nearest and next-to-nearest neighbours nNN =

∑
k nknk+1, nNNN =

∑
k nknk+2 and 〈δV (nNN)〉 to be the

expectation value of δVx̄, Eq. (10), corresponding to basis state |x̄〉 containing nNN nearest neighbours and evaluated
using p(δrk). To characterize the effect of the disorder, we define

Vstep(nNN) = VNNN + 〈δV (nNN)〉 − 〈δV (nNN − 1)〉
= VNNN + VNNα(α− ε2)(ds0)2, (S17)

where we have used the result (S16a). Consequently, if ε >
√
α, Vstep = 0 corresponds to an on-average flattening of

the potential by disorder, which occurs for s0d
∗ =

√
VNNN/(VNNα(ε2 − α)) =

√
1/(2αα(ε2 − α)). It is thus tempting

to assume that such an average flattening might be related to the enhancement of the scar behaviour as quantified by
Fr. Here we argue that this is not the case based on further numerical evidence and analysis of the disorder properties.

In Fig. S2 we present the results of Fr for initial states |ψG〉 used in the main text and |ψ′G〉, cf. Fig. 1c and the
caption of the Fig. S2 for the definition, and various values of the trap anisotropy parameter ε. It is obvious from
Fig. S2 that the enhancement of Fr occurs for all values of ε, including the isotropic traps ε = 1 for which there is no
on-average flattening according to (S17) (for α = 6 used here). We also note the higher Fr for the initial state |ψ′G〉
(except for ε = 20 and d & 0.25). This is in line with the argument that |ψ′G〉 effectively approaches the Onsager scar
state |ψ〉 ∝

∑
k(−1)kσ+

k |↓ . . . ↓〉 (projected on the Ncl = 1 sector), cf. Fig. 1a, which is an exact eigenstate of H,
independent of disorder and hence for which Fr = F = 1.
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We now analyse the properties of the disorder appearing in Eq. (S17), in particular the expectation values of the
first and second moments of the interaction energies corresponding to the mean value and the width of the respective
distributions. From Eq. (10) we have

δV (nNN)− δV (nNN − 1) = VNN α

[
−δ̃z,k −

1

2

(
δ̃2
x,k + δ̃2

y,k − (1 + α)δ̃2
z,k

)]∣∣∣∣
k=x̄+1+nNN

. (S18)

Since the distribution p(δrk) over which we average does not explicitly depend on k (i.e., the disorder is translationally
invariant), we drop the index k for brevity. We get for the expectation values〈

δ̃ν

〉
= 0 ,

〈
δ̃2
y

〉
=
〈
δ̃2
z

〉
= 2(s0d)2 and

〈
δ̃2
x

〉
= 2ε2(s0d)2. (S19)

We now introduce the dimensionless shorthands

χ =
1

2(s0d)2
(S20)

and

δv =
δV (nNN)− δV (nNN − 1)

VNN
, (S21)

so that

〈δv〉 = −1

2
α
[〈
δ̃2
x

〉
+
〈
δ̃2
y

〉
− (1 + α)

〈
δ̃2
z

〉]
= −1

2

α

χ

[
ε2 + 1− (1 + α)

]
=

α

2χ

(
α− ε2

)
. (S22)

The threshold value s0d
∗ introduced after Eq. (S17) corresponds to VNN 〈δv〉 = −VNNN = −2−αVNN, i.e., 〈δv〉 = −2−α,

fixing in turn

χ = 2α−1α
(
ε2 − α

)
. (S23)

In words, VNN 〈δv〉 is centred around −VNNN. However, is it peaked around this value? In order to better understand
this, we compute the variance of VNNδv and compare it to V 2

NNN. We start with

δv2

α2
= δ̃2

z + δ̃z

(
δ̃2
x + δ̃2

y − (1 + α)δ̃2
z

)
+

1

4

(
δ̃2
x + δ̃2

y − (1 + α)δ̃2
z

)2

(S24)

and recall that for zero-mean, independent Gaussian variables
〈
δ̃4
ν

〉
= 3

〈
δ̃2
ν

〉2

. Hence, we find〈
δv2

α2

〉
=
〈
δ̃2
z

〉
+

1

4

[
2
〈
δ̃2
x

〉2

+ 2
〈
δ̃2
y

〉2

+ 2(1 + α)2
〈
δ̃2
z

〉2

+
(〈
δ̃2
x

〉
+
〈
δ̃2
y

〉
− (1 + α)

〈
δ̃2
z

〉)2
]
. (S25)

Note that the final addend in the brackets yields, once the multiplicative constants are accounted for, the squared
average of δv/α and therefore〈

δv2

α2

〉
−
〈
δv

α

〉2

=
〈
δ̃2
z

〉
+

1

4

[
2
〈
δ̃2
x

〉2

+ 2
〈
δ̃2
y

〉2

+ 2(1 + α)2
〈
δ̃2
z

〉2
]

=
1

χ
+

1

2χ2

[
ε4 + 1 + (1 + α)2

]
. (S26)

To quantify the width of the distribution of energies VNNδv with respect to its centre −VNNN we define the ratio

η2 =

〈
(VNNδv)2

〉
− 〈VNNδv〉2

V 2
NNN

= 22α
(〈
δv2
〉
− 〈δv〉2

)
=

22α

2χ2
α2
[
2χ+ ε4 + 1 + (1 + α)2

]
, (S27)

where in the last equality we have substituted from Eq. (S26). η thus represents the standard deviation of the energy
distribution such that we can write, with a slight abuse of notation,

δV (nNN)− δV (nNN − 1) ≈ −VNNN ± ηVNNN. (S28)

We will now provide a numerical example. Here, it is worth noting that according to the Eq. (S17), the isotropic
disorder ε = 1 does not fulfill the necessary condition ε2 > α and thus does not lead the the on-average flattening.
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Taking ε = 9, we find d∗ ≈ 0.2 which yields η ≈ 3.5 (we recall we use s0 = 0.03 motivated by70). It is thus apparent
from (S28), that for the values of the disorder for which one gets the on-average flattening Vstep ≈ 0, the width of
the energy distribution has already become much broader than its mean value making thus the flattening argument
effectively irrelevant.

A different calculation could be set up to assess for what value of the disorder strength the distribution becomes
sufficiently broad to render the bias −VNNN effectively irrelevant. One way to look for such a threshold is to ask when
the centre of the shifted distribution 〈VNNδv〉+ VNNN is of the same order of the standard deviation, which can also
be written as

[〈δv〉+ µ]
2

=
〈
δv2
〉
− 〈δv〉2 . (S29)

This corresponds to [
α

2χ
(α− ε2) + 2−α

]2

=
α2

2χ2

[
2χ+ ε4 + 1 + (1 + α)2

]
. (S30)

Multiplying both sides by (2χ/α)2 we get a quadratic polynomial in χ

a2χ
2 + a1χ+ a0 = 0 (S31)

with

a2 =
22−2α

α2
> 0 (S32a)

a1 =
22−α

α

(
α− ε2

)
− 4 (S32b)

a0 =
(
α− ε2

)2 − 2ε4 − 2− 2(1 + α)2 < 0. (S32c)

By Descartes’ rule of signs, there are always a positive and a negative solution. By its definition, χ must be positive,
so we can discard the negative one. Hence, the threshold value we are looking for can be written as a function of α
and ε in the combination

χth(α, ε) =
1

2a2

[
−a1 +

√
a2

1 − 4a2a0

]
. (S33)

Applying this to the case ε = 9 and using the definition of χ Eq. (S20) we find that the width of the distribution
becomes comparable to Vstep for d ≈ 0.06.

IV. NUMERICAL TREATMENT OF THE ATOM MOTION

We model the atomic motion as that of a classical point particle in a harmonic trap with coordinates ν(t) =

Cν cos(ωνt + φν), where Cν =
√
ν(0)2 + (qν(0)/m)2/ω2

ν) and φν = arccos (ν(0)/Cν) which are fully specified by the
initial position ν(0) and velocity vν(0) = qν(0)/m for each of the direction ν = x, y, z. These are solutions of the
equations of motion corresponding to the classical single-particle Hamiltonian

hν(ν, vν) = q2
ν/2m+ 1/2mω2

νν
2. (S34)

In the numerical procedure, we draw the initial positions for each direction ν and velocity vν from the corresponding
Gaussian (Boltzmann) probability distribution

p(ν, vν) =
e−βhν

Z
= p(ν)p(vν) =

e
− ν2

2σ2
ν

√
2πσν

e
− v2

ν
2σ2
v,ν

√
2πσv,ν

, (S35)

where Z = Tr
(
e−βhν

)
, σ2

ν = 1/(βmω2
ν) and σv,ν = ωνσν . For later convenience we also introduce the corresponding

functions of the momenta qν = mvν rather than the velocities

Hν(ν, qν) = hν

(
ν,
qν
m

)
(S36)

P (ν, qν) =
e−βHν

Z
=

1

m
p
(
ν,
qν
m

)
, (S37)
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where Z = mZ.
Due to the nature of the probability distributions there is a possibility of a rare event when two atoms come

arbitrarily close to each other resulting in the distribution of interaction energies with no defined moments93. It
is thus instructive to investigate what is the probability of such an event if one imposes a threshold on the initial
conditions, namely

hν ≤ E, (S38)

where E is a cutoff energy. We define the acceptance probability as

P (ν)
acc =

∫
Hν≤E

dν dqν
e−βHν

Z
=

∫
Hν≤E dν dqν e−βHν∫

dν dqν e−βHν
. (S39)

We now apply the standard canonical transformation to action-angle coordinates (Qν ,Kν) for the harmonic oscil-
lator

ν =

√
2Kν

mων
sinQν

qν =
√

2mωνKν cosQν

(S40)

Because the transformation is canonical, the Jacobian of the change of variables corresponds to the Poisson brackets:

J =

∣∣∣∣∣
∂ν
∂Qν

∂ν
∂Kν

∂qν
∂Qν

∂qν
∂Kν

∣∣∣∣∣ =

∣∣∣∣ ∂ν∂Qν ∂qν
∂Kν

− ∂ν

∂Kν

∂qν
∂Qν

∣∣∣∣ = |{ν, qν}Poisson| = 1. (S41)

Additionally,

Kν =
Hν

ων
(S42)

so that (S39) becomes

P (ν)
acc =

∫
Kν≤E/ων dQν dKν e−βωνKν∫

dQν dKν e−βωνKν
. (S43)

Since neither the constraint nor the integrand depend on Qν , (S43) evaluates to

P (ν)
acc =

(1/(βων))
(
1− e−βE

)
(1/(βων))

= 1− e−βE . (S44)

Alternatively, this result can be obtained by direct evaluation using the probability distribution Eq. (S35) by noting
that the constraint (S38) is nothing but a definition of the disk

ṽ2
ν + ν̃2 ≤ 1 (S45)

upon the obvious change of variables. In this case the acceptance probability reads

P (ν)
acc ≡

∫
D

dν dvν p(ν, vν), (S46)

where the integration is performed over the disk defined by (S45). Transforming ν̃, ṽν to polar coordinates ν̃ =
r̃ cosϕ, ṽν = r̃ sinϕ and integrating first over the angles yields an expression of the form

P (ν)
acc ∝ 2π

∫ 1

0

dr̃r̃e−
1
2 (a+b)r̃2

I0

(
1

2
(a− b)r̃2

)
, (S47)

where I0 is the modified Bessel function and a = E/(mω2
νσ

2
ν), b = E/(mσ2

v,ν). It follows from σv,ν = ωνσν that a = b

and consequently I0
(

1
2 (a− b)r̃2

)
= 1 with the result (S44).

To evaluate numerically the effect of the cutoff, we parametrize the cutoff energy as E = 1
2mω

2
ν(r0/f)2, such that

f describes the fraction of r0 which determines the maximum allowed distance of an atom from the trap center and
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sν are the disorder strenghts (sx, sy, sz) = (ε, 1, 1)ds0 using the notation of the main text. Defining the rejection
probability

P
(ν)
rej = 1− P (ν)

acc = e
− E
mω2

νσ
2
ν = e

− 1
2(fsν )2 . (S48)

it follows that for f → 0 (arbitrarily high cutoff energy) and sν → 0 (no disorder), the rejection probability vanishes
as it should (and similarly Prej → 1 for f, sν →∞).

Finally, we note that only the displacements along the chain axis (z-axis) lead to the divergences of the interaction
energy when the positions of the two atoms coincide. We thus evaluate (S48) for the largest amount of disorder
conisdered sz = s0d for d = 1 and taking f = 2, i.e. allowing each atom to be at most the distance r0/2 away from

the trap center, which yields P
(z)
rej ≈ 4.8 · 10−61. We thus conclude that for the number of realizations O(100) and the

parameters considered in this work, the cutoff condition (S38) can be safely neglected.

A. Time evolution of the entanglement entropy

As described in the main text, to extract the (second Rényi) entanglement entropy we solve numerically the
Schrödinger equation with the Hamiltonian Eq. (4a), which is explicitly time dependent. In Fig. S3 we show extended
data with the same parameters as in Fig. 3a but for a larger system size M = 41. For |ψmid〉 and |ψrand〉 we observe
a slow log-like late-time growth for Ωt/M & 5. The projected Gaussian state |ψG〉 on the other hand depicts a faster
rise up to a saturation around Ωt/M ≈ 8 followed by a decrease for Ωt/M > 11 (cf. also the inset).

To understand the origin of the decrease of S for |ψG〉, we show the time evolution of S(t) for |ψG〉 with no disorder
(solid brown line) and with a static, i.e. quenched positional disorder, where the coordinates of each atom are drawn
from the distribution p(δrk), k = 0, . . . ,M − 1 (solid violet line). In the static disorder case, after the initially similar
dynamics, we see a clear departure around Ωt/M ≈ 3 followed by a growth which is considerably slower than when
accounting for the motion. On the one hand, this highlights the importance of taking the atomic motion into account
to faithfully describe a realistic experimental setting. On the other hand, it also shows that the r-statistics evaluated
with the static positional disorder serves only as an indicator of the integrability properties of the Hamiltonian H
when it is driven at the atomic motion frequencies ων .
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FIG. S3. Evolution of the half-chain entanglement entropy for M = 41 for |ψG〉 , |ψmid〉 and |ψrand〉 (solid blue, green and
orange lines) defined analogously to the states used in Fig. 3. The solid violet (brown) line corresponds to a quench from |ψG〉
with static positional (zero) disorder. Parameters used: s0 = 0.03, ε = 9, d = 0.12 and 10 realizations of the disorder (initial
conditions). The shaded areas indicate the standard deviation of S.

V. HILBERT SPACE STRUCTURE

The spin flip term
∑
k σ

x
kP〈k〉 of the effective Hamiltonian Eq. (2) on the chain of length M maps to the XX

Heisenberg spin-1/2 model of length L = M + 1, HXX =
∑L−1
k=1 µ

x
kµ

x
k+1 + µykµ

y
k+1 - cf. Eq. (11) - where µz =

∑
k µ

z
k

is a conserved charge. It is interesting to consider the structure of the corresponding Hilbert space for given system
size and number of the Heisenberg excitations, which we denote by l, l =

∑
k 1/2(1 + µzk). An example for l = 2 and
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FIG. S4. (a) The structure of the Hilbert space of the XX model, Eq. (11), for l = 2 and L = 6. (b) Counting of the loops
emanating from the basis state containing a pair 1j , 1k of up-spins. (c) Threshold value of L (blue data points) for which
Vbulk/Vboundary > 0.9, cf. Eqs. (S55). The solid red line indicates the curve of constant filling fraction f = l/L = 1/100 for
comparison.

L = 6 is shown in Fig. S4a, which is equivalent to Fig. 1a. Here, the Hilbert space structure, in the {|0〉 , |1〉} basis,
corresponds to a regular graph (a square lattice), up to the boundaries. This holds for arbitrary l in the limit of
vanishing filling fraction as stated in the following lemma:

Lemma: The graph topology of the adjacency matrix HXX, Eq. (11), expressed in the {|0〉 , |1〉} basis for a
fixed l and L→∞ corresponds to a hypercubic lattice of dimension l.

Proof: The dimension of the Hilbert space of each l-sector is given by

diml =

(
L

l

)
. (S49)

It follows from the particle-hole symmetry of HXX that the sectors l and l′ = L+1− l are isomorphic. In the following
we thus consider l <

⌈
L
2

⌉
, i.e. any l below half-filling. Next, we define the valency (i.e. the vertex degree) of a basis

state |bi〉 as the number of connections to other basis states, v|bi〉 =
∑
j 6=i 〈bi|HXX|bj〉. It follows that for a given

l, v|bi〉 can take values in {1, . . . , vmax}, where vmax = 2l. The total number of the basis states with the maximum
valency is

dimvmax =

(
L− 1− l
l − 1

)
. (S50)

Defining the ratio

r(l, L) =
dimvmax

diml
(S51)

in the limit L→∞ while keeping l constant, we have

lim
L→∞

r(l, L)|l=const. = 1, (S52)
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i.e. the basis states of maximum valency occupy most of the Hilbert space (asymptotically all of it), such that it can
be represented as a vmax-regular graph. Specifically, it corresponds to a hypercube of dimension l. To show this, we
shall count the number of minimal-length loops emanating from a vertex of maximum valency. To this end we first
note, that the maximum valency state corresponds to the configuration of the form

. . . 1j . . . 1 . . . 1k . . . 1 . . . , (S53)

where . . . stand for string of zeros and there is in total l excitations (ones) which are preceded and followed by at
least one zero. In other words there is at least one zero separating two 1s and at least one zero at each end of the
chain. The action of HXX is nothing but a permutation 01 ↔ 10 shifting a given 1 to either left or right. Denoting
such left/right shifts acting on the j-th excitation as Lj , Rj , a minimal-length loop is formed by interlacing the L,R
operations on any pair of excitations (1j , 1k) as shown in Fig. S4b. As a result, we have four loops of minimal-length
four for each pair (1j , 1k), i.e.

# of loops emanating from each max. valency vertex = 4

(
l

2

)
, (S54)

which corresponds to the hypercube (specifically, we get four loops for l = 2 corresponding to a square lattice and 12
loops for l = 3 corresponding to the cube). QED.

As a consequence, this allows us to define the volume of the bulk and of the boundary of the Hilbert space
as the number of maximum-valency basis states and its complement respectively

Vbulk ≡ dimvmax
(S55a)

Vboundary = diml − Vbulk. (S55b)
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FIG. S5. Histograms of the vertex valencies for various L at half-filling.

It is interesting to compare the situation of l = const. to the the constant filling fraction l/L = const. instead.
In particular, we choose the limiting case of half filling, dl/Le = 1/2. The histogram of the number of vertices
of different valencies is shown in Fig. S5. At half filling, dimvmax = 1 (2) for L odd (even) respectively and thus
limL→∞ r(

⌈
L
2

⌉
, L) = 0 implying no volume in the sense of the definition (S55). This can be pictured as a discrete

change of the Hilbert space graph as l is increased (keeping L constant), where for each increase in l the boundaries
become more and more dominant up to the half-filling. Finally, we note that the graph structure of HXX in general
corresponds to the Schreier graph associated with the permutation group acting on the spins87,88,110 which holds for
arbitrary filling fraction.
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