
Page 1 of 29 

 

Decay and renormalization of a longitudinal mode in a quasi-two-dimensional 

antiferromagnet‡ 

Seung-Hwan Do,1,†,*  Hao Zhang,1,2,† Travis J. Williams,3 Tao Hong,3 V. Ovidiu Garlea,3 J. A. 

Rodriguez-Rivera,4,5 Tae-Hwan Jang,6 Sang-Wook Cheong,6,7 Jae-Hoon Park,6,8 Cristian D. 

Batista,2 and Andrew D. Christianson1  

1Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 

Tennessee 37831, USA 
2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, 

USA 
3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 
4Department of Materials Sciences, University of Maryland, College Park, Maryland 20742, USA 
5NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA 
6MPPHC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang 37673, Republic of 

Korea 
7Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers 

University, Piscataway, New Jersey 08854, USA 
8Department of Physics, Pohang University of Science and Technology, 37673, Republic of Korea 

†These authors contributed equally. 

*To whom correspondence should be addressed. E-mail: doh1@ornl.gov 

Abstract 

An ongoing challenge in the study of quantum materials, is to reveal and explain collective 

quantum effects in spin systems where interactions between different modes types are 

important. Here we approach this problem through a combined experimental and theoretical study 

of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a 

continuous quantum phase transition. Our inelastic neutron scattering measurements of 

Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout 

the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone 

center. To account for the many-body effects of the interacting low-energy modes in anisotropic 

magnets, we generalize the standard spin-wave theory. The measured mode decay and 

renormalization is reproduced by including all one-loop corrections. The theoretical framework 

developed here is broadly applicable to quantum magnets with more than one type of low energy 

mode.  
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Introduction 

One of the strongest signatures of collective quantum behavior is the spontaneous quasiparticle 

decay in interacting bosonic systems, as observed in superfluids1-3 and quantum magnets4-8. In the 

latter case, spontaneous magnon decay has been studied in a growing number of lattice geometries 

and model systems where large quantum fluctuations enhance this many body effect9,10. A key 

finding of these studies is that the strong decay process is accompanied by a significant 

renormalization of the overall spectrum11-16. This spectral renormalization leads to measurable 

effects in the thermal dynamic and transport properties17, which are inexplicable without 

considering the renormalization of the quasiparticle mass. At the same time, the renormalization 

of the spectra opens an avenue to understand quantum systems since the renormalized single-

magnon dispersion provides a stringent test for theories that attempt to describe the magnon decay.  

In other words, approaches that do not fully incorporate these many-body effects will not yield 

correct values of the interaction parameters extracted from experimental studies.  

An important question is how to understand quasiparticle decay in quantum magnets when there 

is more than one type of low energy mode, i.e. when the parent particles are not of the same type 

as the daughter particles. Anisotropic magnets with spin 𝑆 ≥ 1 provide a common example of this 

situation. The additional fluctuations (quadrupolar for 𝑆 ≥ 1, octupolar for 𝑆 ≥ 3/2, etc.) can 

generate modes which are not captured by standard SU(2) approaches at the linear level. Rather, 

the physics is more conveniently described in terms of generalized SU(𝑁) spin wave theory, where 

the low energy modes are described by 𝑁 − 1 distinct bosons18. For example, anisotropic 𝑆 = 1 

systems where both transverse and longitudinal modes are expected, have been previously treated 

by linear SU(3) theories17-23. While linear SU(𝑁) approaches capture the correct number of low 

energy modes, they are unable to reproduce the quasi-particle decay and renormalization generated 

by the interaction between these modes. To capture these effects requires going beyond the linear 

level and thus an objective of this paper is to generalize the 1/𝑆-expansion of the SU(2) treatment 

to SU(3) in order to account for the quasi-particle decay and renormalization produced by the 

interaction (non-linear) terms using the quintessential example of interacting longitudinal and 

transverse modes for an 𝑆 = 1 easy-plane quantum magnet as a test case.  

In easy-plane quantum magnets, phase transitions can be driven by either fluctuations of the 

phase or the amplitude of the order parameter24. The phase fluctuations are the transverse modes 

of the order parameter (Goldstone modes in the long wavelength limit), whereas amplitude 

fluctuations correspond to the longitudinal modes. Due to the gapless nature of the Goldstone 

transverse modes, the longitudinal or “Higgs” mode is kinematically allowed to decay into two 

transverse modes. This decay becomes more significant in low-dimensional systems. Indeed, the 

longitudinal mode in two-dimensional (2D) antiferromagnets was originally assumed to be 

overdamped due to an infrared divergence of the imaginary part of the longitudinal 

susceptibility25,26. However, more recent theoretical work predicted that the longitudinal peak 

should remain visible even in 2D27-33. One aspect of this problem, which has not been emphasized 

in previous works, is that the rather strong decay of the longitudinal mode is accompanied by a 
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significant renormalization of the gap and the dispersion of the modes. As noted above, this 

additional many-body effect provides a hard test for theories that attempt to reproduce the 

measured decay of the Higgs mode. 

As a starting point to understand the physics described above, we focus on the quasi-2D 

Heisenberg square lattice with effective 𝑆 = 1 with an antiferromagnetic exchange coupling (𝐽) 

and a strong easy-plane single-ion anisotropy (𝐷̃). In this case, 𝛼 = 𝐽/𝐷̃ can be viewed as a tuning 

parameter that can be used to drive a system from a quantum paramagnet (QPM) to an 

antiferromagnet (AFM) with an intervening QCP as shown in the Fig. 1. Near the QCP, 

spontaneous symmetry breaking produces two transverse modes (one of them is a Goldstone 

mode) and a longitudinal Higgs mode. The longitudinal mode is unstable with respect to decay 

into a pair of transverse modes resulting in an intrinsic line-broadening9,34. 

In this paper, we use inelastic neutron scattering to study the spin excitation spectrum of 

Ba2FeSiO7. The high-quality neutron scattering data reveals a complex spectrum where transverse 

modes are resolution limited, whereas a longitudinal mode displays significant 𝐐 -dependent 

broadening throughout the Brillouin zone, demonstrating the importance of quasiparticle decay 

even away from the long wavelength limit. The neutron scattering results further show that the 

longitudinal mode has a very small gap clearly demonstrating that Ba2FeSiO7 is relatively close to 

a QCP. To understand the inelastic neutron scattering data, we implement a generalized SU(3) spin 

wave calculation17,18,22 and compute the low-energy excitation spectrum of an effective low-energy 

spin 𝑆 = 1 model. After demonstrating that the generalization of the well-known 1/𝑆-expansion 

of the SU(2) spin wave theory35-41 is simply a loop expansion42 of the SU(3) spin wave theory, we 

show that the one-loop correction is enough to account for the broadening of the longitudinal mode 

and the large renormalization of the gap and the dispersion of this mode. We further show that not 

including the one-loop corrections results in Hamiltonian parameters that place the exact ground 

state of the spin Hamiltonian for Ba2FeSi2O7 on the nonmagnetic side of the QCP–contrary to 

experimental fact. This provides a dramatic demonstration of the importance of including 

renormalization effects, where the linear spin-wave calculation overestimates the stability range 

of the magnetically ordered state. The fact that the one-loop correction can simultaneously account 

for the real and imaginary part of the self-energy of the longitudinal mode, as well as of the 

renormalization the transverse mode dispersion, confirms that the easy plane quantum magnet 

Ba2FeSi2O7 is an ideal platform for studying many-body effects in the proximity of the O(2) QCP.   

 

Results 

Model Material  

Figure 2a illustrates the crystal structure of Ba2FeSi2O7 comprising layers of FeSi2O7 separated 

by Ba atoms. As shown in Fig. 2b, the FeO4 tetrahedra of the FeSi2O7 layer are connected via SiO4 

polyhedra and the two adjacent Fe2+ atoms are coupled through the super-exchange interaction, 𝐽, 

that is mediated by the two oxygen ligands (red dashed line in Fig. 1b). The resulting square lattice 
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of magnetic moments are vertically stacked along the 𝑐 -axis, leading to a quasi-2D simple 

tetragonal spin-lattice. 

A detailed description of the single-ion state of the Fe2+ ion is given in Note 1 of the 

Supplementary Information. The combination of a relatively large spin-orbit coupling (𝜆 ∼20 

meV) and a dominant tetrahedral crystal field (Δ𝑇𝑑), splits the free-ion levels, 5𝐷 (𝐿 = 2, 𝑆 = 2), 

into several multiplets. The lowest energy 𝑆 = 2 multiplet has a significant orbital character due 

to the finite spin-orbit coupling, that combined with the tetragonal distortion (𝛿𝑇𝑒𝑡𝑟𝑎) by large 

compression of the FeO4 tetrahedra leads to a rather strong easy-plane single-ion anisotropy43,44. 

The five 𝑆 = 2 energy levels are then split into a singlet 𝑆𝑧 = 0 ground state and two excited 𝑆𝑧 =

±1  and 𝑆𝑧 = ±2  doublets with energies 𝐷  and 4𝐷 , respectively (see Fig. S1a of the 

Supplementary Information). Because the gap 𝐷 of the 𝑆𝑧 = ±1 doublet is four times smaller than 

the gap of the 𝑆𝑧 = ±2 doublet and the dominant super-exchange interaction 𝐽 is smaller than 𝐷/4 

in Ba2FeSi2O7, the low-energy spectrum is well captured by projecting the 𝑆 = 2 spin Hamiltonian 

into the 𝑆𝑧 = 0 and 𝑆𝑧 = ±1 low-energy states.  

The resultant 𝑆 = 1 effective spin Hamiltonian describes the competition between a QPM (𝐽 ≪

𝐷̃) with each spin of the lattice having dominant 𝑆𝑧 = 0 character, and a collinear AFM state (𝛼 =

𝐽/𝐷̃ > 𝛼𝑐) with staggered magnetization in the 𝑎𝑏-plane (see Fig. 2b).  Ba2FeSi2O7 turns out to be 

on the antiferromagnetic side with a Néel temperature 𝑇N=5.2 K44. Below 𝑇N, the spins order 

antiferromagnetically with propagation vector 𝐐𝐦=(1,0,0.5), corresponding to (𝜋, 𝜋, 𝜋) as shown 

in Fig. 2c. The magnetic moments are highly confined in the 𝑎𝑏 -plane due to easy-plane 

anisotropy, giving rise to the magnetic structure shown in Fig. 2b. A neutron diffraction study on 

a powder sample revealed a significantly reduced ordered moment of 2.95 𝜇B, which is only 63% 

of the full moment of 4.36 𝜇B (𝑔𝑎𝑏 = 2.18) expected for an 𝑆 = 2 spin44, suggesting the proximity 

to the quantum critical point. Additionally, as described in further detail below, our analysis 

confirms that 𝛼 = 𝐽/𝐷̃ ∼ 0.184 is close to the critical value, 𝛼c
2D=0.18 and 𝛼c

3D=0.1 for 2D and 

3D respectively, obtained from quantum Monte Carlo simulations22. 

The spin excitations of Ba2FeSi2O7 are generically described by an antiferromagnetic 𝑆 = 2 

spin Hamiltonian on a simple tetragonal lattice: 

ℋ = 𝐽 ∑

〈𝐫,𝐫′〉

[𝑆𝐫
𝑥𝑆𝐫′

𝑥 + 𝑆𝐫
𝑦
𝑆𝐫′

𝑦
+ Δ𝑆𝐫

𝑧𝑆𝐫′
𝑧 ] 

        +𝐽′ ∑

〈〈𝐫,𝐫′〉〉

[𝑆𝐫
𝑥𝑆𝐫′

𝑥 + 𝑆𝐫
𝑦
𝑆𝐫′

𝑦
+ Δ′𝑆𝐫

𝑧𝑆𝐫′
𝑧 ] 

+𝐷 ∑

𝐫

(𝑆𝐫
𝑧)2.                               

(1) 

The bracket 〈𝐫, 𝐫′〉  (〈〈𝐫, 𝐫′〉〉) indicates that the sum runs over intralayer (interlayer) nearest-

neighbor spins with isotropic super-exchange interaction 𝐽(𝐽′). Δ(Δ′) is the intralayer (interlayer) 

uniaxial anisotropy and the last term represents the easy-plane single-ion anisotropy (𝐷 > 0). 
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In the large 𝐷/𝐽 limit, the 𝑆𝑧 = ±2 doublet is separated from the 𝑆𝑧 = ±1 doublet by an energy 

gap 3𝐷 . The low-energy subspace of magnetic excitations can then be further reduced by 

projecting out the 𝑆𝑧 = ±2  doublet. The reduced low-energy Hamiltonian ℋe𝑓𝑓  results from 

projecting ℋ onto the low-energy subspace 𝑆 spanned by the triplet of states with 𝑆𝑧 = 0,±1: 

ℋe𝑓𝑓 = 𝒫𝑆ℋ𝒫𝑆. The resulting effective spin 𝑆 = 1 Hamiltonian is  

ℋe𝑓𝑓 = 𝐽 ∑

〈𝐫,𝐫′〉

[𝑠𝐫
𝑥𝑠𝐫′

𝑥 + 𝑠𝐫
𝑦
𝑠𝐫′

𝑦
+ Δ̃𝑠𝐫

𝑧𝑠𝐫′
𝑧 ] 

               +𝐽′ ∑

〈〈𝐫,𝐫′〉〉

[𝑠𝐫
𝑥𝑠𝐫′

𝑥 + 𝑠𝐫
𝑦
𝑠𝐫′

𝑦
+ Δ̃′𝑠𝐫

𝑧𝑠𝐫′
𝑧 ] 

+𝐷̃ ∑

𝐫

(𝑠𝐫
𝑧)2.                          

(2) 

with 𝐽 = 3𝐽, 𝐽′ = 3𝐽′, Δ̃ = Δ/3, Δ̃′ = Δ′/3 and 𝐷̃ = 𝐷. As we will see below, this simple effective 

Hamiltonian can explain not only the in-plane antiferromagnetic ordering observed in Ba2FeSi2O7 

(see Fig. 2b), but also the spectra of quasi-particle excitations, including rather strong 

renormalization effects due to proximity to the QCP. 

 

Inelastic neutron scattering  

To investigate the spin excitation spectrum in Ba2FeSi2O7, we performed inelastic neutron 

scattering using two instruments; the cold neutron triple-axis spectrometer (CTAX) at the High 

Flux Isotope Reactor, and the time-of-flight hybrid spectrometer (HYSPEC) at the Spallation 

Neutron Source at Oak Ridge National Laboratory45. An overview of the inelastic neutron 

scattering results is presented in Fig. 3 through contour maps of the neutron scattering intensity, 

𝐼(𝐐,𝜔), along [𝐻, 𝐻, 0.5] and [𝐻, 0, 0.5]. For both spectra, strongly dispersive spin excitations 

extending up to energy~2.7 meV are observed. Whereas the dispersion along [0, 0, 𝐿]-direction is 

weak with a bandwidth of ∼0.5 meV (see Note 4 in the Supplementary Information), which is 

expected for spin excitations of a quasi-two-dimensional spin system. 

There are several distinct features in the inelastic neutron scattering data. An intense spin wave 

excitation emanates from the magnetic zone center (ZC), 𝐐=(1, 0, 0.5), which arises due to the in-

phase oscillation between Fe2+ spins in the plane. We refer to this mode as 𝑇1. Along the [𝐻, 0, 

0.5] direction towards the zone boundary (ZB) at 𝐐=(0, 0, 0.5) the 𝑇1-mode reaches its maximum 

energy of ~2.5 meV. Another weak, but sharp mode, is visible along [𝐻, 0, 0.5] with an energy of 

2.5 meV at the ZC. We refer to this mode as 𝑇2. These two modes are expected for a strong easy-

plane antiferromagnet, where transverse magnons split into gapless in-plane fluctuations (𝑇1-

mode) and gapped out-of-plane fluctuations (𝑇2-mode). The finite value of the energy gap of the 

out-of-plane fluctuation at the ZC is associated with the strength of the easy-plane single-ion 

anisotropy46.  
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The 𝑇1 and 𝑇2 transverse magnon modes are also observed along the [𝐻, 𝐻, 0.5] direction in 

Fig. 3d. Noticeably, an additional sharp mode is observed at the top of the 𝑇1-mode. This mode is 

visible along the entire Brillouin zone boundary. We refer to this additional mode as ‘𝐿’-mode. 

The 𝐿-mode is visible in the spectra along [𝐻, 0, 0.5] as well, however, it exhibits dramatic line-

broadening near ZC. To demonstrate more clearly the 𝐐-dependence of the modes, Fig. 4 shows 

cuts at constant momentum transfers for multiple points along [𝐻, 0, 0.5] and [𝐻, 𝐻, 0.5]. Two 

pronounced peaks, corresponding to the 𝑇1- and 𝐿-modes, remain sharp along the ZB (Fig. 4b). As 

already noted, the situation is very different near the ZC where the 𝐿 -mode is significantly 

broadened (Fig. 4a). We note that the 𝐿-mode remains a broad peak near the ZC, rather than a 

featureless excitation. To investigate the extent of the broadening effect, Gaussian line shapes for 

the 𝑇1-, 𝑇2-, and 𝐿-modes were fit to the individual cuts in Fig. 4. The line widths obtained from 

the fits are displayed in Fig. 7a-d. These results reveal that the 𝐿-mode is three times broader than 

the instrumental resolution at the ZC (see Fig. 4a), whereas it has comparable line width to 

instrumental resolution near the ZB. 

 

Generalized spin waves  

In this section we introduce a generalized SU(3) spin wave calculation17,18,22,47, which is 

required to capture the two low-energy (longitudinal and transverse) modes of Ba2FeSi2O7. 

Clearly, a linear treatment is not enough to capture the decay of the longitudinal mode into two 

transverse modes. Consequently, the main aim of this section is to lay the groundwork for 

introducing the loop expansion42 (generalization of the 1/𝑆 -expansion35-41) in the section 

describing the non-linear corrections.  

To account for the transverse and longitudinal modes revealed by the INS experiment, the usual 

SU(2) spin-wave theory (SWT) must be generalized to SU(3)18, by introducing the SU(3) 

Schwinger boson representation of the spin operators 𝑆𝐫
𝜈 = 𝒃𝐫

†𝒮𝜈𝒃𝐫 , where 𝒃𝐫 =

(𝑏𝐫,+1, 𝑏𝐫,−1, 𝑏𝐫,0)
𝑇,  

𝒮𝑥 =
1

√2
(𝜆4 + 𝜆6), 𝒮𝑦 =

1

√2
(𝜆5 − 𝜆7), 𝒮𝑧 = 𝜆3, (3) 

𝜆𝑖 are the Gel-Mann matrices and the Schwinger boson operators satisfy the local constraint  

∑

𝑚=±1,0

𝑏𝐫,𝑚
† 𝑏𝐫,𝑚 = 𝑀 = 1. (4) 

We note that the SU(3) Schwinger boson representation of the spin operators should not be 

confused with the Schwinger boson approximation36,48-50, which is qualitatively different from the 

semi-classical approach that we describe below. The magnetically ordered state of Ba2FeSi2O7 can 

be approximated by a product (mean-field) state of normalized SU(3) coherent states  

|𝜓𝐫〉 = cos𝜃|0〉 + (sin𝜃cos𝜙|1〉 + sin𝜃sin𝜙| − 1〉)𝑒𝑖𝐐𝐦⋅𝐫, (5) 
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where 𝐐𝐦 = (𝜋, 𝜋, 𝜋)  ((1, 0, 0.5) in the chemical lattice) is the AFM ordering wave vector. 

Although a general SU(3) coherent state is a parameterized by 4 independent parameters for 

degenerate representations51, the two independent parameters 𝜃 and 𝜙 are enough to describe the 

collinear order under consideration. The three basis states |𝑚〉  (𝑚 = 0,±1) are represented by 

creating a boson with quantum number 𝑚 from the vacuum: |𝑚〉 = 𝑏𝐫,𝑚
† |⌀〉. 

As in the usual spin wave theory, we introduce an SU(3) transformation that rotates the boson 

operators, 𝒃̃𝐫 = 𝑈𝐫𝒃𝐫, to a local basis that includes the coherent SU(3) state (5) as one of its three 

elements. This local transformation allows us to align the quantization axis with the direction of 

the local SU(3) order parameter. The spatial dependence of 𝑈𝐫 can be removed by working in a 

twisted frame, where the original AFM order becomes a FM one. This can be done by rotating the 

spin reference frame of one of the two sublattices of the tetragonal lattice by an angle 𝜋 along the 

𝑧-axis: 𝑠𝐫
𝑧 → 𝑠𝐫

𝑧 , and 𝑠𝐫
𝑥,𝑦

→ −𝑠𝐫
𝑥,𝑦

. In the new reference frame, the effective Hamiltonian (2) 

becomes  

ℋ̃e𝑓𝑓 = 𝐽 ∑

〈𝐫,𝐫′〉,𝜈

𝑎𝜈𝑠𝐫
𝜈𝑠𝐫′

𝜈 + 𝐽′ ∑

〈𝐫,𝐫′〉,𝜈

𝑏𝜈𝑠𝐫
𝜈𝑠𝐫′

𝜈 + 𝐷̃ ∑

𝐫

(𝑠𝐫
𝑧)2, (6) 

with 𝑎𝑥 = 𝑎𝑦 = 𝑏𝑥 = 𝑏𝑦 = −1, 𝑎𝑧 = Δ̃ and 𝑏𝑧 = Δ̃′, and the SU(3) transformation reads  

𝑈 = (
−sin𝜙 cos𝜙 0
cos𝜃cos𝜙 cos𝜃sin𝜙 −sin𝜃
sin𝜃cos𝜙 sin𝜃sin𝜙 cos𝜃

). (7) 

The bosonic representation of ℋ̃e𝑓𝑓 is  

  ℋ̃e𝑓𝑓 = 𝐽 ∑

〈𝐫,𝐫′〉,𝜈

𝑎𝜈𝒃̃𝐫
†𝒮̃𝜈𝒃̃𝐫𝒃̃𝐫′

† 𝑆̃𝜈𝒃̃𝐫′ 

              +𝐽′ ∑

〈𝐫,𝐫′〉,𝜈

𝑏𝜈𝒃̃𝐫
†𝒮̃𝜈𝒃̃𝐫𝒃̃𝐫′

† 𝑆̃𝜈𝒃̃𝐫′  

+𝐷̃ ∑

𝐫

(1 − 𝒃̃𝐫
†𝒜̃𝒃̃𝐫), 

(8) 

where 𝒮̃𝜈 = 𝑈𝒮𝜈𝑈†, 𝒜̃ = 𝑈𝒜𝑈†, and 𝒜𝛼𝛽 = 𝛿𝛼,0𝛿𝛽,0. Note that the unitary transformation (7) 

is chosen in such a way that the 𝑏̃𝐫,0 boson is macroscopically occupied, namely 〈𝑏̃𝐫,0〉 = 〈𝑏̃𝐫,0
† 〉 ≃

√𝑀. According to the constraint (4), 𝑀 = 1 for the case of interest. However, we will keep using 

𝑀 because 1/𝑀 is the parameter of the perturbative expansion that will be introduced below. Note 

that 𝑀 = 2𝑆  for the usual SU(2) spin wave theory. The main assumption behind the 1/𝑀 

expansion is that 〈𝑏̃𝐫,−1
† 𝑏̃𝐫,−1〉, 〈𝑏̃𝐫,+1

† 𝑏̃𝐫,+1〉 ≪ 𝑀. Under this assumption, we can expand the spin 

operators 𝑆𝜇  and the quadrupolar operator (𝑆𝑧)2  in powers of 1/𝑀  (see Note 5 in the 

Supplementary Information). The resulting expansion of ℋ̃e𝑓𝑓 is  
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ℋ̃e𝑓𝑓 = 𝑀2ℋ(0) + 𝑀𝐻(2) + 𝑀1/2𝐻(3) + 𝑀0𝐻(4) + 𝑂(𝑀−1), (9) 

where the linear term 𝐻(1) vanishes because the parameters 𝜃 and 𝜙 in Eq. (5) are determined by 

minimizing the mean field energy  

ℋ(0) = (2𝐽 Δ̃ + 𝐽′Δ̃′)sin4𝜃cos22𝜙 

                                      −
1

2
(2𝐽 + 𝐽′)sin22𝜃(1 + sin2𝜙) + 𝐷̃sin2𝜃. 

(10) 

Since the AFM order is invariant under time reversal followed by one lattice translation, the states 

|𝑆𝑧 = ±1〉  must have equal weight in the mean field state (5), implying that 𝜙 = 𝜋/4 . By 

minimizing ℋ(0) with respect to 𝜃, we obtain  

𝑥 ≡ sin2𝜃 =
1

2
−

𝐷̃

8(2𝐽 + 𝐽′)
. (11) 

The quadratic term ℋ(2)  represents the generalized linear spin wave (GLSW) Hamiltonian. 

After Fourier transforming the bosonic operators,  

𝑏̃𝐫𝛼 =
1

√𝑁𝑠

∑

𝐤

𝑏̃𝐤𝛼𝑒𝑖𝐤⋅𝐫, (12) 

where 𝑁𝑠 is the number of sites, ℋ(2) can be brought into a compact form by introducing the 

Nambu spinor 𝑏⃗ 𝐤 = (𝑏̃𝐤,+1, 𝑏̃𝐤,−1, 𝑏̃−𝐤,+1
† , 𝑏̃−𝐤,−1

† )𝑇,  

ℋ(2) = ∑

𝐤

∑

𝛼,𝛽=±1

𝑏⃗ 𝐤
†ℋ(2)(𝐤)𝑏⃗ 𝐤, (13) 

with 

ℋ(2)(𝐤) = (
Δ𝛼𝛽(𝐤) Λ𝛼𝛽(𝐤)

Λ𝛽𝛼(𝐤) Δ𝛽𝛼(𝐤)
). (14) 

The matrix elements are  

Δ𝛼𝛽(𝐤) = ∑

𝜈

[(2𝑎𝜈𝐽 + 𝑏𝜈𝐽′)(𝒮̃𝛼𝛽
𝜈 𝒮̃00

𝜈 − (𝒮̃00
𝜈 )2𝛿𝛼𝛽) 

           +(𝐽𝑎𝜈 ∑

𝜈′=𝑥,𝑦

cos𝑘𝜈′ + 𝐽′𝑏𝜈cos𝑘𝑧)𝒮̃𝛼0
𝜈 𝒮̃0𝛽

𝜈 ] 

−
𝐷̃

2
(𝒜̃𝛼𝛽 − 𝒜̃00𝛿𝛼𝛽),                        

(15) 

Λ𝛼𝛽(𝐤) = ∑

𝜈

𝒮̃𝛼0
𝜈 𝒮̃𝛽0

𝜈 [𝐽𝑎𝜈 ∑

𝜈′=𝑥,𝑦

cos𝑘𝜈′ + 𝐽′𝑏𝜈cos𝑘𝑧]. (16) 
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The collinear mean-field state (5) has a residual Z2 symmetry associated with a 𝜋 rotation along 

the direction of the ordered moments (local 𝑧̃-axis). The bosonic operator 𝑏̃+1
†

 picks up minus sign 

under this Z2 symmetry because it creates the state with 𝑆̃𝑧 = −1. In contrast, the bosonic operator 

𝑏̃−1
†

 remains invariant because it creates the state with 𝑆̃𝑧 = 0. This symmetry analysis implies 

that the 𝑏̃+1 and 𝑏̃−1 bosons must be decoupled in ℋ(2) because a non-vanishing hybridization 

term would otherwise break this Z2 symmetry:   

ℋ(2) = ∑

𝐤,𝛼=±1

[𝐴𝐤,𝛼𝑏̃𝐤,𝛼
† 𝑏̃𝐤,𝛼 −

𝐵𝐤,𝛼

2
(𝑏̃−𝐤,𝛼𝑏̃𝐤,𝛼 + 𝑏̃𝐤,𝛼

† 𝑏̃−𝐤,𝛼
† )] (17) 

with 𝛾𝐤
𝑥𝑦

= cos(𝑘𝑥) + cos(𝑘𝑦), 𝛾𝐤
𝑧 = cos(𝑘𝑧) and the expressions for 𝐴𝐤,𝛼 and 𝐵𝐤,𝛼 are given in 

Note 5 of the Supplementary Information. 

The diagonal form of ℋ(2),  

ℋ(2) = ∑

𝐤,𝛼=±1

𝜔𝐤,𝛼 (𝛽𝐤,𝛼
† 𝛽𝐤,𝛼 +

1

2
) (18) 

is then obtained by applying an independent Bogoliubov transformation for each bosonic flavor,  

𝑏̃𝐤,±1 = 𝑢𝐤,±1𝛽𝐤,±1 + 𝑣𝐤,±1𝛽−𝐤,±1
† , (19) 

with 

𝑢𝐤,±1 = √
1

2
(
|𝐴𝐤,±1|

𝜔𝐤,±1
+ 1), 

𝑣𝐤,±1 =
𝐵𝐤,±

|𝐵𝐤,±|
√

1

2
(
|𝐴𝐤,±1|

𝜔𝐤,±1
− 1). 

(20) 

The operators 𝛽𝐤,±1
†

 create quasi-particles with energy  

𝜔𝐤,±1 = √𝐴𝐤,±1
2 − 𝐵𝐤,±1

2 , (21) 

where 𝜔𝐤,+1(𝜔𝐤,−1) is the dispersion relation of the transverse (longitudinal) modes. The neutron 

scattering intensity 𝐼(𝐐,𝜔) is related to the spin-spin correlation function through  

                𝐼(𝐐, 𝜔) ∝ 𝑓2(𝐐)∑𝜇,𝜈 (𝛿𝜇𝜈 −
𝑄̂𝜇𝑄̂𝜈

𝑄2 ) 

                                  ×
1

2𝜋𝑁𝑠
∑

𝑁𝑠

𝑖,𝑗

∫
+∞

−∞

𝑑𝑡𝑒𝑖𝜔𝑡−𝑖𝐐⋅(𝐫𝑖−𝐫𝑗)〈𝑠𝑖
𝜇
(𝑡)𝑠𝑗

𝜈(0)〉, 
(22) 

where 𝐐 is the momentum vector transfer, and 𝑓(𝐐) is the magnetic form factor of Fe2+. In the 

Discussion section, we will show that although the GLSW approach discussed in this section can 

reproduce the dispersion relations of all observed low-energy modes in Ba2FeSi2O7, it cannot 
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account for various interaction effects that are revealed by the INS experiments. To capture these 

effects, we must then include the next order terms in the 1/𝑀-expansion.  

 

Non-linear corrections  

In this section, we demonstrate that the generalization of the 1/𝑆-expansion is simply a loop 

expansion. Based on this result, we compute the one-loop corrections to the linear theory presented 

in the previous section. As we explain in the next section, the one-loop correction accounts for 

both the broadening and the energy renormalization of the longitudinal mode near the zone center. 

After Fourier transforming and applying a Bogoliubov transformation, the cubic contributions 

to the generalized spin wave theory become  

ℋ(3) = ℋ𝑐
(3)

+ ℋ𝑙
(3)

, (23) 

with  

ℋ𝑐
(3)

=
1

√𝑁𝑠

∑

𝐪𝑖

∑

𝛼𝑖=±1

𝛿(𝐪1 + 𝐪2 + 𝐪3) 

× [ 
1

3!
𝑉𝑠

(3)
(𝐪1,2,3, 𝛼1,2,3)𝛽𝐪1,𝛼1

𝛽𝐪2,𝛼2
𝛽𝐪3,𝛼3

                           

+
1

2!
𝑉𝑑

(3)
(𝐪1,2,3, 𝛼1,2,3)𝛽𝐪̅1,𝛼1

† 𝛽𝐪̅2,𝛼2

† 𝛽𝐪3,𝛼3
+ ℎ. 𝑐. ],             

(24) 

and 

                              ℋ𝑙
(3)

=
1

√𝑁𝑠

∑

𝐪

∑

𝛼=±1

[𝑉𝑙
(3)(𝐪, 𝟎, 𝐪; 𝛼, −1, 𝛼)𝛽𝟎,−1

† + ℎ. 𝑐. ] 

                              = √𝑁𝑠 ∑

𝛼=±1

[𝑉𝐿,𝛼𝛽𝟎,−1
† + ℎ. 𝑐. ].                              

(25) 

Here 𝑉𝑑
(3)

 and 𝑉𝑠
(3)

 are the decay and sink vertices, respectively. The symmetry allowed cubic 

vertices are depicted in the second and third lines of Fig. 4. Note that, unlike the SU(2) case, 

collinear magnetic ordering does not preclude cubic terms in the expansion (9) of the generalized 

SU(𝑁) spin wave theory with 𝑁 > 2. For the SU(3) case under consideration, the residual Z2 

symmetry (𝜋-rotation along the local 𝑧̃-axis) only requires that the 𝑏̃+1 boson must appear an even 

number of times (e.g., 𝑏̃+1𝑏̃+1 or 𝑏̃+1
† 𝑏̃+1

†
) in the cubic terms. ℋ𝑙

(3)
 is a linear term that originates 

from the normal-ordering of the cubic vertices. This term renormalizes the optimal value 𝜃 that 

was obtained from the minimization of ℋ(0) . The integral of 𝑉𝑙
(3)

(𝐪; 𝛼, −1)  over the entire 

Brillouin zone is the so-called cubic-linear vertex, which is non-zero only for the longitudinal 

boson at the ordering wave vector 𝐪=0 (in the twisted frame). The explicit forms of 𝑉𝑑,𝑠
(3)

 and 𝑉𝑙
(3)

 

are derived in Note 7 of the Supplementary Information. 



Page 11 of 29 

 

We will now describe the construction of a systematic perturbative field theory that is controlled 

by 1/𝑀. This scheme can be applied to study anharmonicities starting from any generalized spin 

wave theory based on a Schwinger boson representation of the generators of SU(𝑁). The well-

known 1/𝑆-expansion will be recovered for the particular case 𝑁 = 2 and 𝑀 = 2𝑆. As we will 

demonstrate below, the 1/𝑀-expansion is just a particular example of the loop expansion that is 

commonly used to describe spontaneous symmetry breaking in particle theory42. The connection 

is more evident after noticing that 𝑀 becomes an overall prefactor of the rescaled Hamiltonian 

(Eq. (9)), 𝐻 = 𝐻e𝑓𝑓/𝑀, once we also rescale the bosonic fields according to 𝑏̅𝐫,𝜈 = 𝑏̃𝐫,𝜈/√𝑀. 

Since the original interaction vertices 𝑉(𝑛) (𝑛 ≥ 3) scale as 𝑉(𝑛) ∼ (𝑀)2−
𝑛

2 , all vertices of the 

rescaled Hamiltonian 𝐻({𝑏̅𝐫,𝜈 , 𝑏̅𝐫,𝜈
† }) become of order 𝑀 , while the propagator is still of order 

1/𝑀. Thus, the order 𝑝 of a particular one-particle irreducible diagram is 𝑉 − 𝐼, where 𝑉 is the 

number of vertices and 𝐼 is the number of internal lines (note that the frequency 𝜔 is of order 𝑀0 

because the quadratic contribution 〈𝐻(2)〉 is independent of 𝑀). Since the number of loops is 𝐿 =

𝐼 − 𝑉 + 1  (Every vertex introduces a delta function that reduces the number of independent 

momenta by one, except for one delta function that is left over for overall energy momentum 

conservation), we obtain the desired result: 𝑝 = 1 − 𝐿 . 

Let us rederive this result without rescaling the fields and the Hamiltonian. As we already 

mentioned, Eq. (9) tells us that the interaction vertices 𝑉(𝑛)  (𝑛 ≥ 3) scale as 𝑉(𝑛) ∼ (𝑀)2−
𝑛

2. The 

quasi-particle propagator  

𝒢0,𝛼(𝐤, 𝑖𝜔) = (−𝑖𝜔 + 𝜔𝐤,𝛼)−1, 𝛼 = ±1 (26) 

where 𝜔 is the Matsubara frequency, scales as 𝒢0,𝛼(𝑘) ∼ 𝑀−1 because 𝜔𝐤,𝛼 is of order 𝑀 (see Eq. 

(9)). The dressed single-particle propagator is obtained from the Dyson equation,  

𝒢−1(𝐤, 𝑖𝜔) = 𝒢0
−1(𝐤, 𝑖𝜔) − Σ(𝐤, 𝑖𝜔), (27) 

where Σ(𝐤, 𝑖𝜔) is the single-particle self-energy. At a given order in 𝑀, the dressed propagator 

includes two external legs, 𝐿  independent loops, 𝐼  internal lines (bare propagators 𝒢0 ) and 𝑉𝑛 

interaction vertices of the type 𝑉(𝑛). After a summation over the Matsubara frequency 𝜔 ∼ 𝑀1, 

each loop gives a contribution of order 𝑀1 . Hence, the order 𝑝  of a particular one-particle 

irreducible diagram contributing to Σ(𝐤, 𝑖𝜔) is  

𝑝 = 𝐿 − 𝐼 + ∑

𝑛≥3

𝑉𝑛  [2 −
𝑛

2
]. (28) 

Since each internal line connects a pair of vertices, we have  

∑

𝑛≥3

𝑛𝑉𝑛 = 2𝐼 + 2, (29) 
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where ∑𝑛≥3 𝑛𝑉𝑛 is the total number of lines. Furthermore, the number of loops is equal to the 

number of independent momentum integrals. From the conservation of momentum at each vertex, 

we have  

𝐿 = 𝐼 − [∑

𝑛≥3

𝑉𝑛 − 1]. (30) 

By combining the above results, we obtain  

𝑝 = 1 + ∑

𝑛≥3

𝑉𝑛 − ∑

𝑛≥3

𝑛𝑉𝑛
2

= 1 − 𝐿, (31) 

implying that the order of a given diagram is determined by the number of loops. 

The lowest-order 𝒪(𝑀0) Feynman diagrams are shown in Fig. 5. Since the inverse of the bare 

boson propagator is of order 𝒪(𝑀1), the remaining diagrams of order 𝒪(𝑀0) give a relative 1/𝑀-

correction to the poles of the bare propagators. The real part of the new poles corresponds to the 

renormalized single-particle energy, whereas the imaginary part corresponds to the decay rate, 

which is responsible for the broadening of the quasi-particle peaks measured with INS. 

The contributions to the self-energy from the decay and from the source diagrams shown in Fig. 

6 are  

Σ𝛼
𝑑(𝐪, 𝑖𝜔) =

1

2𝑁𝑠
∑

𝐤,𝛼1,𝛼2=±1

|𝑉𝑑
(3)

(𝐤̅, 𝐤 + 𝐪̅, 𝐪; 𝛼1, 𝛼2, 𝛼)|2

𝑖𝜔 − 𝜔𝐤,𝛼1
− 𝜔𝐪+𝐤̅,𝛼2

, (32) 

and 

Σ𝛼
𝑠 (𝐪, 𝑖𝜔) = −

1

2𝑁𝑠
∑

𝐤,𝛼1,𝛼2=±1

|𝑉𝑠
(3)

(𝐤, 𝐤̅ + 𝐪̅, 𝐪; 𝛼1, 𝛼2, 𝛼)|2

𝑖𝜔 + 𝜔𝐤,𝛼1
+ 𝜔𝐪+𝐤̅,𝛼2

, (33) 

respectively. 

Finally, the diagrams that appear in the last line for both panels of Fig. 6 arise from the normal 

ordering of the quartic term ℋ(4) in Eq. (9). These contributions simply renormalize the quadratic 

Hamiltonian:  

ℋ𝑁𝑂
(4)

= ∑

𝐪,𝛼,𝛼′

[𝑉𝛼𝛼′
(4,𝑁)

𝛽𝐪,𝛼
† 𝛽𝐪,𝛼′ + (𝑉𝛼𝛼′

(4,𝐴)
𝛽−𝐪,𝛼𝛽𝐪,𝛼′ + ℎ. 𝑐. )], (34) 

where 𝑉𝛼𝛼′
(4,𝑁)

(𝑉𝛼𝛼′
(4,𝐴)

) represents the normal (anomalous) contributions. Since ℋ𝑁𝑂
(4)

 is of order 𝑀0, 

only the diagonal normal contribution arising from the normal vertex 𝑉𝛼𝛼′
(4,𝑁)

𝛿𝛼,𝛼′ gives a relative 

correction of order 1/𝑀 to the bare single-particle energy given in Eq. (21) (the anomalous terms 

in Eq. (34) give a relative correction contribution order 1/𝑀2). The derivation of 𝑉𝛼𝛼
(4,𝑁)

 is included 

in Note 7 of the Supplementary Information. 
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We note the parallel between the decay, sink, and quartic diagrams that give the 1/𝑀-correction 

to the single-particle self-energy and the ones that appear in the 1/𝑆-expansion of the standard 

SU(2) spin wave theory of non-collinear Heisenberg magnets11. The main difference is that the 

SU(3) theory includes an extra bosonic flavor that enables more symmetry-allowed decay 

channels. In addition, the cubic-linear diagram exists even in absence of magnetic field because 

the magnitude of the ordered magnetic moment can be renormalized by changing the variational 

parameter 𝜃. These diagrams, shown in the third line of Fig. 6a and the fourth line of Fig. 6b, are 

obtained by contracting one of the legs of the decay vertex with the cubic-linear vertex shown in 

Fig. 5. By using the Feynman rules, the cubic-linear diagrams are calculated as  

Σ𝛼
𝑐𝑙(𝐪) = −

1

𝜔𝟎,−1
([𝑉𝑑

(3)
(𝟎, 𝐪̅, 𝐪; 𝛼, −1, 𝛼)]∗𝑉𝐿,𝛼 + ℎ. 𝑐. ). (35) 

By applying the analytic continuation 𝜔 ± 𝑖𝛿+ → 𝑖𝜔  and adopting the so-called on-shell 

approximation 𝜔 = 𝜔𝐪 for Eq. (32) and Eq. (33), the renormalized pole of the dressed propagator 

𝒢 is calculated as 𝜔̃𝐪,𝛼 − 𝑖Γ̃𝐪,𝛼 = 𝜔𝐪,𝛼 + 𝑉𝐪,𝛼𝛼
(4,𝑁)

+ Σ𝛼
𝑐𝑙(𝐪) + Σ𝛼

𝑠 (𝐪,𝜔𝐪,𝛼) + Σ𝛼
𝑑(𝐪,𝜔𝐪,𝛼), where the 

imaginary part of the pole Γ̃𝐤,𝛼  arises from the decay term Σ𝛼
𝑑 , that accounts for the observed 

broadening of the longitudinal mode in most regions of the BZ (see Fig. 3c and f) (the calculations 

are summarized in Note 9 of the Supplementary Information and Ref. 52). Moreover, the shift in 

the real part of the pole implies a corresponding renormalization in the model parameters. By 

fitting the neutron scattering data with the renormalized dispersion peaks 𝜔̃𝐪,𝛼 at the ZC, we obtain 

the set of optimal Hamiltonian parameters listed as set ℬ in Table 1 and discussed further below.  

 

Discussion  

Comparison between experiment and theory 

To understand the spin excitation spectrum of Ba2FeSi2O7 and demonstrate the importance of 

using the one-loop corrections, we start the comparison between experiment and theory with the 

GLSWT (i.e. without one-loop corrections).  Figure 3b, and e show contour plots of 𝐼(𝐐,𝜔) (Eq. 

(22)) calculated with the GLSWT along the [𝐻, 0, 0.5]-, and [𝐻, 𝐻, 0.5]-direction, respectively. 

The Hamiltonian parameters (see set 𝒜 in Table. 1) are extracted by fitting the measured positions 

of the quasi-particle peaks (Gaussian-fitted peak centers of the experimental data) at the ZC. The 

GLSWT reproduces the dispersion of the observed two transverse modes 𝑇1 and 𝑇2 along the [𝐻, 

0, 0.5]- and [𝐻, 𝐻, 0.5]-directions (Fig. 3b and e). Noticeably, the calculated longitudinal mode 

closely reproduces the experimental dispersion of the ‘𝐿’-mode, which demonstrates that the SU(3) 

spin wave theory describes the quasiparticles in Ba2FeSi2O7.  

Notably, the GLSWT does not reproduce the broadening and renormalization of the longitudinal 

modes observed in the inelastic neutron scattering data. This is because the effect arises from the 

decay of a longitudinal mode into two transverse modes that is induced by the cubic term ℋ(3) of 

the expansion (Eq. (9)). To capture this effect, the 1/𝑀-correction from the one-loop expansion 

(see Non-linear correction section) must be included. The GLSWT+one-loop correction can then 
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describe the broadened spectrum of the longitudinal mode. The new Hamiltonian parameters, 

which are determined via the same procedure that is described above (see set ℬ in Table 1), allow 

us to reproduce the observed spectrum (see Fig. 3c and f).  

A more in-depth comparison between theory and experiment is shown in Figures 7a and b. 

These figures show the quasi-particle dispersions along the [𝐻, 0, 0.5]-direction calculated with 

the GLSWT and GLSWT plus one-loop corrections compared to the measured dispersion. Near 

the ZC, 𝐐𝐦=(1, 0, 0.5) the energy of longitudinal mode obtained from the GLSWT is noticeably 

higher than the peak center of the measured ‘𝐿’-mode (orange dots). The discrepancy in the 

dispersion is resolved by introducing the one-loop corrections. The real part of the self-energy 

renormalizes the energy of the longitudinal mode, leading to a better agreement with the observed 

peak positions near the ZC. At the same time, the imaginary part of the self-energy obtained from 

the decay diagrams, Σ𝛼
𝑑 , leads to an intrinsic line-broadening of the longitudinal mode that is 

missing in the GLSWT. In Fig. 7b and d, the lower (upper) boundary of the red-shaded region is 

given by 𝜔̃𝐤,−1(∓)Γ̃𝐤,−1, representing theoretical line-broadening of the longitudinal mode that is 

compared against the experimental FWHM (orange error bars). In particular, the above-mentioned 

effects are most striking at 𝐐𝐦=(1, 0, 0.5), therefore we present a comparison of the intensity line-

cut at this momentum transfer in Fig. 7e. It is interesting to note that the energy shift of the 

transverse mode is also captured by the one-loop corrections. 

After verifying that the one-loop corrections can simultaneously capture the broadening of the 

longitudinal mode and the energy shift of both the transverse and the longitudinal modes at the 

magnetic ZC, it is natural to ask if this also holds true far away from the ZC. Figure 7f, g are the 

intensity cuts for two representative points on the ZB. At a first glance, the peak centers of both 

modes are reasonably reproduced by the one-loop corrections. A more detailed analysis reveals 

that the experimental FWHM of both peaks is equal to the instrumental resolution. However, as 

illustrated in Fig. 8a, since the longitudinal modes are still inside the two-magnon continuum, the 

one-loop correction predicts an intrinsic broadening (black curves) in Fig. 7f, g. 

To understand the origin of this discrepancy, we trace back the decay channel of the longitudinal 

mode on the zone boundaries. The two-magnon continuum at the zone edge starts at an energy 

equal to the sum of the single-magnon energies at the zone center and the zone boundary. Due to 

the U(1) symmetry of the effective Hamiltonian, the magnons are gapless at the zone center, 

implying that the onset of the two-magnon continuum coincides with the single magnon branch 

(see Fig. 8). In absence of U(1) symmetry, the magnon modes become gapped and the longitudinal 

mode does not need to lie inside the two-magnon continuum for arbitrary values of the wave vector 

(see Fig. 8b). A small magnon gap pushes the onset of the two-magnon continuum to be above the 

energy of the longitudinal mode at the zone boundaries. This modification of the two-magnon 

spectrum precludes the decay of the longitudinal mode near the zone boundary and explains the 

experimental observation. We then conjecture that the single-magnon dispersion is indeed gapped. 

Unfortunately, it is difficult to extract the size of this gap from our INS data because of the large 

quasi-elastic scattering. Nevertheless, the analysis presented in Note 2 of the Supplementary 
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Information indicates that our data is indeed consistent with a finite spin gap. We note that the gap 

can be captured by working with the original spin 𝑆 = 2 Hamiltonian (Eq. (1)). The tetragonal 

symmetry allows for a single-ion anisotropy term of the form ℋ𝐴 = 𝐴∑𝑖 [(𝑆𝑖
𝑥)4 + (𝑆𝑖

𝑦
)4], which 

breaks the global U(1) symmetry, generating a finite gap for the transverse mode. However, when 

we project the original 𝑆 = 2 Hamiltonian onto the low-energy space to obtain the effective spin 

𝑆 = 1 Hamiltonian (Eq. (2)), the term ℋ𝐴 simply renormalizes the single-ion anisotropy, implying 

that the low-energy model acquires an “emergent” U(1) symmetry that is absent in the original 

high-energy model. Lastly, we note that the energies of the longitudinal mode on the zone 

boundaries after the one-loop corrections are slightly lower than the measured values. This level 

of discrepancy can be attributed to the missing second order corrections O(
𝐽2

3𝐷
) to the low-energy 

model (2) or to missing terms in the original Hamiltonian (1). A simple analysis shows that a 

second nearest neighbor AFM interaction with 𝐽2 ∼ 0.2𝐽 can account for this discrepancy. For 

simplicity, 𝐽2  is not included in our calculation. Except for the discrepancy near the zone 

boundaries, the effective 𝑆 = 1  model with one-loop corrections successfully captures most 

features of the INS data inside the BZ. 

Finally, we emphasize that the loop expansion preserves the Goldstone mode that results from 

the spontaneous breaking of the emergent U(1) symmetry group of ℋ̃e𝑓𝑓. More specifically, the 

𝒪(𝑀0) correction to the real part of the self-energy vanishes for the Goldstone mode (see Note 8 

in the Supplementary Information), although the individual contributions from the diagrams shown 

in Fig. 5 diverge as 1/𝑞 in the long-wavelength limit. We note that previous attempts of computing 

the decay of the longitudinal mode34 have not accounted for the renormalization of the single-

particle dispersion arising from the 1/𝑀 -correction to the real part of the self-energy. This 

correction leads to a significant change in the extracted ratio 𝛼 = 𝐽/𝐷̃  of Ba2FeSi2O7, cf. 

𝛼GLSWT = 0.152,  and 𝛼GLSWT+one−loop = 0.187.  This change is a direct consequence of the 

substantial renormalization of the energy 𝜔𝐿(𝐐𝐦) of the longitudinal mode at the ZC. In fact, an 

accurate calculation that goes beyond the one-loop approximation estimates that the critical αc 

required to close the gap 𝜔𝐿(𝐐𝐦)  for 𝐽′ = 0.1𝐽 , and Δ̃ = Δ̃′ = 1/3  is around 0.158 . In other 

words, the Hamiltonian parameters extracted from fitting the experiment with the GLSWT place 

Ba2FeSi2O7 on the quantum paramagnetic side of the phase diagram shown in Fig. 1, which 

obviously contradicts the experimental evidence. In contrast, the set of parameters obtained from 

the GLSWT+one-loop correction (𝛼GLSWT+one−loop ) place the material at the magnetically 

ordered phase of exact phase diagram. Furthermore, the calculated ordered moment is very close 

to the measured value 2.95 𝜇B (see Note 12 of the Supplementary Information for discussion of 

the reduction of the ordered moment). In general, non-linear corrections become increasingly 

important upon approaching the QCP and logarithmic corrections due to multi-loop vertex 

renormalizations become relevant very close to this point28,31,53,54. The fact that one-loop correction 

is enough to reproduce the spectrum of Ba2FeSi2O7 indicates that this material is still far enough 

from that critical regime.  
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In summary, Ba2FeSi2O7 provides a natural realization of a quasi-2D easy-plane 

antiferromagnet in the proximity of the QCP that signals the transition into the QPM phase. 

Previous examples of low-dimensional easy-plane quantum magnets in the proximity of this QCP 

were typically located on the quantum paramagnetic side of the quantum phase transition17,20,21,23. 

Ba2FeSi2O7 then allows us to explain the strong decay and renormalization effects of the low-

energy transverse and longitudinal modes of the AFM state. Furthermore, the distance to the O(2) 

QCP could be in principle controlled by chemical substitution, while the application of an in-plane 

magnetic field, that gaps out the transverse modes, can be used to control the decay rate of the 

longitudinal mode. 

Here we have used the INS data of Ba2FeSi2O7 as a platform to test a loop expansion based on 

an SU(3) spin wave theory17,18,20,55, that captures the longitudinal and the transverse modes at the 

linear level. This loop expansion, that generalizes the well-known 1/𝑆-expansion of the SU(2) 

spin wave theory, allows us to reproduce the measured width and renormalization of the 

longitudinal and transverse modes near the zone center by just including a one-loop correction. 

Small discrepancies near the zone boundary are attributed to limitations of the effective low-energy 

𝑆 = 1 model that we adopted for this work. 

The loop expansion that we have described in this manuscript provides a general scheme for 

treating quantum magnets with more than one type of low-energy mode. In general, quantum 

magnets that exhibit low-energy modes with 𝑁 − 1  different “flavors" can be treated semi-

classically using an SU(N) spin wave theory. The parameter of the semi-classical expansion is the 

number of loops in the Feynman diagrams that contribute to the single-particle propagator. 

 

Methods 

Sample preparation  

A single crystal of Ba2FeSi2O7 was grown using an optical floating zone melting method44. 

Polycrystalline Ba2FeSi2O7 feed-rods were prepared using the solid-state reaction method. The 

stoichiometric powders of BaCO3 and Fe2O3, and SiO2 were mixed, ground, pelletized and sintered 

with intermediate heating in a gas atmosphere. Ba2FeSi2O7 single crystal was grown using a 

floating zone furnace in the same gas environment.  

 

Inelastic neutron scattering measurement 

Inelastic neutron scattering measurements were performed using the cold neutron triple-axis 

spectrometer (CTAX) at the High Flux Isotope Reactor (HFIR) and the hybrid spectrometer 

(HYSPEC) at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory45. A 2.15 g 

single crystal was aligned with the (𝐻,𝐻, 𝐿) and (𝐻, 0, 𝐿) in the horizontal scattering plane for 

CTAX and HYSPEC experiments. A liquid helium cryostat was used to control temperature. At 

CTAX, the initial neutron energy was selected using a PG (002) monochromator, and the final 

neutron energy was fixed to 𝐸f= 3.0 meV by a PG (002) analyzer. The horizontal collimation was 
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guide-open-40’-120’, which provides an energy resolution with full width half maximum 

(FWHM)=0.1 and 0.18 meV for Δ𝐸=0 and 2.5 meV, respectively. For the HYSPEC experiment, 

𝐸i=9 meV and a Fermi chopper frequency of 300 Hz were used, which provides an energy 

resolution of FWHM=0.28 meV and 0.19 meV at Δ𝐸=0 and 2.5 meV, respectively. Measurements 

were performed at 𝑇=1.6 K and 90 K by rotating the sample from -50° to 170° with 1° steps. Data 

was symmetrized over positive and negative 𝐻 and integrated over 𝐾=[-0.1, 0.1] and 𝐿=[0.4, 0.6]. 

In Fig. 3a, there appears to be quasi-elastic scattering below 0.5 meV in low 𝐐-region. This 

scattering arises from the incompletely blocked direct beam due to the oscillating collimator. All 

of data sets were reduced and analyzed using MANTID56 and DAVE57. 

 

Data availability  

 The data sets generated during and/or analyzed during the current study are available from the 

corresponding authors on reasonable request.  

 

Code availability  

 The codes used to generate the results in this work are available from the corresponding authors 

on reasonable request. 
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Figures and Tables 

 

 
Fig. 1 Schematic diagrams near the quantum critical point.  

Schematic phase diagram illustrates the O(2) quantum critical point (QCP) between the 

antiferromagnetic (AFM) state and the quantum paramagnet (QPM) as a function of α = 𝐽/𝐷̃ (𝐽 is 

a Heisenberg exchange and 𝐷̃ is a easy-plane single-ion anisotropy of effective 𝑆=1). The low-

energy excitations of the QPM are two degenerate 𝑆𝑧=±1 modes (black line) with a gap, Δ, which 

closes at the QCP. The spontaneous U(1) symmetry breaking leads to a gapless magnon or 

transverse mode (𝑇 -mode), indicated with a blue line, which is accompanied by a gapped 

longitudinal mode (𝐿-mode) indicated with the orange line. Near the QCP, the energy and the 

lifetime of the 𝐿-mode are strongly renormalized (dashed orange line) due to the decay into the 

continuum of two transverse modes (shaded orange region). 
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Fig. 2 Crystal and magnetic structure of Ba2FeSi2O7.  

a Crystal structure of Ba2FeSi2O7. Ba atoms separate layers composed of FeSi2O7, rendering a 

quasi-two-dimensional structure. b In the FeSi2O7 layer, FeO4 tetrahedra are connected via SiO4 

polyhedra, and the adjacent two Fe2+ atoms are exchange coupled by two oxygen ligands. The red 

dashed line indicates the exchange pathway 𝐽 within two-dimensional square spin network. The 

interlayer coupling 𝐽′ is found here to be much weaker than 𝐽. Red arrows indicate the moment 

direction in the collinear AFM phase as determined in Ref.44. The black solid line indicates the 

chemical unit cell. c 𝐻𝐾-reciprocal space with 𝐿=0.5 in the tetragonal structure (𝑃4̅21𝑚). The 

blue solid line and the black circle indicate the Brillouin zone and zone center, respectively. The 

coordinates (𝐻, 𝐾, 𝐿) of the reciprocal lattice of the origin lattice are related to (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) of the 

magnetic lattice formed by the Fe2+ atoms through 𝑘𝑥 = 𝜋(𝐻 − 𝐾), 𝑘𝑦 = 𝜋(𝐻 + 𝐾), and 𝑘𝑧 =

2𝜋𝐿. d Illustration of the spin fluctuation modes. 𝑇1 and 𝑇2 indicate transverse fluctuation in the 

𝑎𝑏-plane and out-of the plane, respectively. 𝐿 indicates longitudinal fluctuation of spin. 
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 1 

Fig. 3 Inelastic neutron scattering of Ba2FeSi2O7  2 

a Contour map of the inelastic neutron scattering (INS) data as a function of energy and momentum 3 

transfer along the [𝐻, 0, 0.5] direction measured at 𝑇=1.6 K (< 𝑇N) using the HYSPEC time-of-4 

flight spectrometer at SNS. d Contour map of the INS data as a function of energy and momentum 5 

transfer along [𝐻,𝐻,0.5] direction measured at 𝑇=1.4 K (< 𝑇N) using the cold Neutron Triple-Axis 6 

spectrometer (CTAX) at HFIR. The instrumental resolutions at energy=2.5 meV for each 7 

instrument are indicated with blue bars along the 𝑦-axis in a and d. The two transverse modes and 8 

the longitudinal mode are labeled with 𝑇1, 𝑇2, and 𝐿, respectively. b, c, e, and f INS intensities 9 

calculated by the generalized linear spin wave theory (GLSWT) and GLSWT plus one-loop 10 

corrections (GLSWT+one-loop) with the parameter sets 𝒜 and ℬ given in Table. 1, respectively. 11 

The instrumental resolution of HYSPEC and CTAX was modeled in the calculated spectra using 12 

a Lorentzian function. 13 

 14 

 15 

 16 

 17 

 18 

 19 



Page 24 of 29 

 

 20 

Fig. 4 Detailed line-cuts of INS spectra.  21 

a Constant momentum cuts at points along the [𝐻, 0, 0.5]-direction measured using HYSPEC at 22 

SNS, integrated over 𝐻=[𝐻 -0.05, 𝐻+0.05] at selected 𝐻 , 𝐾=[-0.1, 0.1], and 𝐿=[0.4, 0.6]. b 23 

Constant momentum cuts at points along the [𝐻, 𝐻, 0.5]-direction measured using CTAX at HFIR. 24 

Blue bars at the bottom of the panels indicate the instrumental resolutions for HYSPEC and CTAX 25 

at the proximate energy transfers. The blue and orange shaded regions are the results of fitting 26 

Gaussian line shapes to transverse (𝑇1, 𝑇2) and longitudinal (𝐿) modes, respectively. 27 
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 28 

Fig. 5 Basic ingredients of the perturbative field theory in 𝟏/𝑴 for Ba2FeSi2O7.  29 

Solid (dash) lines represent the bare propagator of the transverse (longitudinal) boson. The 30 

symmetry-allowed cubic vertices are shown on the second and third lines. The red (blue) dot 31 

represents a decay (sink) vertex. The cubic-linear vertices are listed on the fourth line. The last line 32 

represents the normal vertex 𝑉𝛼𝛼
(4,𝑁)

 from ℋ(4). 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

  44 
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Fig. 6 Diagrammatic representation of the Dyson equation.  45 

a One-loop diagrams that contribute up to the order 𝑀0  for the transverse boson. b One-loop 46 

diagrams that contribute up to the order 𝑀0 for the longitudinal boson. The dressed propagator is 47 

denoted by a thick line, whereas the bare propagator is denoted by a thin line. 48 

 49 

 50 

 51 

 52 

 53 

 54 
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 55 

Fig. 7 Comparison between measured and calculated spectrum.  56 

Comparison of the measured and calculated dispersion along the [𝐻, 0, 0.5] (a, b) and [𝐻, 𝐻, 0.5] 57 

(c, d) directions. In all panels of this figure, the theoretical results are obtained for the parameter 58 

set ℬ  in Table 1. a-d Blue and orange filled circles indicate the measured transverse and 59 

longitudinal modes, obtained from the Gaussian fitting to the data shown in Fig. 4a. Dots and error 60 

bars indicate peak centers and full width at half maxima (FWHM) of the observed modes, 61 

respectively. Lines indicate the calculated dispersions obtained from the GLSWT and 62 

GLSWT+one-loop corrections. The red shaded region in b and d depict the decay (line-63 

broadening) of the longitudinal mode given by the one-loop corrections. e-g Comparison between 64 

the measured (blue dots) and calculated (orange and black lines) INS intensities at three high-65 

symmetric 𝐐-points at (1, 0, 0.5), (0, 0, 0.5), and (0.5, 0.5, 0.5). All the experimental data were 66 

measured using CTAX with fixed 𝐸f=3 meV. For GLSWT, two transverse and longitudinal modes 67 

are denoted with 𝑇1, 𝑇2, and 𝐿. 68 

 69 

 70 

 71 
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 72 

Fig. 8 Kinematic constraints for the decay of the longitudinal mode.  73 

The blue (orange) curve shows the calculated transverse (longitudinal) band dispersions along [𝐻, 74 

0, 0.5] with the GLSWT (using parameters set ℬ in Table 1). The light blue-shaded areas indicate 75 

the two-transverse mode continuum, whose lower edge is indicated with a black solid line (𝐸2
min). 76 

a Results of the effective 𝑆 = 1 model. b Same as a but for a gapped branch of transverse modes 77 

(an ad hoc gap has been added to Eq. (21)). 78 

 79 

 80 
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Table 1 | Parameter sets of GLSWT and GLSWT+one-loop models.  81 

The parameters of the effective 𝑆 = 1 model extracted by fitting the Gaussian-peak centers of the 82 

experimental dispersion with the GLSWT and GLSWT + one-loop calculated energies at the zone 83 

center 𝐐𝐦=(1, 0, 0.5) In both cases, we assume 𝐽′ = 0.1𝐽, and Δ̃ = Δ̃′ = 1/3, i.e. Δ = Δ′ = 1 for 84 

the 𝑆 = 2 model (Heisenberg model without exchange anisotropy). The parameter set is referred 85 

to by its label (𝒜 or ℬ) in the text. 86 

 87 

Theory Label 𝐽 (meV) 𝐷̃ (meV) 

GLSWT 𝒜 0.245 (7) 1.61 (6) 

GLSWT + one-loop ℬ 0.266 (6) 1.42 (4) 

 88 

 89 

 90 
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Supplementary Information  
 

Supplementary Note 1. Single-ion state of Fe2+ in Ba2FeSi2O7 

Recent terahertz spectroscopy and X-ray absorption spectroscopy (XAS) on A2FeSi2O7 

(A=Sr and Ba) revealed that the considerable tetragonal distortion of FeO4-tetrahedra (Sr: 17% 

and Ba: 26% 𝑧-compression from cubic) with large spin-orbit coupling of Fe2+ (𝜆 ∼20 meV) 

induces significant easy-plane single-ion anisotropy in the system1,2. Following the description for 

the spin-orbital states of Fe2+ in a tetrahedral environment, in Ba2FeSi2O7 the large single-ion 

anisotropy determines the ground state from the multiplet of Fe2+ ion. Starting with the free ion, 

 5𝐷 (𝐿 = 2, 𝑆 = 2), the tetrahedral crystal field (Δ𝑇𝑑) and tetragonal distortion (𝛿𝑇𝑒𝑡𝑟𝑎) leave an 

A-manifold with 5 levels (see Supplementary Figure 1) with hybridized 𝐿z and 𝑆z states. When 

Δ𝑇𝑑, 𝛿𝑇𝑒𝑡𝑟𝑎 ≫ 𝜆, it leads to a pure spin 𝑆 = 2 quintet (see Supplementary Figure 1a). Introducing 

a single-ion term 𝐷(𝑆z)2 with easy-plane anisotropy, lifts the degeneracy of the quintet into levels 

with 𝑆𝑧 =0 (singlet), 𝑆𝑧 = ±1  (doublet), and 𝑆𝑧 = ±2  (doublet) where the energy-splitting 

between the states is given 𝐷  and 3𝐷 . Supplementary Figure 1b shows the inelastic neutron 

scattering measured at 𝑇=90 K, ∼ 7 ∗ ΘCW (powder averaged Curie-Weiss temperature ΘCW~-

12.8 K) where the single-ion physics dominates1. In the spectra, two flat excitations are visible at 

d𝐸 ∼1.32 meV and 3.9 meV which indicate transitions between levels as follows |𝑆z = 0〉 → 

|𝑆z = ±1〉 and |𝑆z = ±1〉 → |𝑆z = ±2〉. Note that the transitions between |𝑆z = 0〉 and |𝑆z =
±2〉 are forbidden by dipole selection rules. At finite temperature, the thermal population of the 

spin states determines the effective spin of the system. In the low temperature region where 𝑇 ≪
3 ∗ 𝐷 (∼45 K), the |𝑆z = ±2〉 states are depopulated and the system can then be treated as an 

effective 𝑆 = 1. 

 

 

Supplementary Figure 1. Orbital configuration and single-ion excitation of Ba2FeSi2O7  

a Orbital energy states of Fe2+ with a tetrahedral crystal field (Δ𝑇𝑑), tetragonal distortion (𝛿𝑇𝑒𝑡𝑟𝑎), 

and spin orbit coupling (𝜆). b The left panel shows inelastic neutron scattering data measured at 

𝑇=90 K, symmetrized over negative and positive 𝐻 and integrated over 𝐿=[0.9, 2.1] and 𝐾=[-0.1, 

0.1]. The integrated scattering intensity over 𝐻=[-2, 2] is shown in the right panel. The two peaks 



 

 

2 

 

were fitted with Gaussian functions (solid blue line). Arrows indicate the peak centers at 1.32 meV 

and 3.9 meV. 

 

 

 

 

Supplementary Note 2. Analysis of a possible spin gap  

 To check for evidence of a gap in the spin wave dispersion at the ZC, the low energy 

inelastic neutron scattering was investigated using CTAX at HFIR with 𝐸𝑓=3 meV. The energy 

resolution of the instrument (FWHM∼0.101 meV for elastic scattering) poses a challenge to 

directly extract a small gap due to the large scattering near the magnetic Bragg reflection at 𝐐𝐦. 

As an alternative approach, we examine the spin wave dispersions near the ZC and compare the 

calculated values with and without a small gap. The measured dispersion was obtained by fitting 

with a resolution convoluted Gaussian function to constant momentum transfer scans for 0.85≤
𝐻 ≤1.15. The extracted magnon dispersion is displayed as the contour plot along with the 

calculated spin waves with Δgap = 0 and 0.25 meV in the Supplementary Figure 2a. The gapless 

Goldstone mode (Δgap=0) has linear dispersion emanating from the ZC, whereas the gaped 

tranverse mode has a quadratic dispersion near the ZC providing a possible means of distinguising 

a gaped spectrum from an gapless one. To find the best description of the dispersion near the ZC, 

the deviation between the data and calculated dispersion is defined as (𝐸𝑒𝑥𝑝. − 𝐸𝑐𝑎𝑙𝑐.)
2. The sum 

of this deviation is presented in Supplementary Figure 2b as a function of the gap energy. The 

deviation has a minimum at Δgap ∼0.25 meV, suggesting a gap in spin wave spectrum of  

Ba2FeSi2O7. 

The spin gap can also be extracted by extrapolating the magnetic field dependence of the 

T1 transverse mode. The field-dependent low energy inelastic neutron scattering was measured 

using the Multi-Axis Crystal Spectrometer (MACS) at NCNR with Ef=3 meV. The constant 𝐐-

linecuts were obtained at ZC with applied fields, H//[1 0 0], at 0, 1, 2, 3, 4, and 5 T. Supplementary 

Figure 2c shows the field-evolution of the spin excitation spectrum at the ZC. Each constant 𝐐-

linecuts were fitted to a Gaussian function to parameterize the T1 transverse modes. The T1 

transverse mode becomes gapped by the Zeeman energy in a magnetic field, and the gap increases 

with the magnetic field. For a gapless system the linear extrapolation of the T1-modes approaches 

zero energy as the field goes to zero, whereas  the dispersion relation of the gapped magnon in the 

transverse field is described by 𝜔𝑚𝑎𝑔 ∝ √Δ𝑔𝑎𝑝2 + (𝑐)2𝐻2 , where Δ𝑔𝑎𝑝  and 𝑐  can be fit to the 

experimental data4. The measured T1-mode dispersions were fitted to the gapless linear and gaped 

parabola functions, which give 𝜒2values with 0.15 and 0.02, respectively. The lower 𝜒2 result of 

the parabola function indicates the presence of a spin gap. The resulting value of the spin gap, 

Δ𝑔𝑎𝑝=0.18 (2) meV, is close to the value obtained from fitting to the low energy dispersion, 

implying that both analyses consistently indicate the presence of a small gap in the spin excitation 

spectrum of Ba2FeSi2O7. 

 

Supplementary Note 3. Magnetic susceptibility with angular field-dependence  

The angular dependent magnetic susceptibility provides evidence for the single-ion 

anisotropy necessary to produce a gap in the spectrum. We measured this angular dependence on 

a Ba2FeSi2O7 crystal that was aligned using X-ray Laue diffraction. Magnetization was measured 
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using vibrating sample magnetometry (VSM) implemented in a Quantum Design physical 

properties measurement system (PPMS-Dynacool).  

  Supplementary Figure 3a shows the magnetic susceptibilities, χ(T), measured with three 

diffrent magnetic field directions in the ab-plane, parallel to [1, 0, 0], [1, 1, 0], and [0, 1, 0] of 

crystal axes. The three χ(T) show isotropic behavior above the Néel temperature (TN=5.2 K), 

collapsing in a single line. Noticeably, those become anisotropic with magnetic order below the 

TN, having a weak easy-axis anisotropy along [1, 1, 0]-direction. As described in the main text, the 

tetragonal symmetry with S=2 spin allows for a single-ion anisotropy term ℋ𝐴 = 𝐴∑𝑖 [(𝑆𝑖
𝑥)4 +

(𝑆𝑖
𝑦
)4] (A>0 for easy-axis along [1, 1, 0] and [1, -1, 0]), which can induce easy-axis anisotropy in 

the ab-plane. This anisotropy term can generate a gap in the spin wave spectrum as described in 

Note 2. 

 

Supplementary Note 4. Spin wave dispersion along 𝑳-direction 

Supplementary Figure 4 shows INS data along the 𝐿-direction for [𝐻, 0, 𝐿] with 𝐻=0 and 

1, measured using HYSPEC spectrometer. The spin excitations are weakly dispersing along 𝐿 

indicating quasi-two-dimensional behavior due to the relatively weak inter-layer coupling. As 

shown, the acoustic magnon (𝑇1) has a bandwidth of 0.5 meV, and the 𝑇2 and 𝐿 modes are almost 

completely flat along the 𝐿 direction. The 𝐿-dependence of the spin excitations is reproduced by 

the GLSWT and GLSWT + one loop correction calculations with 𝐽′̃=𝐽/10. 

 

Supplementary Note 5. Generalized spin wave approach  

In the local reference frame, the spin and quadrupolar operators can be expanded in 1/𝑀 

as:  

𝑠𝐫
𝜇
= 𝑀𝒮̃00

𝜇
+ √𝑀 ∑

𝛼=±1

(𝒮̃𝛼0
𝜇
𝑏𝐫,𝛼
† + ℎ. 𝑐. ) 

+ ∑

𝛼,𝛽=±1

(𝒮̃𝛼𝛽
𝜇
− 𝒮̃00

𝜇
𝛿𝛼𝛽) 𝑏̃𝐫,𝛼

† 𝑏̃𝐫,𝛽 

                                        −
1

2√𝑀
∑

𝛼=±1

∑

𝛽=±1

(𝒮̃𝛼0
𝜇
𝑏̃𝐫,𝛼
† 𝑏̃𝐫,𝛽

† 𝑏̃𝐫,𝛽 + ℎ. 𝑐. ) + 𝒪(
1

𝑀3/2
), 

(S1) 

 

(𝑠𝐫
𝑧)2 = 1 −𝑀𝒜̃00 − √𝑀 ∑

𝛼=±1

(𝒜̃𝛼0𝑏̃𝐫,𝛼
† + ℎ. 𝑐. ) 

− ∑

𝛼,𝛽=±1

(𝒜̃𝛼𝛽 − 𝒜̃00𝛿𝛼𝛽)𝑏̃𝐫,𝛼
† 𝑏̃𝐫,𝛽 

                                         +
1

2√𝑀
∑

𝛼=±1

∑

𝛽=±1

(𝒜̃𝛼0𝑏̃𝐫,𝛼
† 𝑏̃𝐫,𝛽

† 𝑏̃𝐫,𝛽 + ℎ. 𝑐. ) + 𝒪(
1

𝑀3/2
). 

(S2) 

The expressions for the coefficients 𝐴𝐤,𝛼 and 𝐵𝐤,𝛼 of the quadratic Hamiltonian ℋ(2) Eq. (17) are:  

𝐴𝐤,+1 = −8(𝑥 − 1)𝑥(2𝐽 + 𝐽
′) − (𝑥 − 1)𝐷̃ (S3) 
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+2(𝑥(1 + Δ̃) − 1)𝐽𝛾𝐤
𝑥𝑦

 

+2(𝑥(1 + Δ̃′) − 1)𝐽′𝛾𝐤
𝑧 , 

𝐵𝐤,+1 = −2(𝑥(Δ̃ − 1) + 1)𝐽𝛾𝐤
𝑥𝑦
                   

−2(𝑥(Δ̃′ − 1) + 1)𝐽′𝛾𝐤
𝑧 ,  

     𝐴𝐤,−1 = −16(𝑥 − 1)𝑥(2𝐽 + 𝐽
′) − (2𝑥 − 1)𝐷 

     −2(1 − 2𝑥)2(𝐽𝛾𝐤
𝑥𝑦
+ 𝐽′𝛾𝐤

𝑧), 

𝐵𝐤,−1 = 2(1 − 2𝑥)
2(𝐽𝛾𝐤

𝑥𝑦
+ 𝐽′𝛾𝐤

𝑧)                

 

Supplementary Note 6. Cubic and cubic-linear vertices 

  In this section, we derive the cubic and cubic-linear vertices given in Eq. (24) and Eq. 

(25). The cubic Hamiltonian has three contributions  

ℋ(3) = ℋ𝑖𝑛𝑡𝑟𝑎
(3)

+ℋ𝑖𝑛𝑡𝑒𝑟
(3)

+ℋ𝐷
(3)
, (S4) 

with  

ℋ𝑖𝑛𝑡𝑟𝑎
(3) = 𝐽 ∑

〈𝐫,𝐫′〉,𝜈

∑

𝛼,𝛽=±1

{ ∑

𝛼′=±1

𝑎𝜈[2𝒮̃𝛼𝛽
𝜈 𝒮̃0𝛼′

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫𝛽𝑏̃𝐫′α′] 

               −𝑎𝜈[𝒮̃0𝛼
𝜈 𝒮̃00

𝜈 (𝑏̃𝐫𝛽
† 𝑏̃𝐫𝛽𝑏̃𝐫𝛼 + 2𝑏̃𝐫′𝛽

† 𝑏̃𝐫′𝛽𝑏̃𝐫𝛼)] + ℎ. 𝑐. }, 

(S5) 

 

ℋ𝑖𝑛𝑡𝑒𝑟
(3)

= 𝐽′ ∑

〈𝐫,𝐫′〉,𝜈

∑

𝛼,𝛽=±1

{ ∑

𝛼′=±1

𝑏𝜈[2𝒮̃𝛼𝛽
𝜈 𝒮̃0𝛼′

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫𝛽𝑏̃𝐫′𝛼′] 

               −𝑏𝜈[𝒮̃0𝛼
𝜈 𝒮̃00

𝜈 (𝑏̃𝐫𝛽
† 𝑏̃𝐫𝛽𝑏̃𝐫𝛼 + 2𝑏̃𝐫′𝛽

† 𝑏̃𝐫′𝛽𝑏̃𝐫𝛼)] + ℎ. 𝑐. }, 

(S6) 

 

ℋ𝐷
(3)
=
𝐷̃

2
∑

𝐫

∑

𝛼,𝛽=±1

[𝒜̃0𝛼𝑏̃𝐫𝛽
† 𝑏̃𝐫𝛽𝑏̃𝐫𝛼 + ℎ. 𝑐. ], (S7) 

To simplify the notation, we will write a particular term of (39) (in momentum space) as 

(I) = 𝑏̃𝐪̅1,𝛼
† 𝑏̃𝐪2,𝛽𝑏̃𝐪3,𝛾𝑓(𝐪𝑖, 𝑡), with  

𝑓(𝐪1,2,3, 𝑡) = {

1 𝑡 = 0
𝛾𝐪3
𝑥𝑦

𝑡 = 1

𝛾𝐪3
𝑧 𝑡 = 2

. (S8) 

The Nambu spinor of the bosonic operators can be Bogoliubov transformed into the quasi-particle 

representation 𝑏⃗ 𝐤 = 𝒰(𝐤)𝛽 𝐤 , where the matrix elements of 𝒰(𝐤)  are obtained from the 

Bogoliubov coefficients given in Eq. (20)  

𝒰(𝐤) = (
𝒰2×2
11 (𝐤) 𝒰2×2

12 (𝐤)

𝒰2×2
21 (𝐤) 𝒰2×2

22 (𝐤)
) (S9) 



 

 

5 

 

                             =

(

 

𝑢𝒌,+1 0 𝑣𝒌,+1 0

0 𝑢𝒌,−1 0 𝑣𝒌,−1
𝑣𝒌,+1 0 𝑢𝒌,+1 0

0 𝑣𝒌,−1 0 𝑢𝒌,−1)

 . 

After applying the above-mentioned Bogoliubov transformation, we obtain  

(I) = ∑

𝑛1,2,3

{𝐹(𝑎)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛽𝐪1,𝑛1𝛽𝐪2,𝑛2𝛽𝐪3,𝑛3 

+𝐹(𝑏)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛽𝐪̅1,𝑛1
† 𝛽𝐪̅2,𝑛2

† 𝛽𝐪̅3,𝑛3
†

 

+𝐹(𝑐)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛽𝐪̅1,𝑛1
† 𝛽𝐪̅2,𝑛2

† 𝛽𝐪3,𝑛3 

+𝐹(𝑑)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛽𝒒̅1,𝑛1
† 𝛽𝐪2,𝑛2𝛽𝐪3,𝑛3 

+𝐿(𝑐)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛿𝐪3,𝐪̅2𝛿𝑛3,𝑛2𝛽𝐪̅1,𝑛1
†

 

   +𝐿(𝑑)(𝛼𝛽𝛾, 𝑛1,2,3; 𝐪1,2,3, 𝑡)𝛿𝐪2,𝐪̅1𝛿𝑛2,𝑛1𝛽𝐪3,𝑛3}. 

(S10) 

The explicit forms of 𝐹(𝑎,𝑏,𝑐,𝑑) and 𝐿(𝑐,𝑑) can be obtained by simple algebras, which are not shown 

here for the sake of brevity. 

The “sink” (“source”) function 𝐹(𝑎) (𝐹(𝑏)) is symmetric under permutations of all three 

legs (momenta and flavors). Consequently, we introduce the symmetrized functions  

𝐹̃(𝑎) ≡ ∑

𝑃(𝐪1,2,3;𝑛1,2,3)

𝐹(𝑎),          𝐹̃(𝑏) ≡ ∑

𝑃(𝐪1,2,3;𝑛1,2,3)

𝐹(𝑏). (S11) 

Similarly, the “decay” function 𝐹(𝑐) and the “fusion” function 𝐹(𝑑) are symmetrized for the two 

outgoing and the two incoming legs, respectively,  

𝐹̃(𝑐) = ∑

𝑃(𝐪1,2;𝑛1,2)

𝐹(𝑐), 𝐹̃(𝑑) = ∑

𝑃(𝐪2,3;𝑛2,3)

𝐹(𝑐). (S12) 

After inserting the above results into Eq. (39), we obtain the explicit forms of the cubic 

vertices in 𝑉𝑠/𝑑
(3)

 Eq. (24) and 𝑉𝛼
𝐿 in Eq. (25). 

 

Supplementary Note 7. Quartic vertex 

  The quartic contributions to the expansion (9) are  

ℋ(4) = ℋ𝑖𝑛𝑡𝑟𝑎
(4)

+ℋ𝑖𝑛𝑡𝑒𝑟
(4)

, (S13) 

with  

ℋi𝑛𝑡𝑟𝑎
(4) = 𝐽 ∑

〈𝐫,𝐫′〉,𝜈

∑

𝛼,𝛽=±1

{[𝑎𝜈𝒮̃00
𝜈 𝒮̃00

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛽

† 𝑏̃𝐫𝛼𝑏̃𝐫′𝛽] 

           + ∑

𝛼′𝛽′=±1

[𝑎𝜈𝒮̃𝛼𝛽
𝜈 𝒮̃𝛼′𝛽′

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛼′

† 𝑏̃𝐫𝛽𝑏̃𝐫′𝛽′] 

      −2 ∑

𝛼′=±1

[𝑎𝜈𝒮̃𝛼𝛽
𝜈 𝒮̃00

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛼′

† 𝑏̃𝐫𝛽𝑏̃𝐫′𝛼′] 

(S14) 
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                   − ∑

𝛼′=±1

[𝑎𝜈𝒮̃𝛼0
𝜈 𝒮̃𝛽0

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛽

† 𝑏̃𝐫′𝛼′
† 𝑏̃𝐫′𝛼′ + ℎ. 𝑐. ] 

                     − ∑

𝛼′=±1

[𝑎𝜈𝒮̃𝛼0
𝜈 𝒮̃0𝛽

𝜈 𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛼′

† 𝑏̃𝐫′𝛼′𝑏̃𝐫′𝛽 + ℎ. 𝑐. ]}. 

Similarly to the cubic contribution, ℋi𝑛𝑡𝑒𝑟
(4)

 can be obtained from ℋi𝑛𝑡𝑟𝑎
(4)

 by substituting 𝐽 → 𝐽′, 

𝑎𝜈 → 𝑏𝜈. The matrix elements appear in the normal ordering of the quartic vertex are defined as:  

𝑁̅𝐫𝐫′
𝛼𝛽
≡
1

𝑁
∑
⟨𝐫,𝐫′⟩

⟨𝑏𝐫𝛼
† 𝑏𝐫′𝛽⟩ 

                                                                 =
1

𝑁
∑

𝐤

∑

𝑛

𝒰𝛼,𝑛
21 (𝐤)[𝒰𝛽,𝑛

21 (𝐤)]∗cos [𝐤 ⋅ (𝐫′ − 𝐫)], 

Δ𝐫𝐫′
𝛼𝛽
≡
1

𝑁
∑
⟨𝐫,𝐫′⟩

⟨𝑏𝐫𝛼𝑏𝐫′𝛽⟩ 

                                                                 =
1

𝑁
∑

𝐤

∑

𝑛

𝒰𝛼,𝑛
11 (𝐤)[𝒰𝛽,𝑛

21 (𝐤)]∗cos [𝐤 ⋅ (𝐫′ − 𝐫)], 

Δ̅𝐫𝐫′
𝛼𝛽
≡
1

𝑁
∑
⟨𝐫,𝐫′⟩

⟨𝑏𝐫𝛼
† 𝑏𝐫′𝛽

† ⟩ 

                                                                =
1

𝑁
∑

𝐤

∑

𝑛

𝒰𝛼,𝑛
21 (𝐤)[𝒰𝛽,𝑛

11 (𝐤)]∗cos[𝐤 ⋅ (𝐫′ − 𝐫)], 

(S15) 

             We note that some of these matrix elements are equal to zero because of the residual U(1) 

symmetry of the antiferromagnetic order. To obtain the normal-ordered Hamiltonian Eq. (34), we 

apply a mean-field (Hartree-Fock) decoupling to the quartic Hamiltonian Eq. (42), for example,  

𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛽

† 𝑏̃𝐫𝛼𝑏̃𝐫′𝛽 ≃ Δ𝐫𝐫′
𝛼𝛽
𝑏̃𝐫𝛼
† 𝑏̃𝐫′𝛽

† + 𝑁̅𝐫′𝐫′
𝛽𝛽
𝑏̃𝐫𝛼
† 𝑏̃𝐫𝛼 

                                 +𝑁̅𝐫′𝐫
𝛽𝛼
𝑏̃𝐫𝛼
† 𝑏̃𝐫𝛽 + Δ̅𝐫𝐫′

𝛼𝛽
𝑏̃𝐫𝛼𝑏̃𝐫′𝛽 

                                   +𝑁̅𝐫𝐫
𝛼𝛼𝑏̃𝐫′𝛽

† 𝑏𝐫′𝛽 + 𝑁̅𝐫𝐫′
𝛼𝛽
𝑏̃𝐫′𝛽
† 𝑏̃𝐫𝛼. 

(S16) 

The coefficients 𝑉𝛼𝛼
(4,𝑁)

 that appear in the normal term of Eq. (34) can be derived after consecutive 

Fourier and Bogoliubov transformations. 

 

Supplementary Note 8. One-loop diagrams in the long-wavelength limit 

Without loss of generality, we consider an isotropic Heisenberg model, i.e. 𝐽 = 𝐽′, Δ̃ = Δ̃′ 
to show the 1/𝐪 divergence of the one-loop diagrams involving the Goldstone mode. According 

to Eq. (20),  

lim
𝐪→0
𝑢𝐪,+, 𝑣𝐪,+ = √

𝐽𝑑

𝑣𝟎,+

1

√𝑞
,−√

𝐽𝑑

𝑣𝟎,+

1

√𝑞
 (S17) 
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where 𝑣𝟎,+ = 2𝐽𝑑√𝐷̃/(4𝐽𝑑
2) + 1/𝑑 is the spin wave velocity of the Goldstone mode 

and 𝑑 = 3 is the spatial dimension of the lattice equal to half of the coordination number. Note 

that the cubic vertices are proportional to a product of the Bogoliubov coefficients of three legs  

𝑉𝑑,𝑠
(3)
∝ 𝑢(𝑣)𝐪1,𝛼𝑢(𝑣)𝐪2,𝛽𝑢(𝑣)𝐪3,𝛾. (S18) 

For the decay and sink diagrams shown on the second line of figure 5a in the main text, we 

can choose, for instance, 𝐪3 = 𝐪 ∼ 𝟎, 𝛾 = +1 to contract with the leg of the long-wavelength 

bosons. Consequently,  

Σ(𝑑,𝑠)(+) ∼ |𝑉𝑑,𝑠
(3)
(𝐪1,2, 𝐪; 𝛼𝛽+)|

2 ∼ (1/√𝐪)2 ∼ 1/𝑞. (S19) 

As for the cubic-linear diagrams, we need to choose two legs to contract with the long-wavelength 

boson, implying that  

Σ(𝑐𝑙)(+) ∼ 𝑉𝑑
(3)
(𝟎,−𝐪𝐪;− + +) ∼ 1/𝑞. (S20) 

Finally, notice that 𝑉++
(4,𝑁)

∼ 1/𝑞 in the long-wavelength limit, because the quadratic forms 

of the transverse boson in Eq. (43) after the Bogoliubov transformation are proportional to 

𝑢(𝑣)𝐪,+1𝑢(𝑣)𝐪,+1. By adding up all diagrams in 𝒪(𝑀0), we have verified that the coefficient of 

the 1/𝑞 -factor vanishes, implying that the Goldstone mode is preserved after the one-loop 

correction. 

 

Supplementary Note 9. Calculation of the inelastic neutron scattering intensity 

 The imaginary-time dynamical spin susceptibility is defined as:  

𝜒𝜇𝜈(𝐪, 𝑖𝜔𝑛) = −∫
𝛽

0

𝑑𝜏𝑒𝑖𝜔𝑛𝜏〈𝒯𝜏[𝑠𝐪
𝜇
(𝜏)𝑠𝐪̅

𝜈(0)]〉. (S21) 

The real-time spin-spin correlation function in Eq. (22) is obtained by using the fluctuation-

dissipation theorem at 𝑇 = 0 after the analytic continuation 𝑖𝜔𝑛 → 𝜔 + 𝑖0
+:  

𝑆𝜇𝜈(𝐪,𝜔) = −2ℑ[𝜒𝜇𝜈(𝐪,𝜔)]. (S22) 

Up to order 𝒪(1/𝑀), 𝑆𝜇𝜈 acquires two contributions:  

𝑆𝜇𝜈 = 𝑆qp
𝜇𝜈
+ 𝑆tc

𝜇𝜈
, (S23) 

where 𝑆qp
𝜇𝜈

 includes contributions from the quasi-particle channel associated with “transverse 

fluctuations" of the SU(3) order parameter, while 𝑆tc
𝜇𝜈

 includes two-particle contributions 

associated with “longitudinal fluctuations" of the SU(3) order parameter3. The latter is not 

analyzed in this work, as it only contributes to the continuum. After the one-loop corrections, the 

quasi-particle channel can be written as a linear combination of the dressed bosonic propagators 

𝒢. For details, see Ref. 3. 

            To explain the experimental data, we used the Lorentzian broadening line-shape on the 

calculation, which is naturally implemented from the Green’s functions incorporated by simply 

adding an imaginary part to the real frequency: ω → ω + iη. Since the instrumental resolution of 

the INS spectrum is conventionally modeled with a Gaussian function, here we confirm the validity 

of using a Lorentzian broadening in our analysis. Supplementary Figure 5a compares the resolution 
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convoluted Gaussian and Lorentzian broadening for the same calculated energy scan at the ZC (𝐐 

=𝐐𝐦). For clearer comparison, the T1 transverse mode was subtracted in the calculations. The 

comparison shows a discrepancy in the tail of the T2-mode, however, the L-mode has nearly 

identical linewidths and peak-areas for both broadenings, which confirms that the Lorentzian and 

Gaussian broadenings essentially give the same result. Also, this result shows that the slightly 

extended tail of T2-mode does not affect the line shape of the L-mode at the ZC. Therefore, we 

conclude that the Lorentzian broadening provides a good approximation of the resolution function 

in the present case.  

 

Supplementary Note 10. Longitudinal mode extraction at the ZC 

Since the L-mode is close to the large quasi-elastic spectral weight in the proximity of the 

magnetic Bragg peak at the ZC (𝐐 =𝐐𝐦), the modeling of this scattering may affect the extraction 

of the accurate peak position of the L-mode.  We note that a gaped T1-transverse mode can further 

complicate the determination of the quasi-elastic line-shape. A single Gaussian (Lorentzian) 

function underestimate (overestimate) the line width. Alternatively, we modeled the peak with the 

Gaussian + Lorentzian functions. Here the Gaussian peak describes the elastic scattering and the 

Lorentzian peak with its detailed balance describe the inelastic contribution. Supplementary Figure 

5b shows the fitting the function to the data (cyan solid line). The longitudinal- (transverse-) mode 

was extracted from the remaining spectral weight, which gives the peak center at 1.30 meV with 

FWHM=0.644 meV (2.53 meV with FWHM=0.23). 

 

Supplementary Note 11. Fitting the INS spectrum.  

           Since the one-loop corrections involve the evaluation of several numerical integrations (cf. 

Eqs. (25, 32, 33) and Eq. (S15)), and the many-body effects are stronger near the zone center, we 

adopted the criterion of reducing the number of free model parameters to a minimum value. In 

addition, the splitting of the transverse modes and the longitudinal mode is most striking near the 

ZC and the calculated spectrum has a strong dependence on 𝐽 and 𝐷̃, while it is much less sensitive 

to Δ̃ and  Δ̃′. Moreover, as shown in the Supplementary Figure 4a and 4d, the spin excitations along 

the 𝐿-direction are almost flat, indicating that the inter-layer exchange constant is relatively small. 

We then choose 𝐽  and 𝐷̃  as free parameters while fixing Δ̃ = Δ̃′ = 1/3  (isotropic exchange 

interaction Δ = Δ′ = 1 in the 𝑆 = 2 model Eq. (1)) and 𝐽′ = 0.1𝐽. The parameter set 𝒜 (GLSWT) 

is obtained by fitting the energy of the longitudinal- and transiverse modes at the ZC with the 

analytical expression given in Eq. (21) (see Note 10 for the experimental energy values). The 

fitting procedue becomes more challenging upon inclusion of the one loop corrections because the 

calculation involves multiple integrations and the renormalization in the Hamiltonian parameters 

turns out to be rather strong for Ba2FeSi2O7. Here, we simply compute the renormalization of the 

real part of the self-energy for both modes at the ZC and then deform the set of parameters 𝒜 

(GLSWT) until the renormalized peaks positions match with the experimental peak positions at 

the ZC. The best-fit parameter set is listed as set ℬ in Table 1. The errors of these parameters  were 

estimated from the uncertainty in the χ2 value4 defined by 𝜒2 =
(𝐸𝐿
𝑒𝑥𝑝.

−𝐸𝐿
𝑐𝑎𝑙.)2

𝜎𝑠𝑡𝑑.𝑑𝑒𝑣.
2 +

(𝐸𝑇2
𝑒𝑥𝑝.

−𝐸𝑇2
𝑐𝑎𝑙.)2

𝜎𝑠𝑡𝑑.𝑑𝑒𝑣.
2 , where 

𝐸𝑖
𝑒𝑥𝑝.

, 𝐸𝑖
𝑐𝑎𝑙., 𝜎𝑠𝑡𝑑.𝑑𝑒𝑣.(i=L, T2) corrrespond to the energy and the standard deviation of the modes 

at the ZC.  
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Supplementary Note 12. Ordered moment  

             To have an independent validation of the model parameters obtained from fits of the INS 

data, we also compare the calculated staggered magnetic moment 𝑀𝑆  using the set ℬ given in 

Table 1 with the value of 2.95 𝜇B that was extracted from the neutron diffraction experiment1. At 

the mean-field level, the effective 𝑆 = 1 model predicts 𝑀𝑆 = 𝑔𝑎𝑏  √3 |〈𝑠𝐫
𝑥〉| 𝜇𝐵 =  2.92 𝜇𝐵  for 

𝑔𝑎𝑏  = 2.18 
1, while the 1/𝑀  correction from the GLSWT yields 𝑀𝑆 = 2.79 𝜇𝐵 , where the 

factor √3 arises from 𝑃𝑆=1𝑆𝐫
𝑥𝑃𝑆=1 = √3𝑠𝐫

𝑥. We note that the relatively smaller calculated value of 

𝑀𝑆 can be attributed to the fact that it is calculated from the effective 𝑆 = 1 model. To verify this 

argument, we performed the mean field calculation using the original 𝑆 = 2 model Eq. (1) and 

obtained 𝑀𝑆 = 3.09 𝜇𝐵. We further infer that the 1/𝑀 correction, which corresponds to an SU(5) 

GLSWT calculation for 𝑆 = 2, will bring the calculated value very close to the measured one (for 

a relative moment reduction equal to the one obtained for the SU(3) GLSWT the result is 𝑀𝑆 =
2.95 𝜇𝐵 in good agreement with the measured value).  This agreement confirms the validity of the 

spin one model obtained from fits of the INS data with the GLSWT plus one-loop corrections. The 

small reduction (-4.5%) of 𝑀𝑆, relative to the mean field value, indicates that the assumption of 

validity of a perturbative 1/𝑀 -expansion is self-consistently verified for the Hamiltonian 

parameters of Ba2FeSi2O7.  

  



 

 

10 

 

 

 

  



 

 

11 

 

Supplementary Figure 2. Gap excitation at magnetic zone center 

a Contour map for low energy inelastic neutron scattering data near the zone center. The magnon 

dispersion extracted from the data is indicated by green circles and is compared with the dispersion 

calculated with the GLSWT with and without a gap (Δgap =0.25 meV) in the spectrum. b Sum of 

the square of the energy difference between the measured and calculated dispersion as a function 

of gap size. The arrow marks the gap size Δgap ∼ 0.25 meV that best fits the data. c Contour plot 

for the field-dependent inelastic neutron scattering at ZC. The cyan circles indicate the energy of 

T1 transverse modes. ‘L’ denotes the scattering from the longitudinal mode. The T1-modes were 

fitted to gapless linear function (dashed cyan line) and gapped parabola function (solid black line), 

𝜔𝑚𝑎𝑔 = √Δ𝑔𝑎𝑝2 + (𝑐)2𝐻2. Fitting to the gapped parabola function gives a gap with 0.18 (2) meV.  
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Supplementary Figure 3. Magnetic susceptibility with angular field-dependence in ab-plane.  

Magnetic susceptibilities measured with magnetic fields (H=0.2 T) along H||[1, 0, 0], [1, 1, 0], and 

[0, 1, 0] directions of the crystal structure. The inset shows a picture of the measured Ba2FeSi2O7 

single crystal with the crystal orientations.  
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Supplementary Figure 4. Spin excitation along L-direction  

Inelastic neutron scattering spectra along [𝐻 , 0, 𝐿] for 𝐻=0 (a-c) and 1 (d-f) along with the 

calculated spectra using the GLSWT and GLSWT+one-loop corrections using parameter sets 𝒜 

and ℬ in Table. 1, respectively. All the calculated spectra were convoluted with the instrumental 

resolution of HYSPEC. 
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Supplementary Figure 5. Line broadening of the calculated spectrum and the extraction of 

the longitudinal mode at the ZC. 

a Calculated INS intensity of GLSWT+one-loop correction model after applying the Lorentzian 

and Gaussian broadening (convolution). L (T2) indicates the longitudinal (transverse) mode. b 

Constant momentum cut at the ZC (𝐐 =𝐐𝐦), measured using HYSPEC at SNS, shows a large 

elastic scattering, quasi-elastic scattering, L, and T2 modes. The large elastic and quasi-elastic 

scattering are fitted with Gaussian + Lorentzian functions (solid cyan line). The orange- and blue-

shaded regions indicate L- and T2-modes extracted from fitting. 
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