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In this paper, we address the challenge of uncovering patterns in variational optimal protocols for taking the
system to ground states of many-body Hamiltonians, using variational quantum algorithms. We develop highly
optimized classical Monte Carlo (MC) algorithms to find the optimal protocols for transformations between the
ground states of the square-lattice XXZ model for finite system sizes. The MC method obtains optimal bang-
bang protocols, as predicted by Pontryagin’s minimum principle. We identify the minimum time needed for
reaching an acceptable error for different system sizes as a function of the initial and target states and uncover
correlations between the total time and the wave-function overlap. We determine a dynamical phase diagram for
the optimal protocols, with different phases characterized by a topological number, namely, the number of on
pulses. Bifurcation transitions as a function of initial and final states, associated with new jumps in the optimal
protocols, demarcate these different phases. The number of pulses correlates with the total evolution time. In
addition to identifying the topological characteristic above, i.e., the number of pulses, we introduce a correlation
function to characterize bang-bang protocols’ quantitative geometric similarities. We find that protocols within
one phase are indeed geometrically correlated. Identifying and extrapolating patterns in these protocols may
inform efficient large-scale simulations on quantum devices.

I. INTRODUCTION

The simulation of many-body quantum states with quan-
tum devices [1] has made substantial progress. Significant ef-
forts have focused on single-purpose quantum simulators [2],
where we physically create systems described by the model
we would like to simulate. Adiabatic evolution is a common
approach to preparing the ground state of the model Hamil-
tonian. If done sufficiently slowly in the absence of a vanish-
ing spectral gap, this approach effectively prepares the desired
ground state [3, 4]. However, in most cases, the target states
lie across quantum phase transitions from the initial state, re-
sulting in a vanishing gap and divergent adiabatic timescales.
Furthermore, antiadiabaticity [5, 6] exacerbates the issue in
the presence of noise.

For certain problems, nonadiabatic methods have proven
promising [7, 8]. Despite its challenges, one promising ap-
proach for finding the ground state of many-body quantum
Hamiltonians is the variational quantum algorithm (VQA).
This method relies on starting from an easy-to-prepare ini-
tial state and evolving into the desired ground state of a tar-
get Hamiltonian by variationally modifying the parameters in
the time-dependent Hamiltonian of the device. The idea has
been explored for state preparation [9–11] and has showed re-
markable theoretical [12–26] and experimental [27–34] suc-
cess, particularly in quantum chemistry simulations. It is
also closely related to the quantum approximate optimization
algorithm [35–37]. The scheme utilizes a hybrid quantum-
classical system. Repeated physical evolutions on the quan-
tum machine are optimized in a feedback loop to minimize
the expectation value of the target Hamiltonian, thus creating
the ground state of the model Hamiltonian.

There are two broad approaches to VQA, methods based on
quantum circuits with parametrized gates and gate-free strate-

gies, which may offer better coherence times [38]. A ver-
sion of gate-free VQA is based on quantum optimal control
(QOC). It uses a device Hamiltonian of fixed form, with the
time evolution generated by varying the device’s tunable pa-
rameters. The target Hamiltonian only affects the cost func-
tion, giving rise to a general-purpose simulator. However,
a large number of variational parameters and the absence of
generic good initial guesses for the protocol pose challenges
to this scheme. Therefore, it is crucially important to find
and characterize patterns in the time dependence of tunable
parameters in the Hamiltonian of the device. Possible ex-
trapolation of these patterns to large systems may then al-
low efficient parametrization of the protocol to be optimized.
Pontryagin’s minimum principle plays a crucial role in QOC
[39, 40]. This minimum principle implies that, if a given set of
conditions are met, the optimal path has controls that take on
either their maximum or minimum value at any given time—a
bang-bang protocol. The bang-bang nature makes the proto-
cols amenable to characterization and potential extrapolation.

In this paper, focusing on the ground-state transformation
of the XXZ model on the square lattice, we explore optimal-
protocol patterns. We search for the optimal protocols that
prepare the desired target state using two different types of
Monte Carlo (MC) simulations on a classical computer. The
first method is direct brute-force Monte Carlo (BFMC), which
does not assume bang-bang protocols, but still converges to
them. Since Pontryagin’s principle does not guarantee bang-
bang protocols (due to the possibility of singular intervals),
this inefficient algorithm is important for initial verification
of the protocols’ bang-bang nature. The second, bang-bang
Monte Carlo (BBMC), assumes bang-bang parametrization of
protocols and outperforms the BFMC in accuracy and compu-
tational efficiency. For a fixed initial and target, we find almost
identical protocols for the two approaches. These optimal pro-
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tocols significantly outperform the adiabatic method.
Our studies are naturally limited to small system sizes due

to the computational complexity of simulating VQA on clas-
sical computers for a many-body state. Using an actual quan-
tum device to perform the time evolution physically, we ex-
pect to access much larger systems. Nevertheless, finding the
optimal protocol could still be difficult due to the complex-
ity of the control space and the number of iterations required
to reach the expectation value’s global minimum. Our work
aims to mitigate this issue by finding patterns in the classi-
cally obtained protocols for smaller system sizes, which we
hope may inform an efficient search for optimal VQA proto-
cols for larger system sizes. The patterns may yield an ef-
ficient parametrization upon extrapolation, helping the algo-
rithm hone in on the optimal protocol with significantly fewer
iterations.

The results of this paper are twofold. First, we develop
highly efficient numerical methods for finding optimal bang-
bang controls. Several improvements to the state-of-the-
art algorithms are presented; these improved algorithms use
adaptive moves in MC, combined discrete and continuous
parametrizations, and the precompiling of unitary operators
and diagonalized Hamiltonians. Second, we apply these al-
gorithm advances to the two-dimensional XXZ model. We
present a full characterization of the optimal protocols for sev-
eral numerically accessible system sizes and filling fractions,
scanning over all initial and target ground states. In the con-
text of our model, the exhaustive investigation allows us to
raise and answer multiple new questions discussed below.

The determination of the optimal protocols for all initial
and target ground states allows us to determine the total time
it takes to optimally transform the ground states of a class of
Hamiltonians to each other. This time serves as a practical
measure of distance between all ground states, endowing the
equilibrium ground states with valuable dynamical informa-
tion. Furthermore, in addition to the time needed for the trans-
formation, the associated bang-bang protocols’ characteristics
are of considerable interest. A salient property of bang-bang
protocols is the number of square pulses in the signal. As we
change the initial or target ground state, we find transitions
where the number of pulses changes.

We find that the transitions mentioned above are continu-
ous bifurcations. For example, in an interval with the control
field on, an infinitesimally small interval appears, where the
control field is turned off. This interval then grows continu-
ously. We next find phase diagrams as a function of initial
and target states, with different phase-diagram regions having
different pulses numbers. These transitions are between dis-
tinct pulse topologies, characterized by integer numbers, so
they are reminiscent of topological transitions. Furthermore,
they are continuous in the sense that the duration of the new
pulse emerging at a transition grows continuously from zero.
We have verified that in the vicinity of the transition, the pulse
durations fit power laws.

In addition to the topological characteristic of the number of
pulses, the geometric correlations between bang-bang pulses
are of interest. How similar are the pulses in various regions of
the space of the initial and target states? In this paper, we de-

fine a shape-shape correlation function that captures the quan-
titative similarity of two bang-bang protocols. Correlations
and anticorrelations appear across the transitions.

The outline of this paper is as follows. In Sec. II, we dis-
cuss the model and the general setup of state transformations,
including the measures of distance in the optimal protocol. In
Sec. III, we discuss the brute-force MC algorithm used for
an initial approximate determination of the optimal protocols.
Section IV discusses Pontryagin’s minimum principle and the
bang-bang nature of the optimal protocols. In Sec. V, we
present our efficient algorithm for the final exact determina-
tion of the optimal bang-bang protocols. We then discuss our
numerical results on the critical time needed for the optimal
protocols in Sec. VI. In Sec. VII, we present our results on
the topological phase structure of the optimal protocols and
the continuous bifurcation transitions between the phases. In
Sec VIII, we introduce a correlation function to capture the
geometric similarities of bang-bang protocols and present re-
sults on the correlations between the protocols in one phase.
Finally, we present our conclusion in Sec. IX. The details of
the optimized MC implementation are presented in the Ap-
pendix.

II. MODEL AND SETUP

A. The XXZ model

In this paper, we focus our studies on the XXZ model on the
square lattice. Generally, in variational quantum algorithms,
we can have two distinct Hamiltonian forms, the target Hamil-
tonian whose ground state we want to create, and the device
Hamiltonian, which generates the quantum evolution of the
state. However, in this paper, we focus on the case where we
want to create the ground state of a Hamiltonian that has the
same form as the device Hamiltonian. With this choice, the
problem can be viewed as finding an optimal shortcut to the
adiabatic evolution [41–49], as for initial states that are also
ground states for some choice of Hamiltonian parameters, adi-
abatic transformations are always possible in the presence of a
spectral gap. Our Hamiltonian, importantly, occurs in existing
systems based on superconducting qubits. We have

H(J,K) =
∑
〈i j〉

[
J(σx

i σ
x
j + σ

y
jσ

y
i ) + Kσz

iσ
z
j

]
.

We note that the Hamiltonian conserves
∑

i σ
z
i . The model is

relevant to superconducting qubit devices [50].
Due to the total σz conservation, for a square lattice with M

sites and C occupants, the Hamiltonian dimension becomes
d =

(
M
C

)
. We need a dimension of around 5000 or smaller to

perform the complex optimization algorithm and find the op-
timal protocols. We are therefore able to explore all occupan-
cies with a square lattice for M ε {4, 9}, along with some small
occupancies for M ε {16, 25, 36} systems. We also skip the
trivial cases of C ε {0, 1}. Furthermore, M −C occupants give
rise to the same evolution as C occupants due to the spin rota-
tion symmetry. We therefore focus on occupancies C 6 M/2.
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B. Measures of distance for optimal control

To prepare the ground state of the target Hamiltonian for pa-
rameters J and K using Monte Carlo simulations, we need to
minimize a cost function. In variational quantum algorithms,
the standard cost function is the expectation value of the en-
ergy. We can also define a cost function in terms of the wave
function [51? –53]:

C[ψ(τ)]E ≡ 〈ψ(τ)|Htarget|ψ(τ)〉,

C[ψ(τ)]S ≡ 1 − |〈ψ(τ)|ψtarget〉|
2,

where ψ(τ) is the final wave function after a total evolution
time τ. Upon successfully evolving into the target state, CS
vanishes and CE attains its minimum possible value for any
wave function, namely, the ground-state energy, E0, of the
target Hamiltonian.

Experimentally, the energy-based cost function is preferred
because it is measurable even if the target ground-state wave
function is a priori unknown. We note that the ground state
wave function is independent of the overall energy scale of
the Hamiltonian and only depends on the ratio of the coupling
constants:

r ≡
J
K
.

Thus a unique initial and target combination is specified by
two variables, ri and rt.

While C[ψ(τ)]S only depends on r by construction,
C[ψ(τ)]E also depends on the energy scale of the target Hamil-
tonian. It is convenient to use normalized measures of dis-
tance, which are equal to 1 (0) in the initial (target) state.
These can be defined in energy and state spaces as

D[ψ(τ)]E ≡
〈ψ(τ)|Htarget|ψ(τ)〉 − E0

〈ψinitial|Htarget|ψinitial〉 − E0
,

D[ψ(τ)]S ≡
1 − |〈ψ(τ)|ψtarget〉|

2

1 − |〈ψinitial|ψtarget〉|
2 ,

respectively. Clearly,D[ψ(τ)]E is linearly related to C[ψ(τ)]E ,
and minimizing the experimentally accessible C[ψ(τ)]E min-
imizes D[ψ(τ)]E . We have found that minimizing D[ψ(τ)]E
andD[ψ(τ)]S gives rise to practically identical protocols, with
a representative example shown in Fig. 1. Hereinafter, we fo-
cus on D[ψ(τ)]S in our numerical investigations as it is cus-
tomary to quantify the errors in terms of the fidelity of states,
bearing in mind that a measurable energy-based cost func-
tion amenable to the variational quantum algorithms on actual
quantum devices, leads to similar protocols.

We also note that for longer timescales than the time needed
to reach the target state exactly, many different paths evolve
into the desired target state. The optimization does not con-
verge to unique protocols. To get the exact minimum total
time, we choose to find the optimal protocols that evolve the
state just short of the target state. We thus avoid convergence
issues arising right at the critical time needed to reach the tar-
get state.

0.0 0.2 0.4 0.6
0.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8

Figure 1. A representative example of two different minimization
schemes, achieving nearly identical protocols. M = 9,C = 2.

With the measure of distance above, we stop our Monte
Carlo simulations when D[ψ(τ)]S ≤ 0.02 and call the total
time required to achieve the small error above, τcritical. We
can approximate the exact critical time by doing a low-order
polynomial fit to the distance as a function of total time and
extrapolate the time where D[ψ(τ)]S = 0. The extrapolation
of these protocols yields very similar protocols, characterized
by minor, unimportant modifications.

III. BRUTE-FORCE MONTE CARLO METHOD

To find the optimal protocol and shortcut the adiabatic
method, we first use a brute-force Monte Carlo (BFMC), pre-
viously used in several publications [40, 45, 52, 54]. In this
approach, we discretize time into identical fixed intervals and
allow the protocols to take on any value within the bounds of
our parameters, in this case [0, 1]. With N intervals, the final
state is

|ψ(τ)〉 =

N∏
j

e−i τN H(J j,K j)|ψinitial〉. (1)

The specific algorithm used is simulated annealing, where
implementation requires a random initial protocol {Ji}0, {Ki}0
and a pseudotemperature T that decreases with the progres-
sion of the algorithm. This pseudotemperature T controls the
probability that nonoptimal changes are accepted, which pre-
vents the algorithm from being stuck in local minima. We pick
an initial pseudotemperature T0 to have an initial acceptance
rate of around 85% for changes in the protocol that increase
the cost C, which can be calculated by numerically sampling
random changes in the protocol. We also initially run the
simulations for a smaller total time than the evolution time
and slowly increase τ to the desired value as the simulations
progress. We then follow this simulated-annealing procedure:

1. Change the value of the protocol at a random time step
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0.0
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1.0

0.0 0.2 0.4 0.0 0.2 0.4

Figure 2. A random initial protocol vs the optimal post-BFMC pro-
tocol for parameter J.

by some small amount randomly selected from the in-
terval [0, T

T0
].

2. Repeat the evolution, and measure the new cost Cnew

3. If this value is smaller than the previous cost, keep the
change. Otherwise, keep the change with probability
exp

[
− 1

T (Cnew − Cold)
]
.

4. Repeat steps 1-3 for Nsweeps sweeps, then reduce T (we
decreased T by 5%, i.e., T → 0.95T ).

5. Repeat steps 1-4 Ndecay times, calculating Ndecay to al-
low T to get close to 0. Set T = 0 and run Nfrozen more
times, then increase τ.

6. Repeat steps 1-5 until D[ψ(τ)] ≤ ε for some allowable
error ε. In our case, ε = 0.02.

This algorithm is inefficient as it does not utilize the bang-
bang nature of the optimal protocols. However, due to the
possibility of singular intervals, Pontryagin’s minimum prin-
ciple does not guarantee bang-bang protocols. This brute-
force search is necessary for verifying that the protocols are
indeed bang-bang. The piecewise-constant parametrization
is more suitable for finding bang-bang protocols than other
parametrizations such as a truncated Fourier series.

The iteration limits Nsweeps,Ndecay,Nfrozen should be chosen
to get sufficiently close to the optimal protocol for each τ. To
have confidence that we are reaching the optimal protocol for
each τ, we repeat the process for multiple seeds that create
different initial protocols and changes throughout the process
but converge on the same protocol. This BFMC process is
also repeated for a different number of intervals, N until an
increase in N creates a negligible difference in convergence.
For our case, N = 20 was sufficient. We find that the protocols
indeed collapse into bang-bang protocols, approaching either
the maximum or the minimum value (1 or 0) shown in Fig. 2.

It is illuminating to compare the performance of these op-
timal protocols with the adiabatic method. Evolving from
an initial to a target state can be carried out adiabatically by
smoothly changing the controls into the controls correspond-
ing to the target state. If done sufficiently slowly in the ab-
sence of a vanishing spectral gap, this approach prepares the
desired ground state. We choose a linear time dependence for

1.0

0.0 2.5

0.0 0.4

0.5

1.0

t

0.4

0.0
0.1 0.70.3 0.5

0.2

0.6

0.8

t
0.0

0.5

1.0

0.0

BFMC

Adiabatic

BFMC

Adiabatic

Figure 3. An example of the distance vs τ for the two methods with
M = 2, C = 2, ri = 0.11, rt = 9. The BFMC achieves the ground
state in a much shorter time. The optimal protocol for DS [ψ(τ)] = 0
is shown in the insets.

the Hamiltonian parameters. The results are shown in Fig. 3
and show a substantial difference in the absolute error in the
vicinity of the critical time for optimal evolution.

IV. PONTRYAGIN’S MINIMUM PRINCIPLE

Pontryagin’s minimum principle is a theorem in applied
mathematics that predicts generically bang-bang protocols for
linear control functions. Here, we briefly review the formal-
ism. Consider a set of dynamical variables x, which evolve
with a first-order differential equation ẋ = f (x, g) that con-
tains certain time-dependent parameters g(t). Given the ini-
tial values of the dynamical variables x(0), the differential
equation determines their final values for each set of time-
dependent control parameters. Suppose we want the optimal
controls g∗(t) that minimize a function F [x(τ)] of the dynam-
ical variables at the final time τ. Pontryagin’s minimum prin-
ciple states that

H(x∗, p∗, g∗) = min
g
H(x∗, p∗, g) (2)

for any time 0 < t < τ, where we have defined conjugate
momenta p that evolve as ṗ = −∂xH with boundary condi-
tions p(τ) = ∂xF [x(τ)] and the optimal-control Hamiltonian
H(x, p, g) ≡ f (x, g) · p. In Eq. (2), x∗ and p∗ represent
the solutions for the dynamical variable and their conjugate
momenta, respectively, corresponding to the optimal controls
g∗(t). If the equations of motion are linear in g(t), then the
optimal-control Hamiltonian will be a linear function of g(t),
and Eq. (2) indicates that g∗(t) takes its minimum or maxi-
mum allowed value at every point in time, leading to bang-
bang protocols.
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Now consider a general quantum state evolving with the
Schrödinger equation ∂t |ψ(t)〉 = −iH(t)|ψ(t)〉. The Hamilto-
nian contains some tunable coupling constants gα(t), which
we can change as a function of time:

H(t) =
∑
α

gα(t)Oα, (3)

where Oα are some Hermitian operators. We can tune each of
the coupling constants in some range

gmin
α < gα(t) < gmax

α . (4)

Apart from the constrained range above, we assume that
we can impart an arbitrary time dependence to the coupling
constant, to transform the initial state |ψ(0)〉 into the target
state |ψtarget〉. This can be achieved by fixing the total time of
the evolution, τ, and minimizing the cost function C(|ψ(τ)〉) =

1 − |〈ψ(τ)|ψtarget〉|
2.

To apply Pontryagin’s minimum principle, we consider all
the amplitudes needed to specify the wave function |ψ(t)〉
in an orthonormal basis as our dynamical variables x. For
the conjugate momenta p, we define a conjugate state |Π(t)〉
that evolves with the same Schrödinger equation ∂t |Π(t)〉 =

−iH(t)|Π(t)〉. Unlike the quantum state whose boundary con-
dition is known at the initial time, the conjugate states have
known boundary conditions at the final time

|π(τ)〉 = ∂ψC(|ψ〉)
∣∣∣
t=τ, (5)

where C(|ψ(τ)〉) plays the role of F [x(τ)] of the general for-
malism. The above derivative should be interpreted in terms
of the real and imaginary parts of the components of ψ. For
our particular fidelity-based cost function, we have

|Π(τ)〉 = −2|ψtarget〉〈ψtarget|ψ(τ)〉. (6)

The state and its conjugate determine whether the controls
take their minimum or the maximum allowed values accord-
ing to [54]

gα(t) =

{
gmax
α , Im[〈Π(t)|Oα|ψ(t)〉] < 0

gmin
α , Im[〈Π(t)|Oα|ψ(t)〉] > 0. (7)

In our case, the Hamiltonian has two tunable coupling con-
stants J and K, and we can write OJ = H(J = 1,K = 0)
and OK = H(J = 0,K = 1). An example is shown in Fig. 4.
The flat pieces in the figure are a consequence of the evolution
generated by a Hamiltonian H = Oα in these intervals, which
gives eiHtOαe−iHt = Oα.

V. BANG-BANG MONTE CARLO TECHNIQUES

With the bang-bang nature of the protocols confirmed, we
take advantage of this form and create more efficient Monte
Carlo processes, allowing exploration of larger system sizes
that were previously limited due to infeasible computing
times. Computationally, the unitary operator generation is by
far the most demanding part of the simulation, taking O(d3)

0.04

0.00

0.01

0.00 0.10 0.20 0.30
0.04

0.00

0.02

Figure 4. An example of H for M = 9, C = 2, ri = 4.752, rt =

0.582.

where d =
(

M
C

)
is the dimension of the Hamiltonian. Of course,

this step is precisely what the quantum device will perform
by physical evolution and measurement instead of calculating
the solution to the Schrödinger equation on a classical com-
puter. In our investigation on a classical computer, however,
we need to reduce the number of times we generate the uni-
tary operator to make the simulations more efficient. We run
a two-step bang-bang Monte Carlo (BBMC) algorithm. First,
we apply the discrete-bang Monte Carlo (DBMC) algorithm,
which is similar to the BFMC, but the protocols are restricted
to the maximum and minimum within our parameter range, 1
and 0. After that, we apply the continuous-bang Monte Carlo
(CBMC) algorithm, which changes the simulation parameter
to when transitions occur, avoiding restricting the jumps to
discrete intervals.

A. Part 1: Discrete-bang Monte Carlo

The DBMC avoids the expensive unitary operator gener-
ation at each step in the evolution by precompiling the uni-
tary operators once for each time step τ

N for N total intervals.
The protocol is parametrized as a piecewise constant proto-
col, where the control parameter for each interval is set either
at either the minimum or the maximum allowed value instead
of searching over all intermediate values, utilizing the result
of Pontryagin’s principle. The computations then resemble
Monte Carlo simulations of an Ising-type system. For a single
timestep, we are only required to generate three UJK , opera-
tors U11,U10, and U01, where the subscript indicates the con-
stant values of J and K over a time τ/N. For example, U10
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corresponds to an interval where J takes its maximum value
and K is turned off. We note that U00 = I and should not ap-
pear in any optimal protocols since its only effect is wasting
time without changing the state. Then, each step in the evolu-
tion is reduced to O(d2) matrix-vector multiplication. We also
take advantage of adaptive step sizes for a given τ, allowing
us to start with a coarse protocol, i.e., small N, and iteratively
double the number of intervals for a fixed τ. For small N,
optimization is computationally inexpensive but typically far
from the true optimal protocol. For large N, convergence re-
quires many sweeps if starting from a random initial protocol.
This adaptive method, where the initial protocol for larger step
sizes is generated by the optimized protocol for the previous
step size, significantly reduces the total number of sweeps re-
quired for convergence.

B. Part 2: Continuous-bang Monte Carlo

In this approach, a certain number of jumps are assumed
and the corresponding times for these jumps are treated as the
variational parameters of the protocol. This number is typ-
ically very small (less than 5) so we are left with a simula-
tion with very few variational parameters. Of course, the re-
sults of the DBMC provide a good estimate for the number of
jumps and their approximate time. With a continuous param-
eter, namely, the time of each pulse, treated as a variational
parameter, we cannot precompile the operators and must gen-
erate the unitary operators at each step in the evolution. How-
ever, the CBMC shortcuts this generation by prediagonalizing
HJK for the three possible combinations of J and K, saving
the eigenvectors and eigenvalues VJK and DJK , and expressing
the unitary operator as U(4t) = VJKe−i4tDJK V†JK for timestep
4t. Then, the only time-dependent component which must
be generated at each step in the evolution is e−i4tDJK , which
takes O(d) operations. We then evolve the state according to
|ψ(t + 4t)〉 = VJKe−i4tDJK V†JK |ψ(t)〉, where we avoid matrix-
matrix multiplication by doing three matrix-vector multiplica-
tions. This approach reduces the evolution down to O(d2) op-
erations. This approach allows for true optimal convergence
due to avoiding the interval restriction. It is also quite efficient,
particularly when combined with the first discrete step that ef-
fectively determines the number and approximate jumps’ lo-
cation.

This technique outperforms the BFMC in optimal-protocol
accuracy and computational efficiency. The performance
gains are substantial. For small systems accessible to BFMC,
the running times are improved by around three to four or-
ders of magnitude, reducing the total computation time for
all initial and target states from weeks to minutes. For larger
systems, the computations become infeasible with the BFMC
algorithm. Thus our BBMC method gives access to system
sizes with Hilbert spaces of dimension up to around 5000 with
our computing power. We compare the protocols found from
this simulation with the BFMC in Fig. 5; they are nearly iden-
tical. We discuss several more algorithm optimizations in the
Appendix.

As our ultimate goal is to search for patterns in the optimal

1

0
0 0.40.2 0 0.2 0.4

Figure 5. Examples of the final optimal protocols for the two MC
methods. Assuming bang-bang protocols achieves the same shape,
but performs slightly better inD[ψ(τ)].

protocols across system sizes, different protocols must achieve
the same measurement of distance D. Scaling τ makes it un-
likely that two different initial-target combinations will have
the same D. So, after achieving D ≤ 0.02, we implement a
binary search in τ which hones in on the total time required to
achieve the optimal protocolD = 0.02.

VI. PROPERTIES OF THE CRITICAL TOTAL TIME

We first present our numerical results for the critical total
time τcritical for reaching the target. The data are presented
in a color plot with the horizontal (vertical) axis representing
the initial (target) state in terms of the parameters ln(ri) and
ln(rt). We explore a wide range of parameters with either J or
K dominating.

For a fixed initial and target state, a perfect optimal evolu-
tion withD = 0 has an evolution determined by |ψrt 〉 = U |ψri〉,
which means the optimal evolution from |ψrt 〉 into |ψri〉 can
be done with the same protocol running backwards in time.
Therefore the total evolution time and other quantities calcu-
lated in this paper (including the number of pulses and char-
acteristic pulse time) are symmetric about the diagonal in the
(ri, rt) space. Although we useD = 0.02, and despite possible
numerical artifacts and inaccuracies, we indeed observe this
symmetry, confirming that we are finding very similar opti-
mal protocols to those that prepare the target state exactly.

Patterns emerge in τcritical across all system sizes, as shown
in Fig. 6. As (ri, rt) gets further away from the diagonal,
τcritical increases, as expected. This increase correlates with a
decrease in |〈ψtarget|ψinitial〉|

2, and this overlap is shown in Fig.
7. Intuitively, increasing the distance between the initial and
target states should increase the total time. Figure 8 directly
shows the relationship between τcritical and |〈ψtarget|ψinitial〉|

2 for
two different system sizes. For a fixed ri, there is a clear cor-
relation between the two.

An important finding of these numerical studies concern-
ing the promise of applying them to actual hybrid classical-
quantum devices for VQA involves the dependence of the crit-
ical time on the Hilbert space dimension. Although systems
with a larger Hilbert space lead to an increase in classical com-
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Figure 6. τcritical for all nine system sizes explored. As the dimension
d =

(
M
C

)
increases, we decrease the resolution due to computational

complexity. White space indicates no data due to the initial and target
states being nearly identical

puting time, we sometimes find a shorter τcritical in a larger
Hilbert space. As shown in Fig. 9, for ln(ri) < 0, ln(rt) < 0
we see that τ3 > τ4, where τC is for M = 9 with C occupants.
τ3 = 1.11 ± 0.92 and τ4 = 0.99 ± 0.78. The correlation of
the wavefunction overlap with the total time plays an impor-
tant role here. Although, when τ3 > τ4, the C = 4 system
does not always have a larger overlap between the initial and
the target states than the C = 3 system, in most of the darker
red region where τ3 � τ4, there is indeed a larger overlap
between the initial and target states for the C = 4 system.
This result implies that the complexity of the VQA does not
necessarily increase as the fully classical counterpart becomes
exponentially more expensive, suggesting a path to quantum
supremacy for the determination of many-body ground states
using optimal control.

VII. TOPOLOGICAL PHASE DIAGRAM OF THE
OPTIMAL PROTOCOLS

Bang-bang protocols are characterized by one integer,
namely, the number of pulses in the protocol. This topological
property is associated with every protocol in the (ri, rt) space.
Thus the above space breaks into equivalence classes, each
with a fixed number of on pulses. These regions of the (ri, rt)

Figure 7. A decrease in |〈ψtarget|ψinitial〉|
2 increases τcritical which in

turn increases the number of pulses in the optimal protocol shown
in Figure 10. As the dimension d =

(
M
C

)
increases, we decrease the

resolution due to computational complexity. White space indicates
no data due to the initial and target states being nearly identical.

space are reminiscent of different topological phases. We thus
refer to them as a topological phase diagram. The analogy
might appear superficial at this stage. However, the emer-
gence of critical exponents at the transitions between these
regions and geometric correlations between protocols within
one region suggest a possibly deeper relationship.

Close to the diagonal, we seem to have only one on pulse in
both J and K (Fig. 10). As we move away from the diagonal
to regions with a smaller overlap and a longer critical total
time, we see an increase in the number of pulses. The number
of pulses is correlated with the critical time.

The number of pulses changes by 1, going from P to P + 1,
as we cross a phase boundary. Thus the diagram has a layered
structure, where phases with P+1 pulses appear as islands en-
closed by phases with P pulses. This feature can be explained
by noticing that the transition mechanism is through a bifur-
cation. As an example, consider an interval where a control is
turned off. At the transition, an infinitesimally narrow square
on pulse occurs at some point in this interval. The width of
the pulse emerging at the transition grows continuously from
zero. Interestingly, there are many similarities in the struc-
ture of the phase boundaries in the number of pulses and the
overlap |〈ψtarget|ψinitial〉|

2.
Another pattern emerges in the characteristic time for on
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Figure 8. τcritical as a function of initial-target overlap.
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Figure 9. The log of the ratios of τ for M = 9 between C = 3 and
C = 4 occupants across all combinations of ri, rt. For ri ≤ 1, rt ≤

1, most optimal protocols for three occupants had total times which
were greater than those for four occupants. τ3 = 1.11 ± 0.92, τ4 =

0.99 ± 0.78

pulses, tJ
on/(PJτ) and tK

on/(PKτ). The upper right quadrant
with ln(ri), ln(rt) > 0 has a single constant on pulse in J

across all system sizes explored, with a similar pattern in K
where ln(ri), ln(rt) < 0 shown in Fig. 11. From these times,
where tJ

on/(PJτ) = 1, we transition into tJ
on/(PJτ) = 0.5, which

signals a bifurcation opening up, with smooth transitions to
tJ
on/(PJτ) < 0.5. The data also suggest that rirt > 1 results in
J-dominant protocols, with rirt < 1 resulting in K-dominant
protocols. We note that the number of pulses (Fig. 10) and the
typical timescale of the each pulse (Fig. 11) reflect different
and complementary aspects of the protocols. For example, the
red region in the PJ plot for M = 9 and C = 3 in Fig. 10 indi-
cates many pulses in J. However, the complementary panels
in Fig. 11 indicate that these are short J pulses and the dy-
namics are actually dominated by fewer but longer K pulses.

The continuous nature of the bifurcations raises the ques-
tion of any connection to critical phenomena. Interestingly,
the duration of the pulses that appear at the bifurcation tran-
sition grows as a power law for all transitions in the phase
diagram, as shown, e.g., in Fig. 12. A representative three-
dimensional plot of the optimal protocols in K for M = 9,C =

2 is shown in Fig. 12. Different surfaces indicate the times of
jumps in the bang-bang protocols. We see continuous changes
in the optimal protocol as a function of ri, rt.

Searching for universality, we investigated these power
laws for many different bifurcations. While generally there is
a good critical fit for all bifurcations, we have not been able to
find a universal exponent governing the transitions throughout
the phase diagram. The exponents may be analogous to other
continuously changing critical exponents, e.g., in a Luttinger
liquid.

VIII. CHARACTERIZING GEOMETRIC CORRELATIONS
BETWEEN BANG-BANG PROTOCOLS

To further scrutinize the analogy between the region of the
(ri, rt) space with phases, we note that in a ground-state phase
diagram, states within a phase have unifying properties. In
addition to the topological pulse number above, each protocol
has a geometric structure associated with the precise times the
control is turned on and off. Is the geometry correlated within
each phase?

To capture the geometric similarity, we need to quantify it
in terms of a correlation function. We define

C[a(t), b(t)] ≡
∫ 1

0

1
2
{[2a(t) − 1][2b(t) − 1] + 1} dt

for normalized protocols a(t), b(t). This function measures
the fractional overlap of bang-bang protocols where the val-
ues of a(t), b(t) are restricted to 1 or 0 at any given time t.
C[a(t), b(t)] = 1 implies identical normalized protocols, and
C[a(t), b(t)] = 0 implies perfectly anticorrelated protocols.
We note that perfect anticorrelation is only possible for two
protocols with the same number of jumps occurring at the
same normalized time.

Accounting for the fact that the expected output of C varies
based on the number of jumps in a(t) and b(t), we introduce
the modified correlation function

Cm[a(t), b(t)] ≡ C[a(t), b(t)] −C[S ]
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Figure 10. The number of pulses for all nine system sizes explored. As the dimension d =
(

M
C

)
increases, we decrease the resolution due to

computational complexity. White space indicates no data due to the initial and target states being nearly identical.

Figure 11. The characteristic ”on” times for all nine system sizes explored. As the dimension d =
(

M
C

)
increases, we decrease the resolution

due to computational complexity. White space indicates no data due to the initial and target states being nearly identical
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Figure 12. Top: The optimal protocols in K for M = 9, C = 2,
restricting the image to ri < rt. Colors indicate the orders of jumps,
with blue first, green, red, and cyan last. The optimal protocol seems
to be a continuous function of ri, rt. A bifurcation opens (red and
green surfaces) where ln(rt) = 1. Bottom: A cross section of the
above plot where ln(ri) = −1.4, along with a power-law fit tpulse =

(rt − r0)α + c with three fitting parameters, α, r0, and c.

to effectively subtract the background. The above correlation
function calculates the difference between the protocol over-
lap and the average protocol overlap given the total number of
jumps, S , in both protocols. To calculate C[S ], we randomly
draw S total jumps from the interval [0, 1], sort the times of
jumps in the protocols, and let si correspond to these sorted
times. Then the two protocols have the same value on the
intervals [s2n, s2n+1]. For even S , setting sS +1 = 1, and con-
sidering S ! possible orderings for these sorted times, C[S even]
can be calculated as

C[S even] =S !
∫ sS +1

0
· · ·

∫ s2

0

S +1∑
i=1

−1i+1si ds1 . . . dsK

=S !
S +1∑
i=1

(−1)i+1 i
(S + 1)!

=
S + 2

2(S + 1)
.

In the case of odd S ,

C[S odd] =
1

S + 1

S∑
i=1

(−1)i+1i =
1
2
,

where the sum only goes up to S rather than S + 1 because
[sS , 1] is now an anticorrelated region. As a check, we nu-
merically generated 106 random protocols for all S ≤ 10, and
calculated the average C, which was in agreement with the
expression above.

The behavior of the correlation function is shown in Fig.
13. We compare all protocols to two different protocols for
each system size, which are outlined in black. We find that
protocols within one phase exhibit correlations, while anticor-
relations emerge across the phase boundaries.

IX. CONCLUSIONS

In this paper, we studied patterns in the optimal protocols
scanning over a wide range of initial and target ground states
of the two-dimensional XXZ model for various system sizes.
Identifying patterns and properties of the optimal protocols
and characterizing the needed timescales are crucial for effi-
ciently implementing VQA on near-term hybrid quantum de-
vices.

To achieve the above goal in the first stage, where the quan-
tum evolution is simulated on classical computers, we pushed
the state of the art substantially by several algorithmic inven-
tions and optimizations. These improvements enabled us to
tackle an exceedingly challenging problem of finding globally
optimal protocols for nonequilibrium state transformation in a
truly many-body setup with large Hilbert spaces for a two-
dimensional interacting system.

The complexity of VQA ultimately relies on the critical
time needed for transforming a quantum state to the target
with an optimal protocol. The longer this time, the more chal-
lenging it gets to find the optimal protocol even with a quan-
tum device that can generate the time evolution (instead of
calculating it as in this paper). We found that for the XXZ
model on the square lattice, the total time does not necessar-
ily increase with the Hilbert space dimension. Although this
counterintuitive finding is specific to the case studied here, it
is highly encouraging for future applications of VQA.

We also find that the wave -unction overlap seems to be the
key determinant of the critical time. The overlap is a mea-
sure of distance in the Hilbert space, imposing a fundamental
speed limit even if we could generate a direct rotation in the
Hilbert space. Such direct rotation typically requires nonlo-
cal generators. The fact that the optimal time for dynamics
generated by a physically relevant local device Hamiltonian
also correlated with the overlap is a promising indicator of the
potential of VQA. Similarly, we found this result for the spe-
cific XXZ model. Thus it remains an open question whether
the correlation between wave-function overlap and the criti-
cal preparation time is a generic property of many-body inter-
acting systems, which calls for future investigations on other
models. Fermionic and magnetically frustrated systems are of
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Figure 13. The protocol correlations for all nine system sizes. Black squares indicates the protocol which is being compared to. As the
dimension d =

(
M
C

)
increases, we decrease the resolution due to computational complexity. White space indicates no data due to the initial and

target states being nearly identical.
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particular interest in this regard. Nevertheless, the XXZ model
is nonintegrable and does not map to any noninteracting mod-
els. It therefore appears that our model-specific findings might
apply to a broad class of interacting systems.

We introduced the notion of a phase diagram for the opti-
mal protocols in the space of initial and target states. Since
each optimal bang-bang protocol is characterized by an in-
teger number of pulses, the space breaks into regions of the
same pulse number. These topological phases are separated by
continuous bifurcation transitions and exhibit a layered struc-
ture. The number of pulses goes up upon increasing critical
preparation time.

We also introduced a correlation function to capture the ge-
ometric similarities of bang-bang protocols and found that the
protocols within a phase are geometrically correlated for the
XXZ model. These findings can inform efficient VQA imple-
mentation along two directions. First, finding optimal proto-
cols for a particular initial and target state can yield excellent
initial guesses for other initial and target states for the same
system size. It seems natural that small changes to the initial
and target states should correspond to small changes in the
optimal protocols connecting them regardless of the model.

More importantly, the changes across system sizes also ex-
hibit a progression that can provide good initial guesses for
the optimal protocols for a slightly larger system or slightly
lower or higher filling fraction. Our results for the XXZ model
suggest that the challenges of applying VQA to large sys-
tems may be mitigated by exploring all smaller systems for
a range of initial and target states. The topological and ge-
ometric patterns in the optimal protocols may be utilized to
construct smart initial Ansätze for the larger systems. This
finding calls for further investigations on larger systems be-
yond the capabilities of classical computers by using hybrid
quantum-classical machines while utilizing many of the im-
provements to the classical optimization algorithm presented
in this paper. Such investigations may be transformative for
quantum technology. For example, suppose the slow transfor-
mation of the optimal protocols with system size persists to
the thermodynamic limit. In that case, a system-size adaptive
VQA, where the optimal protocols for each system size con-
struct the initial Ansatz for the subsequent system size, would
yield a true quantum advantage in simulating many-body in-
teracting systems.
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APPENDIX: ALGORITHM IMPLEMENTATION AND
OPTIMIZATION DETAILS

For a fixed τ and lower and upper limits on the number
of intervals Nmin = 2i,Nmax = 2i+ j, implementation of the
BBMC algorithm is as follows:

1. Diagonalize the Hamiltonian for the three meaningful
combinations of J and K, and store them in VJK ,DJK .

2. For each possible total interval number Na such that
Nmin ≤ Na = 2a ≤ Nmax for some a, generate and save
the unitary matrices for each combination of timestep
4t = τ/Na and HJK . This results in 3 j total unitary
matrices where j = log2( Nmax

Nmin
). Restricting the total

number of intervals to a power of some fixed integer
b allows the optimal protocols for Na = ba to be used as
an initial protocol for N = ba+1.

3. Start with Na = Nmin and some random initial proto-
col. Use the standard annealing process outlined by the
BFMC, where a random interval selection now switches
the protocol’s value at that time.

4. Double the number of steps and repeat step 3. Use the
optimal protocol for the previous step size as an initial
protocol in the next step size. Do this until Na = Nmax.

5. Convert the optimal protocol for Na = Nmax into one
that specifies the time that jumps occur. With this con-
version, run a second simulation that performs a similar
annealing process, except that it now randomly selects
the time that the jumps occur and makes some change
in that time that is proportional to T .

6. Repeat steps 2-5, scaling time, untilD[ψ(τ)] ≤ ε.

Too few steps make the evolution coarse and restrict the time
that these jumps can occur. Too many steps make the DBMC
computationally expensive and make it difficult to find the op-
timal protocol with so many indices to choose from. We find
that Nmin = 4,Nmax = 64 is enough to get us close to the op-
timal protocol without getting stuck in local minima. Each
time the number of steps is increased, the initial protocol for
the next DBMC run is the optimal protocol for the previous
step size, which reduces the total number of sweeps required.

This adaptive step size also allows for another efficiency
boost. For n ≥ 2Nmin, if a given protocol is unchanged for
many steps, use the larger timestep exponentiated matrix. We
find that most optimal protocols are fixed for many timesteps.
When n = Nmax we end up doing significantly fewer than Nmax
matrix-vector multiplications during evolution. Several opti-
mization techniques are used to increase the speed of the com-
putation as discussed below.

Scaling total time. We choose a fixed initial time. After the
first iteration of the BBMC process, it linearly extrapolates the
total time we need to get D[ψ(τ)] ≈ 0.2. After this, it scales
total time after each iteration, with the scalar being roughly
proportional to the distance to our target.

Adaptive step size. Early on in the CBMC processes, espe-
cially when near our random initial protocol, it is necessary to
make significant changes in the protocol. When near the opti-
mal protocol, small changes are required, as it is unlikely that
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large changes will lead to improvement. To achieve this, we
set a temperature-dependent upper bound B(T ) for the allowed
change, which starts off as a significant fraction of total time,
usually B(T0) = 0.8τ and decays at the same rate as the pseu-
dotemperature to less than 2% of the total time. For a fixed
upper bound B, we randomly draw a change from [0, B(T )].

Varying total sweeps. For total times much shorter
than τcritical, convergence is relatively easy and requires few
sweeps. As we approach the critical time, with D[ψ(τ)] ap-
proaching 0, convergence becomes more difficult. Further-
more, iterations with fewer variational parameters need sig-
nificantly fewer sweeps. To account for these issues, we allow
the total number of sweeps to be proportional to the total num-
ber of intervals or jumps.

Saving each state during evolution. During all MC simu-

lations, changing a given interval does not change the state
leading up to that interval. Therefore we can save the state at
every step in the evolution and only “continue” the evolution
from the change onward. Since the interval that receives the
change is uniformly distributed across all possible steps, this
cuts the computation time by a factor of 2.

Penalizing fictitious jumps. To save steps during the BFMC
and DBMC, we bias our index selection towards points near
a jump. It is unlikely that a single interval getting changed in
the middle of a plateau is going to get us closer to the target
state: Progress is more likely to be made by slightly shifting
the time a jump occurs. To implement this bias, we add a
“reroll” if an index is selected, which has identical neighbors.
To further prevent wasted iterations, we do not allow changes
that result in both J and K being turned off.

[1] R. P. Feynman, “Simulating physics with computers,” Int. J. of
Theor. Phys. 21, 467 (1982).

[2] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simula-
tion,” Rev. Mod. Phys. 86, 153–185 (2014).

[3] J. D. Biamonte, V. Bergholm, J. D. Whitfield, J. Fitzsimons,
and A. Aspuru-Guzik, “Adiabatic quantum simulators,” AIP
Advances 1, 022126 (2011).

[4] R. Babbush, P. J. Love, and A. Aspuru-Guzik, “Adiabatic
quantum simulation of quantum chemistry,” Sci. Rep. 4, 6603
(2014).

[5] A. Dutta, A. Rahmani, and A. del Campo, “Anti-Kibble-Zurek
behavior in crossing the quantum critical point of a thermally
isolated system driven by a noisy control field,” Phys. Rev. Lett.
117, 080402 (2016).

[6] K. Ritland and A. Rahmani, “Optimal noise-canceling short-
cuts to adiabaticity: application to noisy majorana-based gates,”
New J. of Phys. 20, 065005 (2018).

[7] D. S. Steiger, T. F. Rønnow, and M. Troyer, “Heavy tails in
the distribution of time to solution for classical and quantum
annealing,” Phys. Rev. Lett. 115, 230501 (2015).

[8] B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, “Quantum
versus classical annealing of ising spin glasses,” Science 348,
215 (2015).
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