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The recent successful experimental observation of quantum anomalous Hall effect in graphene under laser
irradiation demonstrates the feasibility of controlling single particle band structure by lasers. Here we study
superconductivity in a Hubbard honeycomb model in the presence of an electromagnetic drive. We start with
Hubbard honeycomb model in the presence of an electromagnetic field drive, both circularly and linearly polar-
ized light and map it onto a Floquet t-J model. We explore conditions on the drive under which one can induce
superconductivity (SC) in the system. We study the Floquet t-J model within the mean-field theory in the singlet
pairing channel and explore superconductivity for small doping in the system using the Bogoliubov-de Gennes
approach. We uncover several superconducting phases, which break lattice or time reversal symmetries in ad-
dition to the standard U(1) symmetry. We show that the unconventional chiral SC order parameter (d ± id) can
be driven to a nematic SC order parameter (s + d) in the presence of a circularly polarized light. The d + id SC
order parameter breaks time reversal symmetry and is topologically nontrivial, and supports chiral edge modes.
We further show that the three-fold nematic degeneracy can be lifted using linearly polarized light. Our work,
therefore, provides a generic framework for inducing and controlling SC in the Hubbard honeycomb model,
with possible application to graphene and other two-dimensional materials.

I. INTRODUCTION

Graphene has been one of the most studied materials with
hexagonal geometry due to its number of intriguing proper-
ties [1–3]. Recently, superconductivity was observed in a
twisted bilayer at the magic angle [4], after the theoretical pre-
diction of the existence of flat bands for Moiré lattice of the
twisted bilayer graphene at the magic angle [5]. Supercon-
ductivity has also been observed in intercalated graphite such
as CaC6 [6], and C6Yb [7]. But, in pristine graphene, super-
conductivity is still missing in spite of a number of theoretical
studies predicting the existence of superconductivity [8–11].
Ref. [11] predicted chiral superconductivity with nontrivial
topology at van Hove singularity, which was an experimen-
tal challenge. More recently, doping graphene at and beyond
van Hove singularity the have been achieved [12] and can pos-
sibly open new venues for exotic states. Many of these studies
start with the assumption that honeycomb lattice has is a spin-
1/2 antiferromagnet at half-filling, which has, in fact been ob-
served in another honeycomb material, In3Cu2VO9 [13, 14].
More recently, valence bond fluctuations were reported in an-
other spin-1/2 honeycomb compound, YbBr3 [15]. On the
other hand, tunable honeycomb lattice in the cold atom sys-
tem has been realized [16].

In recent years, there has also been an enormous interest
in understanding the periodically driven systems. A recent
study on graphene [17] reported the light-induced anomalous
quantum Hall effect by tuning its band structure using light
[18]. Controlling the magnetic interaction in materials using
an electromagnetic drive has been intensively studied [19–24].
The earlier work on photo-manipulation has largely focused
on ferromagnets. But in recent years, study of antiferromag-
nets driven by light have also gained significant interest [25].

A recent study [26] on hexagonal lattice proposed the
realization of light-induced time-reversal symmetry broken
(TRSB) topological superconductor. In this study, the effect

of electromagnetic drive was studied using a Pierls substitu-
tion and did not delve into how the frequency restricts the re-
alization of the relevant Floquet t-J model. Also, in one of
the most studied superconductors, i.e cuprate, there has been
significant interest in enhancing superconductivity in the pres-
ence of a drive [27, 28] resonant with phonon mode, and the
mechanism it is usually understood as phonon-assisted. More
recently [29], it has been shown that the enhancement in the
superconductivity can be observed even when one is away
from the resonance with the phonon. The mechanism, in this
case, has been attributed to the effect of light on the superex-
change coupling.

The observation of band tuning in graphene [17] and the
possibility of light-induced superconductivity mediated by
charge transfer [29] opens new avenues for exploring light-
induced superconductivity. Additionally, it has been widely
reported in the literature that strong correlations can induce
superconductivity in honeycomb lattice at low doping [30, 31]
and van Hove singularity [11]. In our work, we explore the
conditions for realizing superconductivity in honeycomb lat-
tice mediated by strong correlations that can be controlled us-
ing light. We explore the effect of both the circularly and lin-
early polarized light on the electronic states. We show that
in the frequency limit (t � ω � U. Here t is the hopping
strength and U is the onsite Coulomb interaction.), the super-
conductivity can be induced and enhanced. The honeycomb
lattice is shown to host both the time reversal symmetry break-
ing (TRSB) (d + id) and the nematic (s + d) superconductor in
the singlet pairing channel. The nematic superconducting or-
der parameter is three-fold degenerate. We further show that
the three-fold degeneracy can be lifted using linearly polar-
ized light.

The paper is organized as follows: Sec II presents the Flo-
quet t-J model derived from Hubbard honeycomb model in
the presence of circularly and linearly polarized light. Sec. III
discusses the density of states for the lattice in the presence of
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drive. Sec. IV discusses the mean-field treatment of Floquet
t-J model, which reveals several superconducting phases in
the presence of EM drive. Sec. V presents a discussion on the
physical challenges in realizing the these Floquet systems and
summarizes the various findings of our work.

II. FLOQUET HAMILTONIAN FOR STRONGLY
CORRELATED SYSTEMS

Strongly correlated materials can be modeled using Hub-
bard model. Time-dependence of the Hamiltonian in the pres-
enc of a drive can be is taken into account by time-periodic
Peierls phase [26, 32, 33]. We start with a time-dependent
Hamiltonian for a Hubbard honeycomb lattice given by

H(t) =
∑
〈i j〉,σ

ti jeiδFi j(t)c†iσc jσ + h.c. + U
∑

i

ni↑ni↓. (1)

Here, ti j is the hopping between nearest neighbor sites-i, j,
and U is the onsite electron repulsion. δFi j(t) = F(t) · (ri− r j),
where F(t) is the vector potential of the light. The above time-
dependent Hubbard Hamiltonian can be mapped onto a Flo-
quet t-J model dependent using Schrieffer-Wolff Transforma-
tion (SWT) [34, 35]. The details for the SWT are discussed in
the supplemental material [36].

We investigate the Floquet t-J model for two types of drive,
F(t): a) circularly polarized light (CPL) and b) linearly polar-

ized light (LPL) in the supplemental material [36]. The time-
dependent Hamiltonian in the high frequency limit (t/ω � 1),
and t � U can be mapped onto a set of time-independent
Floquet t-J Hamiltonians depending on the drive frequency
(ω) [33, 34]. Here, we present the Floquet Hamiltonian for
both circularly and linearly polarized light in the discussion
below.

Circularly Polarized Light:— We consider a vector poten-
tial given by F(t) = ζ[sin(ωt)êx − cos(ωt)êy], where ζ = A/ω
for the circularly polarized light (CPL) and êx (êy) is a unit
vector in the x (y) direction. In this case, the D6h point group
symmetry of the Hamiltonian is preserved. This is because
the CPL affects both the hopping and interaction isotropically
along the three bonds in the hexagonal lattice. We have two
sets of Floquet Hamiltonian depending on the conditions on
the frequency.

In the limit t � U � ω, the Floquet Hamiltonian is given
by

HF ≈ tJ0(ζ)
∑
〈i j〉,σ

c̃†i,σc̃ j,σ + h.c.

+ JJ2
0 (ζ)

∑
〈i j〉,σ

(Si · S j −
∑
σ′

1
4

ñiσñ jσ′ ).
(2)

Here, c̃ jσ = (1 − n jσ̄)c jσ, ñ jσ = (1 − n jσ̄)n jσ and J = 4t2

U is
the superexchange interaction. J0(ζ) is a Bessel function of
first kind with ζ = A/ω. In this limit of ω, both the hopping
and superexchange are rescaled in the Floquet Hamiltonian as
shown in the panel (b) of Fig. 1.

On the other hand in the limit t � ω � U, one can write
the Floquet Hamiltonian as

HF ≈ tJ0(ζ)
∑
〈i j〉,σ

c̃†i,σc̃ j,σ + h.c.

+ J
∑
〈i j〉,σ

(Si · S j −
∑
σ′

1
4

ñiσñ jσ′ ).
(3)

In this limit, only the hopping term is rescaled, whereas the
superexchange term remains unchanged. This limit can al-
lows for flattening the non-interacting band and whereas the
superexchange term interaction is constant, and hence an ideal
condition for inducing and enhancing superconductivity.

Additionally, we have chiral next-nearest neighbor (NNN)
hopping terms of the order of 1/ω that can be neglected
owing to high-frequency approximation. Further, there are
additional three site hopping terms that contribute at the same
order as superexchange in the high-frequency approximation
of the Floquet theory [34, 35]. We further comment on the
conditions under which these extra terms can be neglected in
the supplemental [36].

Linearly Polarized Light:— We consider a linearly polar-
ized light (LPL) polarized along the y-direction for which
the vector potential is given by F(t) = ζ sin(ωt)êy, where
ζ = A/ω. In this case, drive breaks the C3-rotation symme-
try along the three bonds in the Hamiltonian, and can lead to
anisotropic hopping and interactions. As in the CPL case, here
too, the Hamiltonian depends on the U and ω strength.

In the limit t � U � ω limit, the Floquet Hamiltonian is
given by

HF ≈ t
∑
〈i j〉,σ

[
J0(ζ)c̃†i0σc̃ jσ +J0( ζ2 )

∑
`=1,2

c̃†i`σc̃ jσ + h.c.
]

+ J
∑
〈i j〉,σ

[
J2

0 (ζ)(Si0 · S j −
∑
σ′

1
4

ñi0σñ jσ′ )

+J2
0 ( ζ2 )

∑
`=1,2

(Si` · S j −
∑
σ′

1
4

ñi2σñ jσ′ )
]
.

(4)

In this case, both the hopping and superexchange are rescaled
as is the case in CPL drive. In addition, the system develops
anisotropy along the three bonds due to the explicit C3 rotation
symmetry breaking by the LPL.

On the other hand in the limit t � ω � U, the Hamiltonian
is given by

HF ≈ t
∑
〈i j〉,σ

[
J0(ζ)c̃†i0σc̃ jσ +

∑
`=1,2

J0( ζ2 )c̃†i`σc̃ jσ + h.c.
]

+ J
∑
〈i j〉,σ

(Si · S j −
∑
σ′

1
4

ñiσñ jσ′ ).
(5)

In this case, the hopping is rescaled and develop anisotropy,
whereas the superexchange is unaffected. It leads to flattening
of the non-interacting band, whereas the superexchange term
interaction is constant, and hence is useful for inducing and
enhancing superconductivity
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FIG. 1. Schematics for the honeycomb lattice in the presence of (a) Circularly polarized light (CPL), and (b) Linearly polarized light (LPL)
along y-direction. (c) and (d) show the rescaling of the Floquet hopping (t̃) and superexchange (J̃) with the drive parameter ζ(= A/ω) in the
limit U � ω (c) and ω � U (d).

As in the CPL case, we do have NNN hopping terms, but
the chiral hopping term is absent in the LPL drive as the
Hamiltonian does not break time-reversal symmetry.

III. NON-INTERACTING HONEYCOMB

The effect of EM drive on non-interacting honeycomb lat-
tice has been widely studied in literature, where the EM drive
was found to have significant effects on electronic proper-
ties [18]. Here, we analyze the impact of drive on the honey-
comb lattice without the superexchange term to prepare our-
selves for understanding the more complicated Hamiltonian
with strong correlations. We report the density of states (DOS)
for non-interacting bands in the presence of both circularly
and linearly polarized light.

Circularly polarized light:— In the case of CPL, the hop-
ping is renormalized isotropically and, therefore, preserves
the C3-rotation symmetry of the bonds. Panel (a) in Fig. 2
shows the density of states for CPL drive. We can see that on
driving the system (ζ), only the bandwidth in the density of
states shown in panel (a) of Fig. 2 gets smaller.

Linearly polarized light:— Linearly polarized light can in-
duce anisotropy in the hopping along with different bonds. It

FIG. 2. Density of states for non-interacting honeycomb lattice in
the presence of; a) circularly polarized light and b) linearly polarized
along y-direction with the laser strength ζ indicated in each panel for
t � ω. The bandwidth gets smaller with increasing ζ.

breaks C3-rotation symmetry of the bonds and can generate
effects on the honeycomb sites similar to the strain [37]. Panel
(b) shows the DOS for the LPL.

Additionally, CPL can breaks time-reversal symmetry in
the Floquet t-J model if the next nearest neighbor chiral
hoppings are included. This term can lead to an anoma-
lous quantum Hall effect (AQHE). The observation of light-
induced AQHE in monolayer graphene was reported very re-
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cently [17]. This TRSB breaking term appears as a higher-
order correction, and is only important when the leading order
term proportional to the zeroth order Bessel function vanishes,
i.e. at A/ω = 2.4 [38]. For the sake of simplicity, we study the
effects of drive in the limit of ζ < 2, which allows us to ignore
the TRSB term.

IV. MEAN-FIELD TREATEMENT OF THE FLOQUET t-J
MODEL

In Sec. II, we have presented the Floquet Hamiltonian that
can be engineered from a honeycomb Hubbard model. The
derived t-J Floquet model has an explicit many-body effect,
which cannot be solved exactly. To simplify the many-body
effects, one can use Gutzwiller projection to replace the strict
double occupancy prohibition with a rescaling factor [30, 39–
41]. The Gutzwiller projected Hamiltonian could then be
mapped to renormalized mean-field theory, using the mean-
field for singlet pairing channel. In this renormalized mean-
field theory, t → 2tδ/(1+δ) and J → 2J/(1+δ)2 and supercon-
ducting order parameter, ∆→ 2∆δ/(1 + δ), where δ (= 1 − n)
is the doping away from half-filling. For the sake of simplic-
ity, we will treat these rescaling factors as a constant. The
Gutzwiller projected mean-field can be written as,

HMF = −
∑
〈i j〉,σ

ti ja
†

iσb jσ + h.c. + µ
∑
i,σ

a†iσaiσ + b†iσbiσ

+
∑
〈i j〉,σ

(a†i↑b
†

j↓ − a†i↓b
†

j↑)∆i j + ∆∗i j(ai↓b j↑ − ai↑b j↓).
(6)

Here, ti j is the hopping between nearest neighbor sublattices,
A (aiσ) and B (biσ). Here we restrict to the nearest neigh-
bor singlet pairing superconducting order parameter (SCOP)
∆i j = −Ji j(ai↓b j↑ − ai↑b j↓)/2.

Equation (6) can be written in the momentum basis as

HMF =
∑

k

[
a†k↑b

†

k↑ a−k↓ b−k↓

]
×


µ −tk 0 ∆k
−t∗k µ ∆−k 0
0 ∆∗

−k −µ t∗
−k

∆∗k 0 t−k −µ




ak↑
bk↑

a†
−k↓

b†
−k↓

 .
(7)

Here tk =
∑
α=0,1,2 eik·lα tα and ∆k =

∑
α=0,1,2 eik·lα∆α, where

R j = Ri + lα with l0 = (0,−1), l1 = (
√

3
2 ,

1
2 ), l2 = (−

√
3

2 ,
1
2 ).

Also, one can write the gap as, ∆α = −
Jα
2

∑
k〈eik·lαa−k↓bk↑ −

e−ik·lαak↑b−k↓〉. Equation (7) can be diagonalized to evaluate
HMF|ψm〉 = Em|ψm〉, the eigenstates (|ψm〉) of which are the
Bogoliubov quasiparticles [42]. The gap equation in this new
basis is then given by

∆α =
Jα
4

∑
k,m

〈eik·lαua,m
k↑ (vb,m

−k↓)
∗γm

k (γm
k )†

+ e−ik·lαub,m
k↑ (va,m

−k↓)
∗(γm

k )†γm
k 〉.

(8)

FIG. 3. Superconducting order parameter (SCOP) as a function of
CPL drive (ζ). Panels (a) and (b) show the SCOP components for
J = 1.0, n = 1.05 and J = 2.0, n = 1.10 respectively. Inset in each
panels show the corresponding phase between the different compo-
nent. Note that there is a global U(1) phase ambiguity.

n̄ =
∑
k,m

(|ua,m
k↑ |

2 + |ub,m
−k↓|

2) f (Em
k )

+ (|va,m
k↑ |

2 + |vb,m
−k↓|

2) f (−Em
k ).

(9)

Here, |ψm
k 〉 =

(
ua,m

k↑ , v
b,m
k↑ , (ua,m

−k↓)
∗, (vb,m

−k↓)
∗
)T and Em

k are the
mth eigenvector and eigenvalue of the Eq. (7). f (Em

k ) =

〈(γm
k )†γm

k 〉 = 1
eβEm

k +1
is the Fermi distribution function for the

Bogoliubov quasiparticles. We solve Eqs. (8) and (9) self-
consistently to evaluate the SC order parameter.

The basis functions; Ψdx2−y2 = 1
√

6
(2,−1,−1), Ψdxy =

1
√

2
(0, 1,−1) and Ψs = 1

√
3
(1, 1, 1) form a complete basis set

for symmetric superconducting order parameter (∆α) for point
group D6h and D2h. Moreover, dx2−y2 and dxy are degenerate
for D6h point group, which allows for the existence of inter-
esting chiral superconductivity dx2−y2 + idxy. We evaluate the
SCOP in these basis functions. All throughout the discussion,
we set t = 1 and all other parameters are defined in terms of t.

A. Superconducting order parameter dependence on the drive
at T = 0

We start by discussing the superconducting order parameter
(SCOP) dependence on the EM drive at T = 0 for t � ω � U.
In this limit, the EM drive (ζ) modifies the hopping parameter
t. We plot SCOP for the circularly and linearly polarized light,
respectively, for a set of J and filling n near the critical limit
to induce different phases using the EM drive.

Figure 3 plots the SCOP in the (s, d) basis in the presence of
a circularly polarized light. The drive isotropically decreases
the hopping (tα = tJ0(ζ), ∀ α ∈ {0, 1, 2}) along three bonds in
the Floquet Hamiltonian as shown in Eq. (3). The interaction
parameter Jα (= J, ∀ α ∈ {0, 1, 2}) is unaffected. The Hamil-
tonian, therefore, preserves the D6h symmetry. Panel (a) plots
the amplitude of the components of SCOP as a function of
drive (ζ) for J = t (U ≈ 4t) and n = 1.05, whereas panel
(b) plots for J = 2t (U ≈ 2t), n = 1.1. Inset in each panels
show the phase of the different components along the different
components of the SCOP.
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Panel (a) shows that one can drive the onset of supercon-
ductivity at ζ = 1.2 using the EM drive. From the inset, it
is clear that the initial SCOP is dx2−y2 + idxy, which sponta-
neously breaks the time reversal symmetry in addition to the
U(1) symmetry. The dx2−y2 + idxy is topological nontrivial and
can be characterized by a Chern number C = 2. The nontriv-
ial topology implies the existence of spontaneous edge cur-
rent. dx2−y2 − idxy is another degenerate solution, guaranteed
by time-reversal symmetry in the Hamiltonian. There exists
another phase transition at ζ = 1.8, associated with the onset
of s-component. This transition is emphasized in panel (b).

To further elucidate on the new transition, panel (b) plots
SCOP for J = 2t and n = 1.1. In this parameter, at the onset
of the drive, we have TRSB SCOP, signaled by ±π/2 phase
difference between different components of the SCOP. At
ζ = 1.2, we see an onset of s-component. Further, in the
inset, one can see that phase difference between the different
components of the SCOP is either 0 or π. The SCOP can
be made real by choosing a global U(1) phase, therefore the
time reversal symmetry is restored above this critical ζc. As
will be discussed below, C3 rotation symmetry is broken in
this state, and therefore the superconductivity is nematic.

k-dependence of superconducting order parameter:— We
plot the momentum dependence of the SCOP, ∆(k) =∑

k eik·Rα∆α. Fig. 4 shows the gap amplitude, |∆(k)| distribu-
tion over the Brillouin Zone.

SCOP, dx2−y2 ± idxy, shown in panel (a) and (b) have point
nodes and is not invariant for any global U(1) phase over
the time-reversal operation, T∆(k) → ∆∗(−k), and is indeed
TRSB SCOP. But this SCOP is invariant up to a global U(1)
phase over C3 rotation and the SCOP components along the
the three bonds (∆0,∆1,∆2) have the same amplitude. Note,
while the SCOP has point node, the dispersion for the Bogoli-
ubon quasiparticle is gapped.

With the onset of s-wave component, the SCOP breaks the
three-fold rotation symmetry C3 and the SCOP component
along one of the bond (∆0,∆1,∆2) becomes inequiva-
lent, which indeed leads to nematic SCOP. There are
three degenerate SCOPs that are related by C3 rotation
(This is further emphasized in Fig. 7). In the nematic
phase, the SCOP spontaneously breaks the C3 point
group symmetry and is reduced to D2h. The SCOP has
form ∆α ∝ exp(iθ)(α,−β,−β, ), exp(iθ)(−β, α,−β), and
exp(iθ)(−β,−β, α) ∀ α > β > 0. Panel (c), (d), (e) plots
the momentum dependence of the nematic SCOP for α = 1
and β = 1/2. As can be seen in these panels, the nematic
order parameter (s + d) is nodeless and preserves the time
reversal symmetry, but breaks the C3 rotation symmetry.
Conversely, in the (s, dx2−y2 , dxy) basis, these nematic order
parameters can be written as; exp(iθ)

(α−2β
√

3
s +

2α+2β
√

6
dx2−y2

)
,

exp(iθ)
(α−2β
√

3
s +

−β−α
√

6
dx2−y2 +

α+β
√

2
dxy

)
and exp(iθ)

(α−2β
√

3
s +

−α−β
√

6
dx2−y2 +

−β−α
√

2
dxy

)
respectively. Note, in the panel (b) of

Fig. 3, we have plotted only one of the solution of the nematic
SCOP, the other two solutions can be recovered by rotation.

Fig. 5 plots the SCOP in the presence of a linearly polar-

FIG. 4. Top panels shows the superconducting order parameter
(SCOP), |∆(k)| for the time-reversal symmetry-breaking; dx2−y2±idxy.
Bottom panels show SCOP for the three degenerate nematic states
which breaks C3 rotation symmetry along the three bonds. The Black
hexagon denotes the first Brillouin Zone.

FIG. 5. SCOP as a function of LPL drive (ζ). Panels (a) and (b)
show the SCOP components for J = 2.0, n = 1.10 and J = 3.0,
n = 1.10 respectively. Inset in each panels shows the corresponding
phase between the different component. Note that there is a global
U(1) phase ambiguity.

ized light. For LPL polarized along y-direction, the parame-
ters rescales as i.e. t0 = tJ0(ζ), t1 = t2 = tJ0(ζ/2), whereas
Jα = J, ∀α ∈ {0, 1, 2} as can be seen from Fig. 1 (d). In y-
polarized LPL, D6h symmetry of the Hamiltonian is reduced
to D2h. Panel (a) plots the amplitude of the components of
SCOP as a function of drive (ζ) for J = 2t (U ≈ 2t) and
n = 1.1, whereas panel (b) plots for J = 3t (U ≈ 8t/3),
n = 1.1. Inset in each panels show the phase of the differ-
ent components along the different components of the SCOP.
Note, we have plotted for larger value of J in this case as the
onset of SCOP is slower in the case of LPL. Also, the SCOP
in the case of LPL are distinct from the CPL case.

Panel (a) shows that in the case of J = 2t (U ≈ 2t) and
n = 1.1, the SCOP is always complex for arbitrary choice
of the U(1) phase and is TRSB. We choose a global phase
such that the real part is composed of dx2−y2 and s, unlike in
CPL where it consists of only dx2−y2 . From the inset, it is
clear that the initial SCOP is indeed Ψsd + idxy. Ψsd − idxy
is another degenerate solution, which is guaranteed by time-
reversal symmetry in the Hamiltonian. Here Ψsd represents
SCOP with the mixed s and dx2−y2 .

Panel (b) plot SCOP for larger J = 3t to enter into the ne-
matic state observed in the case of CPL. We notice that the
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FIG. 6. Phase diagrams for the SCOP as a function of temperature (T ) and the CPL drive (ζ) for J = 2.0, n = 1.1 and t = 1. Panels (a) and (b)
show the SCOP evaluated using projected dx2−y2 + idxy and s state respectively as initial guess. The top and bottom lines in each panel indicate
the Tc for vanishing d-wave and s-wave SCOP respectively evaluated using linearized gap equation. Panel (c) plots the free energy at ζ = 1.23
and shows that nematic state with (s + d)-wave component is the true SCOP at lower temperature, and at intermediate temperature (d + id)
dominates before the SCOP vanishes.

SCOP becomes real at ζ = 0.5, as was also observed in the
CPL case. In this phase, the time-reversal symmetry of the
SCOP is preserved. The three-fold degeneracy of the nematic
state observed in the CPL case is reduced to two-fold degener-
acy. This will be further evident from the discussion on Fig. 8.
Again note, we have plotted only one of the nematic phase so-
lutions in panel (b).

B. Effect of temperature on the superconducting order
parameter

In this section, we discuss the effect of temperature on the
superconducting order parameter for the CPL drive. The van-
ishing SCOP reveals the critical temperature, Tc for the phase
transitions. We further estimate the Tc by linearizing the gap
equations. We describe both the methods for evaluating the
temperature dependence of SCOP.

We evaluate the SCOP by solving the Eqs. (8) and (9)
self-consistently for finite temperature (T ). We plot the
phase diagram starting with a SCOP ansatz given by, ∆α =

|Ψdx2−y2 +idxy〉〈Ψdx2−y2 +idxy |∆α〉 to evaluate for TRSB state and
∆α = |Ψds〉〈Ψds |∆α〉 for the nematic state. Since the TRSB
and nematic order parameter competes, we also evaluate the
free energy of the system [43] to get the true ground state. The
free energy is evaluated using the relation,

F =
∑
k,m

Em
k f (Em

k ) + TkB

∑
k,m

(
f (Em

k ) ln( f (Em
k ))

+
(
1 − f (Em

k )
)

ln
(
1 − f (Em

k )
))

+ 2
∑
α

|∆2
α|/N.

(10)

Here m is indices for the Bogoliubons evaluated in the Eq. 7.
We know that at the critical transition temperature, Tc, the

SC gap vanishes, and therefore one can linearize the gap equa-
tion. This approximation allows us to directly calculate the Tc,
which is discussed in Appendix A. The linearized gap equa-

tion can be written in a matrix form∆0
∆1
∆2

 = J

A1 B1 B1
B1 A2 B2
B1 B2 A2


∆0
∆1
∆2

 , (11)

where A1, A2, B1 and B2 are components in the Eq. (A9)
when Jα = J, ∀ α ∈ {0, 1, 2}, discussed in Appendix A. In the
case of CPL, A1 = A2 = A and B1 = B2 = B. The solutions
of the above equation is given by, a) A + 2B = 1

J s-wave;
(1, 1, 1)/

√
3, and b) A − B = 1

J , two-fold d-wave degenerate
solutions: (2,−1,−1)/

√
6 and (0, 1,−1)/

√
2. Using these

equations, we evaluate the Tc for the d-wave and s-wave
solution

1. Phase diagram of SCOP dependence on temperature and CPL
drive

Figure 6 shows the phase diagram for the temperature de-
pendence of the SCOP in the presence of CPL drive evaluated
for J = 2t and n = 1.1. We reveal distinct phase bound-
aries for the TRSB and nematic superconductivity. TRSB and
nematic SCOP can compete at lower temperatures, and there-
fore, one has to compare the free energy in order to determine
the true ground state.

Panels (a) plots the phase diagram with a mean-field gap
ansatz given by, ∆α = |Ψdx2−y2 +idxy〉〈Ψdx2−y2 +idxy |∆α〉. We further
evaluate that Tc for the d-wave solution using the linearized
gap equations and compare it with the results from the SCOP
calculation with (d + id) ansatz. We notice the TRSB SCOP
vanishes at the Tc (top white line) of the d-wave solution.

Panels (b) plots the phase diagram with a mean-field gap
ansatz given by, ∆α = |Ψds〉〈Ψds |∆α〉. We further evaluate that
Tc for the s-wave solution using the linearized gap equations
and compare it with the results from the SCOP calculation
with s-wave ansatz. We notice the nematic SCOP vanishes at
the Tc (bottom white line) of the s-wave solution. We notice
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FIG. 7. Nematic SCOP degeneracy in the presence of CPL drive at ζ = 1.4 for J = 2t and n = 1.1. Panels (a), (b) and (c) plot the SCOP
components along the three bonds (∆0,∆1,∆2) as a function of temperature for the three states. Panel (d) plots the free energy for the three
states, showing state all the states are degenerate.

FIG. 8. Nematic SCOP in the presence of LPL drive at ζ = 0.5 for J = 2t̃, t̃ = tJ0(1.4) and n = 1.1. Panels (a), (b) and (c) plot the SCOP
components along the three bonds (∆0,∆1,∆2) as a function of temperature for the three states. Panel (d) plots the free energy for the three
states, showing state in panel (a) becomes non-degenerate.

that there is a discrepancy in the critical drive strength for the
onset of the s-wave state; ζc = 0.85 from the Tc calculation,
whereas, ζc = 1.25 from the SCOP calculation. This late onset
of s-wave SCOP is due to numerical limitation, a smaller grid
used for evaluating the SCOP.

From panel (a) and (b), it is clear that (d + id) and (s + d)-
wave solutions compete at a lower temperature after the onset
of s-wave state. We, therefore, plot free energy for both the
solution to find the real ground state. Panel (c) plots the free
energy at ζ = 1.23 to show that the (s + d)-wave solution is
the real ground state at the lower temperature after the onset
of s-wave. At a higher temperature, the (d + id)-wave solution
has lower free energy after the (s + d)-wave solution vanishes.

Additionally, we notice that the Tc for TRSB and nematic
SCOP converge for a large ζ.

Analysis of the three-fold degeneracy of nematic state:—
SCOP in the nematic state has a three-fold degeneracy. In
Fig. 7, we plot a cut at ζ = 1.4 from panel (b) of Fig. 6 to ex-
plore the temperature dependence of the components of SCOP
along all the three bonds. We plot all the three nematic states
shown in panels (a), (b) and (c) by biasing the initial SCOP
along each of the bond. Inset plots the phases of the three
components along the bonds. We notice that the SCOP has a
higher amplitude along one of the bond in each state and are
related by a C3 rotation along the three bonds.

We further plot the free energy for these three solutions in
panel (d) and observe that these solutions’ free energy is equal
for all the temperature to confirm that these solutions are in-

deed degenerate.
Breaking the three-fold degeneracy in the nematic state:—

We know that LPL reduces the D6h symmetry to D2h in the
presence of y-polarized light. We use this property and show
that the use of linearly polarized light can lift the three-fold
degeneracy of the SCOP. For the sake of consistency with the
above results, we start with J = 2t, and a modified hopping t̃ =

tJ0(1.4), which reproduces the results in the case of CPL at
ζ = 1.4. Additionally, we use a y-direction LPL with ζ = 1/2
to break the three-fold degeneracy, as shown in Fig. 8. The
three nematic states shown in panels (a), (b) and (c) are plotted
by biasing the SCOP along each of the bonds. We notice that
the SCOP in panel (a) has a slightly different amplitude from
that in panel (b) and (c).

To understand the true nature of the ground state, we plot
the Free energy in panel (d). We notice that the free energy
for polarization along the l0 is higher than the other two di-
rections. Therefore, the three-fold degeneracy of the SCOP is
reduced to two-fold degeneracy in the presence of LPL.

V. DISCUSSION AND CONCLUSIONS

In our work, we explored the conditions for enhancing su-
perconductivity in strongly correlated honeycomb lattice in
the presence of both circularly and linearly polarized light. An
earlier work [26] on honeycomb lattice also explored the same
system by treating EM drive through a Pierls-substitution. On
the other hand, we have treated the effect of strong correlation
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systematically using SWT and find that the limit t � ω � U
is useful in enhancing superconductivity. We want to point out
that two conditions are important for realizing such enhance-
ment; a) t � ω � U, such that the higher-order corrections
in the high-frequency approximations can be neglected, and b)
thermal heating is minimal to realize Floquet Hamiltonian. To
have a minimal effect on the higher-order correction, we study
the system for ζ < 2. In driven systems, a number of studies
have reported the effect of heating and shown that, indeed, it
can be controlled. For example, it has been shown that the Flo-
quet heating in the many-body systems in the high frequency
t,U < ω is exponentially slow in frequency [44]. Further, it
has been shown that Floquet prethermalized state can be re-
alized in a resonantly driven Hubbard model [45, 46]. Addi-
tionally, the recent experimental observation of off-resonance
superconductivity enhancement in cuprate [29], possibly me-
diated by charge fluctuations, provides further impetus to our
work.

In conclusion, we have shown that light can be a useful
tool for controlling the bandwidth and strong correlations in a
hexagonal lattice. We show that in the frequency limit, t < ω
and ω < U, the EM field drive can induce and enhance super-
conductivity mediated through strong correlations. We show
that light-induced superconductivity is exotic; a) time-reversal
symmetry breaking (d+id) with nontrivial topology and b) ne-
matic (s + d) in these honeycomb antiferromagnets. We also
show how the TRSB state can be driven into a nematic super-
conductor in the presence of both; circularly and linearly po-

larized light. Our study also explores the effect of temperature
on the SCOP and presents a phase diagram for the tempera-
ture dependence of the SCOP in the presence of a CPL drive.
On the discussion of the temperature of dependence, we also
present all the three-fold degenerate nematic state and con-
firm their degeneracy using a calculation of the free energy.
We further show that this three-fold degeneracy of the nematic
state can be reduced to a two-fold in the presence of an LPL.
Our work, therefore, presents a detailed analysis of exploring
the superconductivity mediated through a strong correlation
in the presence of electromagnetic drive. Though our work
explored the driven honeycomb lattice, but is not limited and
is applicable to generic strongly correlated systems.
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Appendix A: Evaluating Tc by linearizing the Gap equation

Here we present an analysis of the Hamiltonian to further investigate the nature of the superconductivity in the lattice. We
map the bipartite lattice to a band basis. Following the work in Ref. [8, 30], one can transform the Hamiltonian in Eq. (7) to
intraband and interband pairing, using the basis transformation:(

akσ
bkσ

)
=

1
√

2

(
ckσ + dkσ

e−iφk (ckσ − dkσ)

)
(A1)

And the Hamiltonian is terms of this new basis given by

HMF =
∑

k

[
c†k↑ c−k↓ d†k↑ d−k↓

] 
ξ1 ∆i 0 −∆I

∆
†

i −ξ1 ∆
†

I 0
0 ∆I ξ2 −∆i

−∆
†

I 0 −∆
†

i −ξ2




ck↑

c†
−k↓
dk↑

d†
−k↓

 (A2)

Here ξ1 = µ − εk, ξ2 = µ + εk where εk = |
∑
α tαeik·Rα | and φk = arg(

∑
α eik·Rα tα). ∆α = Jα

∑
k cos(k · Rα − φk)

(
ck↑c−k↓ +

dk↑d−k↓
)

+ i sin(k · Rα − φk)
(
ck↑d−k↓ − dk↑c−k↓

)
. Further, we rewrite the gap as, intraband gap, ∆i(k) = Re[

∑
α ei(k·Rα−φk)∆α], and

interband gap, ∆I(k) = Im[
∑
α ei(k·Rα−φk)∆α].

The dispersion of the Bogoliubov quasiparticles can be solved exactly by diagonalizing Eq. (A2) and is given by,

EQP = ±

(
ε2

k + µ2 + |∆α|
2 ±

√
∆2
α∆
†
α

2
sin2(2k) + 4ε2

k(|∆α|
2 sin2(k) + µ2)

)1/2

(A3)

As temperature approaches critical transition temperature Tc, the gap becomes small. Therefore, we can treat the gap pertur-
batively as

HMF = H0 + V =


ξ1 0 0 0
0 −ξ1 0 0
0 0 ξ2 0
0 0 0 −ξ2

 +


0 ∆i 0 −∆I

∆
†

i 0 ∆
†

I 0
0 ∆I 0 −∆i

−∆
†

I 0 −∆
†

i 0

 (A4)
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Using the pertubation theory, one can write the new eigenstates (|Ψα〉) in terms of eigenstates of H0 (|Ψ0
α〉) as

|Ψα〉 = |Ψ0
α〉 +

∑
β,α

〈Ψ0
β|Vβα|Ψ

0
α〉

Eα − Eβ
|Ψ0

β〉 (A5)

The new eigenstates and eigenergies are as follows:

γ1 = ck↑ +
∆i

2ξ1
c†
−k↓ −

∆I

ξ1 + ξ2
d†
−k↓, E1 = ξ1; γ2 = c†

−k↓ −
∆
†

i

2ξ1
ck↑ −

∆
†

I

ξ1 + ξ2
dk↑, E2 = −ξ1;

γ3 = dk↑ −
∆i

2ξ2
d†
−k↓ +

∆I

ξ1 + ξ2
c†
−k↓, E2 = ξ2; γ4 = d†

−k↓ +
∆
†

i

2ξ2
dk↑ +

∆
†

I

ξ1 + ξ2
ck↑, E4 = −ξ2.

(A6)

Using the relation, that different component of γm are orthogonal, one can simplify the below equations,

〈ck↑c−k↓〉 =
∆i

2ξ1
(γ1γ

†

1 − γ2γ
†

2), 〈dk↑d−k↓〉 =
∆i

2ξ2
(−γ3γ

†

3 + γ4γ
†

4),

〈ck↑d−k↓〉 =
∆I

ξ1 + ξ2
(−γ1γ

†

1 + γ4γ
†

4), 〈dk↑c−k↓〉 =
∆I

ξ1 + ξ2
(γ3γ

†

3 − γ2γ
†

2)
(A7)

Bogoliubons follow the Fermi-Dirac distribution and their expectation value is given by 〈γ†mγm〉 = 1
1+eβEm . Therefore, one can

write the pairing terms as,

〈ck↑c−k↓ − dk↑d−k↓〉 = ∆i

( tanh( βξ1
2 )

2ξ1
+

tanh( βξ2
2 )

2ξ2

)
, 〈dk↑c−k↓ − ck↑d−k↓〉 =

∆I

ξ1 + ξ2

(
tanh( βξ1

2 ) + tanh( βξ2
2 )

)
(A8)

Using the definition of the ∆i and ∆I , the gap equation is simplified as,

∆α = Jα
∑

k

cos(k · lα − φk)〈ck↑c−k↓ − 〈dk↑d−k↓〉 − i sin(k · lα − φk)〈dk↑c−k↓ − 〈ck↑d−k↓〉

=Jα
∑
k,β

[
cos(k · lα − φk) cos(k · lβ − φk)

( tanh( βξ1
2 )

2ξ1
+

tanh( βξ2
2 )

2ξ2

)
+ sin(k · lα − φk) sin(k · lβ − φk)

(
tanh( βξ1

2 ) + tanh( βξ2
2 )

)
ξ1 + ξ2

]
∆β

(A9)

The above linearized can be solved to evaluate the Tc for the superconducting phases in the lattice.
We are interested in the lattice with D6h and D2h symmetry with isotopic interaction along the three bonds. Therefore,

we present results relevant to linearly polarized light polarized along y-direction discussed in the main text. In which the
Hamiltonian has a reduced D2h symmetry with anisotorpic hoppings. In the linearized gap equation this leads to anisotropy in
the φk (= arg(

∑
α eik·Rα tα)) and is reduced it to D2h symmetry due to reduced symmetry in the Hamiltonian. The linearized gap

equation can be written in a matrix form ∆0
∆1
∆2

 = J

A1 B1 B1
B1 A2 B2
B1 B2 A2


∆0
∆1
∆2

 (A10)

Here, A{1,2} and B{1,2} are the corresponding prefactors of ∆β in the Eq. (A9). The solutions of the above equation is given
by, A2 − B2 = 1

J with the eigenvector: (0, 1,−1)/
√

2) which is dxy-wave. Another set of solutions are 1
2 (A1 + A2 +

B2 ±

√
(A1 − A2 − B2)2 + 8B2

1) = 1
J . The eigenvectors of these solutions are a superposition of the s and dx2−y2 -wave:

a1(2,−1,−1)/
√

6 + a2(1, 1, 1)/
√

2. The prefactor a1 and a2 are a function of A1, A2, B1 and B2. These results simplify to s,
dx2−y2 and dxy-wave solution for the isotropic case preserving D6h symmetry as reported in Ref. [30].
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Supplemental Materials: Inducing and controlling superconductivity in Hubbard honeycomb
model using an electromagnetic drive

In this supplemental, we present the mapping of time-dependent Hubbard model to the Floquet t-J model. We start with a
time-dependent Hamiltonian for a Hubbard honeycomb lattice given by

H(t) =
∑
〈i j〉,σ

ti jeiδFi j(t)c†iσc jσ + h.c. + U
∑

i

ni↑ni↓. (S1)

Here, ti j is the hopping between nearest neighbour sites-i, j and U is the onsite electron repulsions. δFi j(t) is the Peierls phase
given by δFi j(t) = F(t) · (ri − r j) where F(t) is the vector potential of the light. Also, the Hamiltonian is periodic in time with the
interval T , H(t + T ) = H(t).

S-I. SCHRIEFFER-WOLFF TRANSFORMATION

We change to a rotating frame given by the transformation H(t) = V†H(t)V − iV†V̇ using the unitary operator,
V(t) = e−iUt

∑
i ni,↑ni,↓ [33, 34]. Here, ~ = 1.

The Hamiltonian in new gauge is given by

H(t) = eiUt
∑

i ni↑ni↓
∑
〈i j〉,σ

ti j
(
eiδFi j(t)c†iσc jσ + h.c.

)
e−iUt

∑
i ni↑ni↓

=
∑
〈i j〉,σ

ti j[hiσ̄ + eiUtniσ̄]
(
eiδFi j(t)c†iσc jσ

)
[h jσ̄ + e−iUtn jσ̄] + h.c.

(S1)

In the above equation, we have used the relations; ci,σni,σ = ci,σ, ni,σc†i,σ = c†i,σ, ni,σci,σ = 0, c†i,σni,σ = 0 and hiσ = 1 − niσ. One
can further reorganize the above Hamiltonian (i > j) as

H(t) =
∑
〈i j〉,σ

ti jeiδFi j(t)gi jσ + h.c. +
∑
〈i j〉,σ

ti jeiδFi j(t)+iUth†i jσ + ti jeiδFi j(t)−iUthi jσ + h.c. (S2)

The terms gi jσ and hi jσ in the above equation arise due to the restrictions imposed by the Hubbard term and are given by

gi jσ = hiσ̄c†iσc j,σh jσ̄ + ni,σ̄c†i,σc j,σn j,σ̄

hi jσ = hi,σ̄c†iσc jσn jσ̄, h jiσ = h j,σ̄c†jσciσniσ̄,

h†i jσ = ni,σ̄c†iσc jσh jσ̄, h†jiσ = n j,σ̄c†jσciσhiσ̄

(S3)

Notice that g†i jσ = g jiσ, but h†i jσ , h jiσ. The first term in gi jσ denotes the hopping of holons, whereas the second term denotes

the doublons. h†i jσ denote hoping from a holon to doublon. After deriving the Hamiltonian in the new gauge, one can map these
Hamiltonian to a time-independent Floquet Hamiltonian. We consider the case of both cirularly and linearly polarized light to
map these onto Floquet t-J model.

A. Circularly Polarized Light

We consider a circularly polarized light (CPL) for which vector potential is given by F(t) = ζ[sin(ωt)êx − cos(ωt)êy], where
ζ = A/ω. Peierls phase in the Hamiltonian, δFi j(t) = F(t) · (ri − r j) = ζ sin(ωt − φi j), where ri − r j = cos(φi j)êx + sin(φi j)êy.

To map the time-dependent Hamiltonian to the time-independent form, we make use of the time-periodicity and use the
Fourier transform (FT) given by Hl = 1

T

∫ T
0 dtH(t)e−ilωt. We Fourier transform each term in the Eq. (S1). FT of gi jσ is given by

1
T

∫ T

0
dteiδFi j(t)e−ilωtgi jσ =

1
T

∫ T

0
dtei(ζ sin(ωt−φi j)−lωt)gi jσ = e−ilφi jJlgi jσ (S4)

For the FT of hi jσ, one consider U = kω, with k and l being co-prime. FT is then given by

1
T

∫ T

0
dteiδFi j(t)+iUte−ilωth†i jσ =

1
T

∫ T

0
dtei(ζ sin(ωt−φi j)−(l−k)ωt)h†i jσ = e−i(l−k)φi jJl−kh†i jσ (S5)
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In the above equations, Jl(ζ) = 1
T

∫ T
0 ei(ζ sin(ωt)−lωt) dωt is the Bessel functions of first kind and hence follows the relation

J−l(ζ) = (−1)lJl(ζ). Hamiltonian in Eq. (S2) can hence be written in the Fourier basis given by

Hl =
∑
〈i j〉,σ

Jl(ζ)e−ilφi jgi jσ +J−l(ζ)e−ilφi jg†i jσ +Jl−k(ζ)e−i(l−k)φi j h†i jσ +Jl+k(ζ)e−i(l+k)φi j hi jσ

+J−l+k(ζ)e−i(l−k)φi j h†jiσ +J−l−k(ζ)e−i(l+k)φi j h jiσ

(S6)

For the sake of convenience, we have have dropped the prefactors (ti j), but will retrieve it in final form of the Hamiltonian.

High-frequency expansion:— In the high-frequency limit, the effective time-independent Floquet Hamiltonian [34] can be
written as,

Heff =

∞∑
n=0

H(n)
eff
, where, H(0)

eff
= Hl=0, H(1)

eff
=

∞∑
l=1

1
lω

[Hl,H−l] (S7)

The high order (N) terms are of the order (1/ωN) and hence allows for simplification. In our our work here, we evaluate only
the leading correction. Also, we are interested in the low energy dynamics, we therefore, use a projector P0 = ΠN

i=1(1 − ni,↑ni,↓)
to remove doubly occupied states. The zeroth order term is given by

P0H(0)
eff

P0 = P0Hl=0P0 = J0

∑
〈i j〉,σ

(hi,σ̄)c†i,σc j,σ(h j,σ̄) (S8)

To evaluate the leading correction, we need to evaluate P0[H,H−l]P0/l. The term corresponding to gi jσ simplifies as,

P0

∑
〈i j〉,σ
〈i′ j′〉,σ′

[Jl(ζ)e−ilφi′ j′ gi′ j′σ′ ,J−l(ζ)eilφi jgi jσ]P0 = Jl(ζ)J−l(ζ)
∑
〈i′i j〉,σ

[−2i sin(l[φi′i − φi j])]hi′,σ̄c†i′,σhi,σ̄c j,σh j,σ̄
(S9)

Here i′ and j are next nearest neighbours (NNN) and similarly the other terms corresponding to gi jσ can be evaluated.
In the term corresponding to doublon to holon and vice versa hopping, only the terms without any double occupancy survive.

We here present terms of the form, h jiσh†i jσ′ and hi′iσh†i jσ′ . There are two possibilities: a) i′ = i and j′ = j (two-sites)

P0

∑
〈i j〉,σ,
〈i′ j′〉,σ′

[Jl+k(ζ)e−i(l+k)φi′ j′ h j′i′σ′ ,J−l−k(ζ)e−i(−l−k)φi j h†i jσ]P0 = +(−1)l+kJ2
l+k(ζ)

∑
〈i j〉,σ,σ′

h jiσ′h
†

i jσ

P0

∑
〈i j〉,σ,
〈i j〉,σ′

[Jl−k(ζ)e−i(l−k)φi j h†i jσ,J−l+k(ζ)e−i(−l+k)φi′ j′ h j′i′σ′ ]P0 = −(−1)l−kJ2
l−k(ζ)

∑
〈i j〉,σ,σ′

h jiσ′h
†

i jσ

(S10)

and b) j′ = i (three-sites)

P0

∑
〈i j〉,σ,
〈i′ j′〉,σ′

[Jl+k(ζ)e−i(l+k)φi′ j′ hi′ j′σ′ ,J−l−k(ζ)e−i(−l−k)φi j h†i jσ]P0 = +(−1)l+kJ2
l+k

∑
〈i′i j〉,σ,σ′

e−i(l+k)(φi′ i−φi j)hi′iσ′h
†

i jσ

P0

∑
〈i j〉,σ,
〈i′ j′〉,σ′

[Jl−k(ζ)e−i(l−k)φi j h†i jσ,J−l+k(ζ)e−i(−l+k)φi′ j′ hi′ j′σ]P0 = −(−1)l−kJ2
l−k

∑
〈i′i j〉,σ,σ′

ei(l−k)(φi′ i−φi j)hi′iσ′h
†

i jσ

(S11)

Similarly, one can evaluate the expression of the form, hi jσh†jiσ′ and hi′ jσh†jiσ′ .
Using the above expression for the term in the Fourier basis, the first-order correction is given by

P0
[Hl,H−l]

lω
P0 = −(−1)l(Jl)2

(2i sin(l[φi′i − φi j])
lω

hi′,σ̄c†i′,σhi,σ̄c j,σh j,σ̄ +
2i sin(l[φ j′ j − φi j])

lω
h j′,σ̄c†j′,σh j,σ̄ci,σhi,σ̄

)
+

(Jl+k)2

lω
h jiσ′h

†

i jσ −
(Jl−k)2

lω︸  ︷︷  ︸
l→−l

h jiσ′h
†

i jσ +
(Jl+k)2

lω
hi jσ′h

†

jiσ −
(J−l+k)2

lω︸    ︷︷    ︸
l→−l

hi jσ′h
†

jiσ [2-sites]

+ ((−1)l+kJ
2
l+k

lω
e−i(l+k)(φi′ i−φi j) − (−1)l−kJ

2
l−k

lω
e−i(l−k)(φi j−φi′ i)︸                          ︷︷                          ︸

l→−l

)hi′iσ′h
†

i jσ [3-sites]

+ (−1)l+kJ
2
l+k

lω
e−i(l+k)(φ j j′−φi j) − (−1)l−kJ

2
l−k

lω
e−i(l−k)(φi j−φ j j′ )︸                           ︷︷                           ︸

l→−l

)h j′ jσ′h
†

jiσ

(S12)
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Notice that in the above equation, the substitution l → −l, allows one to change the summation over l from l ∈ [1,∞) to
l ∈ {(−∞,∞) − 0} and also remember J−l(ζ) = (−1)lJl(ζ). One can therefore, rewrite the first order correction as

∞∑
l=1

P0
[Hl,H−l]

lω
P0 =

∑
〈i j〉,σ,σ′

∞∑
l=−∞,

l,0

−(Jl)2 i sin(l[φi′i − φi j + π])
lω

hi,σ̄c†i,σh j,σ̄c j′,σh j′,σ̄ + h.c. +
(Jl+k)2

lω
hi jσh†jiσ

+
(Jl+k)2

lω
h jiσh†i jσ +

(Jl+k)2

lω
(e−i(l+k)(φi′ i−φi j−π)hi′iσ′h

†

i jσ + e−i(l+k)(φ j j′−φi j+π)h j′ jσ′h
†

jiσ)

(S13)

In the honeycomb lattice, φi′i−φi j = +(−) π/3 and φ j j′ −φi j = +(−) π/3 for the anticlockwise(clockwise) next-nearest hopping
given by τi j = +(−). Also, using the substitution l + k → −l′ and −l′ → l′. We can then rewrite the above equation as

∞∑
l=1

P0
[Hl,H−l]

lω
P0 =

∑
〈i j〉,σ,σ′

[ ∞∑
l=−∞,

l,0

τi j(Jl)2 i sin(2πl/3)
lω

hi,σ̄c†i,σc j,σh j,σ̄ + h.c. −
∞∑

l′=−∞,
l′,−k

(Jl′ )2

l′ω + U
(hi jσh†jiσ + h jiσh†i jσ)

−

∞∑
l′=−∞,
l′,−k

τi j
(Jl′ )2

l′ω + U
[cos(2πl′/3)(hi′iσ′h

†

i jσ + h j′ jσ′h
†

jiσ) + i sin(2πl′/3)(hi jσh†jiσ + h jiσh†i jσ)]
] (S14)

We make use the relations given below to rewrite the Hamiltonian into a t-J model [35, 47]∑
〈i j〉,σ,σ′

(hi jσ′h
†

jiσ + h jiσ′h
†

i jσ) = −2
∑
i jσ

(Si · S j −
∑
σ′

1
4

hi,σ̄niσn jσ′h jσ̄) [2 − sites]∑
〈i j〉,σ,σ′

(hi′iσ′h
†

i jσ + h j′ jσ′h
†

jiσ) = −
∑
ik j,σ

[hiσ̄c†i,σnkσ̄hkσc jσh jσ̄ − hiσ̄c†i,σ(c†kσ̄ckσ)hkσ̄c jσ̄h jσ] [3 − sites]
(S15)

In the above equation, the first term corresponds to the double spin flips and the second term corresponds to three-site hopping
both with and without spin-flips. We notice that the leading corrections given by Eq. (S14) are of the order of 1/ω. Further, the
first terms of NNN hopping does not contain the term l = 0, which is the only Bessel term that contributes for small ζ, this can
become important when J0(ζ) vanishes [38]. Also, the three-site hopping given by the is ignored for the sake of simplicity as
is usually the case in these downfolded t-J models at low doping. In this work, we limit ourselves in the small ζ regime. We
therefore use the high-frequency approximation which leads to two set of cases:

a) t � U � ω: In this case only the l′ = 0 contribute to the leading correction term in Eq. (S14), and the Floquet Hamiltonian
is given by,

Ht�U�ω
F ≈ J0(ζ)

∑
i j,σ

ti jhi,σ̄c†i,σc j,σh j,σ̄ +
∑
i j,σ

(J0(ζ))2
2t2

i j

U
(Si · S j −

∑
σ′

1
4

hi,σ̄niσn jσ′h jσ̄) (S16)

b) t � ω � U: In this case, since U is the larger energy scale, we use the approximation lω/U � 1 and the relation∑∞
l=−∞(Jl)2 = 1. The leading correction is given by

H(1)
eff
≈

∑
i j,σ,σ′

−
2t2

i j

U
(hi jσ′h

†

jiσ + h jiσh†i jσ′ )
∞∑

l′=−∞,
l′,−k

(Jl′ )2

1 + l′ω/U
=

∑
i jσ

2t2
i j

U
(Si · S j −

∑
σ′

1
4

hi,σ̄niσn jσ′h jσ̄) (S17)

Therefore, in this limit, the Floquet Hamiltonian is given by

HF ≈ J0(ζ)
∑
i, j,σ

ti jhi,σ̄c†i,σc j,σh j,σ̄ +
∑
i jσ

2t2
0

U
(Si · S j −

∑
σ′

1
4

hi,σ̄niσn jσ′h jσ̄) (S18)

In above equation, with the definition of superexchange given by J =
2t2

0
U , we have presented a simplified time-independent

Floquet t-J model derived from the time-dependent Hubbard model.

B. Linerarly polarized light

We consider a linearly polarized light along the y-direction for which the vector potential is given by F(t) = ζ sin(ωt)êy, where
ζ = A/ω. Peierls phase is given by δF(t) = F(t) · (ri − r j) = ζ sin(ωt) sin(φi j) where ri − r j = cos(φi j)êx + sin(φi j)êy.
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To map the time-dependent Hamiltonian in Eq. (S1) onto a time-independent form, we Fourier transform (FT) the rotated
Hamiltonian given by Hl = 1

T

∫ T
0 dtH(t)e−ilωt. FT of the gi jσ term is given by

1
T

∫ T

0
dteiδFi j(t)e−ilωtgi jσ =

1
T

∫ T

0
dtei(ζ sin(ωt) sin(φi j)−lωt)gi jσ = Jl(ζ sin(φi j))giα jσ (S19)

Whereas, for the FT of terms of form hi jσ, one assumes U = kω, with k and l being co-prime. The FT in this case is given by

1
T

∫ T

0
dteiδFi j(t)+iUte−ilωth†i jσ =

1
T

∫ T

0
dtei(ζ sin(ωt) sin(φi j)−(l−k)ωt)h†i jσ = Jl−k(ζ sin(φi j))h

†

iα jσ (S20)

The three nearest neighbours for every site are given by φi` j = π/2 + 2π`/3 for ` = {0, 1, 2}. The magnitude of the phase factors
along the three bonds are anisotropic and are given by sin(φi` j) = {1,− 1

2 ,−
1
2 } for the three bonds ` = {0, 1, 2} respectively.

Finally, one can write the Fourier-transformed Hamiltonian as

Hl =
∑
i j,σ

∑
`=0,1,2

[
J `

l gi` jσ +J `
−lg
†

i` jσ +J `
l−kh†i` jσ +J `

−l+kh†ji`σ +J `
l+khi` jσ +J `

−l−kh ji`σ

]
=

∑
i j,σ

[
Jl(ζ)gi0 jσ +J−l(ζ)g†i0 jσ +Jl−k(ζ)h†i0 jσ +J−l+k(ζ)h†ji0σ +Jl+k(ζ)hi0 jσ +J−l−k(ζ)h ji0σ

+
∑
`=1,2

J−l(ζ/2)gi` jσ +Jl(ζ/2)g†i` jσ +J−l+k(ζ/2)h†i` jσ +Jl−k(ζ/2)h†ji`σ +J−l−k(ζ/2)hi` jσ +Jl+k(ζ/2)h ji`σ

] (S21)

and here J `
l = Jl(ζ sin(φi` j)). Following the discussion in CPL case, one can write the time-independent equation using high-

frequency approximation. Since, we are only interested in the singly occupied sector, we project the Hamiltonian with projector
P0 = ΠN

i=1(1 − ni,↑ni,↓) and the zeroth order term is given by

P0H(0)
eff

P0 = P0Hl=0P0 =
∑
i j,σ

[
J0(ζ)hi0,σ̄c†i0,σc j,σh j,σ̄ +

∑
`=1,2

J0(ζ/2)hi` ,σ̄c†i` ,σc j,σh j,σ̄ + h.c.
]

(S22)

The leading correction is given by [Hl,H−l]/l. Since, there is no phase factor associated with the terms, the chiral NNN
hopping term vanishes. In this case also, we neglect the three site-hopping term as in the case of CPL. The commutation for
superexchnage terms are given by

P0

∑
i jσ,

i′ j′σ′

[J `
−l−kh j′i′

`
σ′ ,J

`
−l−kh†i` jσ]P0 =

∑
i j,σ,σ′

+[J−l−k(ζ sin(φi` j))]2h jiσ′h
†

i jσ

P0

∑
i j,σ,

i′ j′,σ′

[J `
l−kh†i` jσ,J

`
l−kh j′i′

`
σ′ ]P0 =

∑
i j,σ,σ′

−[Jl−k(ζ sin(φi` j))]2h ji`σ′h
†

i` jσ [ j′ = j, i′ = i]
(S23)

The leading order correction without the three site terms is given by

∞∑
l=1

P0
[Hl,H−l]

lω
P0 =

∞∑
l=−∞,
l′,−k

∑
i j,σ,σ′

−(J `
l′ )

2 ti j

l′ω + U
(hi` jσ′h

†

ji`σ
+ h ji`σ′h

†

i` jσ) (S24)

Explicitly, one can write the leading correction term as

H(1)
eff
≈

∑
i j,σ,σ′

−
t2
i j

U

[
(hi0 jσh†ji0σ + h ji0σh†i0 jσ)

∞∑
l′=−∞,
l′,−k

(Jl′ (ζ))2

1 + l′ω/U
+

∑
`=1,2

(hi` jσh†ji`σ + h ji`σh†i` jσ)
∞∑

l′=−∞,
l′,−k

(Jl′ (ζ/2))2

1 + l′ω/U

]
(S25)

We limit ourselves in the small ζ regime as was the case in CPL. In the high-frequency approximation depending on the U and
ω, we have two cases:

a) t � U � ω: in this case, only the l′ = 0 term contribute to the terms with U and the leading correction is given by

H(1)
eff
≈

∑
i j,σ,σ′

−
2t2

i j

U

[
(J0(ζ))2(hi0 jσh†ji0σ + h ji0σh†i0 jσ) +

∑
`=1,2

(J0(ζ/2))2(hi` jσh†ji`σ + h ji`σh†i` jσ)
]
. (S26)
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Using Eq. (S15), one can write the above equations in as a spin Hamiltonian. The leading correction is given by

H(1)
eff
≈

∑
i j,σ

2t2
i j

U

[
(J0(ζ))2(Si0 · S j −

∑
σ′

1
4

hi0,σ̄ni0σn jσ′h j,σ̄′ ) +
∑
`=1,2

(J0(ζ/2))2(Si` · S j −
∑
σ′

1
4

hi` ,σ̄ni`σn jσ′h j,σ̄′ ))
]

(S27)

b) t � ω � U: In this case, we use the approximation lω/U � 1 and the identity
∑∞

l=−∞Jl(ζ)Jl(ζ) = 1 for all ζ, and∑∞
l=−∞Jl(ζ)Jl(ζ/2)→ 1 for small ζ. Here, the leading correction is given by

H(1)
eff
≈

∑
i j,σ

2t2
i j

U

[ ∑
`=0,1,2

(Si` · S j −
∑
σ′

1
4

hi` ,σ̄ni`σn jσ′h j,σ̄′
]
. (S28)

Therefore, using the above equations and Eq. (S22), the t-J Floquet Hamiltonian is given by

HF =
∑
i j,σ

ti j
[
J0(ζ)hi0,σ̄c†i0,σc j,σh j,σ̄ +

∑
`=1,2

J0(ζ/2)hi` ,σ̄c†i` ,σc j,σh j,σ̄ + h.c.
]
+ H(1)

eff (S29)

From the above equations one can see that that in the limit t � U � ω, superexchange is modified whereas, in the limit
t � ω � U, it is unaffected. On the other hand, hopping is rescaled by the Bessel function in both the cases.
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