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The path-integral control, which stems from the stochastic Hamilton-Jacobi-Bellman equation,
is one of the methods to control stochastic nonlinear systems. This paper gives a new insight into
nonlinear stochastic optimal control problems from the perspective of Koopman operators. When
a finite-dimensional dynamical system is nonlinear, the corresponding Koopman operator is linear.
Although the Koopman operator is infinite-dimensional, adequate approximation makes it tractable
and useful in some discussions and applications. Employing the Koopman operator perspective,
it is clarified that only a specific type of observable is enough to be focused on in the control
problem. This fact becomes easier to understand via path-integral control. Furthermore, the focus
on the specific observable leads to a natural power-series expansion; coupled ordinary differential
equations for discrete-state space systems are derived. A demonstration for nonlinear stochastic
optimal control shows that the derived equations work well.

I. INTRODUCTION

There are many stochastic phenomena in the real
world, and the studies for them are interesting topics
in physics. Furthermore, the focus includes not only
analyzing the stochastic phenomena but also control-
ling them. One of the famous examples is the stochas-
tic path-integral control by Kappen [1, 2]. In control
problems for deterministic cases, the Hamilton-Jacobi-
Bellman (HJB) equation is usually employed [3]. The
HJB equation is also useful for the cases with stochas-
ticity, and in Kappen’s prominent papers [1, 2], the us-
age of the path-integral approach and importance sam-
pling methods gives a novel way for the control prob-
lem from the viewpoint of physics. There are many pa-
pers on path-integral control, and one of the improve-
ments is the iterative path-integral method derived from
information-theoretic arguments [4–7]. In the machine
learning community, a connection to the gradient descent
method makes more practical algorithms [8]. As shown
in these papers, the iterative path-integral methods give
real-time control, and there are several practical appli-
cations. Although the usage of neural networks is one
of the promising approaches for control issues, it gives
black-boxes in general. In physics, there are many the-
oretical frameworks for dealing with stochastic systems,
and it is useful to explore new methods for control prob-
lems from a physical perspective. Such studies will avoid
black-box methods for control issues.
One of the candidates to seek such control methods

is the Koopman operator [9]. The Koopman operator is
a kind of composition operator and typically applied to
dynamical systems. Although the original dynamical sys-
tems are nonlinear and finite-dimensional, the Koopman
operator gives a map from functions to functions; the op-
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erator is linear but infinite-dimensional, as denoted later.
Because the linearity is tractable in many situations, the
Koopman operator has recently attracted much atten-
tion in time-series data analysis [10, 11]. In such time-
series data analysis, the dynamic mode decomposition
gives much insight for various topics ranging from fluid
dynamics to nonlinear oscillating systems. Because of its
compatibility with dynamical systems, the Koopman op-
erator is also used in control problems [12–16]. However,
there is much room for research on the applications of
the Koopman operator in control issues.
In many cases, a kind of sampling method gives

the evaluation of statistics. However, in the path-
integral or the iterative path-integral approaches, only
restricted statistics are needed to obtain the control in-
puts. Because the Koopman operator gives a direct time-
evolution of observables, it could have computational
merits avoiding any sampling stages. Hence, it is valuable
to seek theoretical connections of the Koopman operator
with various research topics such as control issues.
The present paper explores a connection among the

stochastic HJB equation, Kappen’s path-integral ap-
proach, and the Koopman operator. We start from a
control problem expressed in stochastic differential equa-
tions. Then, a discrete-state system is derived via the
usage of the Feynman-Kac formula, Itô’s lemma, and ba-
sis expansions. The numerical solution for the derived
discrete-state system gives feedback control inputs for the
original stochastic differential equation. Note that there
are various types of equations for the control problems.
The stochastic HJB equation is solved numerically as a
partial differential equation, and the path-integral and
the iterative path-integral approaches need Monte-Carlo
samplings. In the present paper, coupled ordinary differ-
ential equations for a discrete-state system are derived;
the key of the derivation is a basis expansion focusing on
the key statistic for the control problem. Although the
Koopman operator gives a map on the function space,
there is no need to evaluate arbitrary functions. That
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FIG. 1. An overview of the connection among the (stochastic)
linear Hamilton-Jacobi-Bellman (HJB) equation, the path-
integral control approach by Kappen [2], and the Koopman
operator. Starting from the original stochastic differential
equation (SDE), various types of equations are derived.

is, only the statistic related to the terminal cost function
is necessary, and this characteristic derives the discrete-
state system naturally. As a demonstration, a control
problem for the van der Pol system with noise is given
and solved.

The remainder of this paper is composed as follows.
Section II gives some basics of stochastic control prob-
lems. The known connection between the stochastic HJB
equation and the path-integral control is also explained.
Section III gives the main contribution of the present pa-
per; a further connection with the Koopman operator is
discussed, and an explicit algorithm to evaluate feedback
control inputs is given. The discussion is demonstrated
for a nonlinear stochastic system, which helps the under-
standings of the connections and derivations. Section IV
gives conclusions and remaining tasks.

II. PRELIMINARIES

This section gives a brief explanation for stochastic op-
timal control for readers unfamiliar with control issues.
As for a few more details of the derivation of the stochas-
tic HJB equation, see Appendix A and Kappen’s original
paper [2]. The discussions in previous works are also re-
viewed.

Figure 1 shows an overview of the connections among
the methods discussed in the present paper. Starting
from the original stochastic differential equation (SDE),
various types of equations are derived. Part (iv) in Fig. 1
will be explained later in Sec. III.

A. Stochastic optimal control

Let x(t) be an N -dimensional stochastic variable to
express the system state. For the sake of brevity of nota-
tion, sometimes the explicit time-dependency is omitted,
and x is used. Consider the following stochastic differ-
ential equation for control problems:

dx = (a(x, t) + Uu(t)) dt+BdW (t), (1)

where a(x, t) is an N -dimensional drift coefficient vector,
u(t) is an Ninp-dimensional vector for control inputs, U
is an N ×Ninp matrix related to the control setting, B is
an N × NW coefficient matrix for diffusion, and dW (t)
stems from a conventional Wiener process with NW di-
mensions. Note that the Wiener process satisfies the fol-
lowing independent property:

dWi(t)dWj(t) = δijdt. (2)

There is a comment for the notation of u(t). As we will
see later, feedback-type control inputs are obtained, and
hence u depends on x. The dependency on x is abbrevi-
ated here.
Suppose a trajectory cost function S([x], [u]) consists

of a terminal cost ϕ(x(tf)) : RN → R, a running cost
V (x, t) : RN × R → R, and a quadratic control cost as
follows:

S([x], [u])

= ϕ(x(tf)) +

∫ tf

ti

dt

(
V (x(t), t) +

1

2
u(t)TRu(t)

)
, (3)

where ti is an initial time and tf is a final time. R ∈
RNinp×Ninp is a weight matrix for the quadratic cost. As-
sume that a trajectory of x(t), [x], starts from a specific
initial state xi, i.e., x(t = ti) = xi.
Note that the trajectory cost function in Eq. (3) is

defined only for a trajectory. The system is a stochas-
tic one, and hence the following cost function should be
considered:

C(xi, ti, [u]) = Exi
[S([x], [u])] , (4)

where Exi
[·] means an expectation on trajectories with

the initial condition x(t = ti) = xi.
For a time t ∈ [ti, tf), the optimal cost-to-go function

is defined as

J(x, t) = min
u(t→tf )

C (x, t,u(t→ tf)) , (5)

where u(t → tf) denotes the sequence of controls u(·)
on the time interval [t, tf ]. As explained in Appendix A,
the optimal control inputs are evaluated via the optimal
cost-to-go function as follows:

u = −R−1UT∂xJ(x, t). (6)
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B. Linear HJB equation

In order to solve the stochastic optimal control problem
in Sec. II A, Kappen derived a linear partial differential
equation [2]. Kappen’s derivation employs the following
restriction among the coefficient matrix B, the matrix
related to control inputs U , and the weight matrix for
the quadratic cost:

BBT = λUR−1UT. (7)

Note that the restriction also determines the value of
λ. The restriction is necessary to obtain a linear HJB
equation. As explained in Kappen’s paper [2], no con-
trol is allowed in noiseless coordinates. Sometimes one
may have noisy coordinates on which no direct controls
are available. In such cases, one should choose controlled
stochastic models carefully. That is, it is necessary to
remove some noise terms for the control models. An ex-
ample is demonstrated in Sec. III; when the noise term in
the uncontrolled coordinate is small enough, the control
framework works well.
When we define a function ψ(x, t) via

J(x, t) = −λ logψ(x, t), (8)

the time-evolution equation for ψ(x, t) is given by

∂tψ(x, t) = −Hψ(x, t), (9)

where

H = −
V (x, t)

λ
+
∑

i

ai(x, t)∂xi
+

1

2

∑

i,j

[
BBT

]
ij
∂xi

∂xj
.

(10)

The derivation is based on the dynamic programming
method; see the original paper [2] and Appendix A. Equa-
tion (9) is the linearized version of the stochastic HJB
equation, which is the starting point of the following dis-
cussions. Note that Equation (9) is a kind of backward
time-evolution one, and it is necessary to solve it in a
time-reversed manner (i.e., tf → ti). Additionally, note
that the ‘initial’ condition is

ψ(x, tf) = exp(−ϕ(x)/λ). (11)

Hence, the optimal cost-to-go function J(x, t) is evalu-
ated from ψ(x, t) using Eq. (8). Then, we finally obtain
the feedback control inputs uopt(x, t) using Eq. (6).
The above discussion corresponds to the connection

from (i) to (ii) in Fig. 1. Here, two comments are given
for later use.
The first comment is about the final expression. Note

that the derived time-evolution equation (9) is rewritten
in the following form:

∂ψ

∂t
+ Lψ + gψ = 0, (12)

where

L =
∑

i

ai(x, t)∂xi
+

1

2

∑

i,j

[
BBT

]
ij
∂xi

∂xj
,

g(x, t) = −
V (x, t)

λ
. (13)

We will see later that this reformulation is beneficial for
the usage of the Feynman-Kac formula.
The second comment is related to the numerical ap-

proach for the derived equation. In order to solve the
partial differential equation (12) in a time-reversed man-
ner, it is typical to employ a space-discretization method.
That is, we split the continuous coordinates into a dis-
crete lattice with a small lattice-spacing, e.g., ∆x ≪ 1.
Then, the partial differential equation with the continu-
ous coordinates is approximately solved via the coupled
ordinary differential equations for the discrete lattice. Of
course, the lattice-spacing ∆x should be small enough to
obtain accurate results, and the smaller lattice-spacing
leads to a larger number of equations for the coupled
ordinary equations for the discrete lattice.

C. SDE in path-integral control

The connection from (ii) to (iii) in Fig. 1 is reviewed
here. In Kappen’s original papers [1, 2], stochastic differ-
ential equations with particle-annihilation processes were
derived via the Dirac’s delta function and a path-integral
formulation. Although the essential part is the same,
here a slightly different derivation of the stochastic dif-
ferential equations is given. The derivation is based on
the Feynman-Kac formula, as discussed in Ref. [17]. As
for the Feynman-Kac formula, for example, see Ref. [18].
As we will see here, the Feynman-Kac formula gives the
stochastic differential equations in the path-integral con-
trol directly without any complicated discussions.
The Feynman-Kac formula indicates the following

facts: If a partial differential equation has the form with
Eq. (12), the solution is given as the conditional expec-
tation

ψ(x̃, t) = E

[
f(x(tf)) exp

(∫ tf

t

g(x, τ)dτ

)∣∣∣∣x(t) = x̃

]
,

(14)

where f(x) is the initial condition of Eq. (12), i.e.,

f(x) = exp

(
−
ϕ(x)

λ

)
. (15)

Note that the expectation is taken over trajectories x

driven by the following stochastic differential equation

dx = a(x, t)dt+BdW (t). (16)

Equation (16) has the initial condition x(t) = x̃ and
develops in [t, tf ].
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To evaluate the conditional expectation in Eq. (14),
the Monte Carlo simulation is employed. Note that the
particle-annihilation process is introduced in the orig-
inal Kappen’s papers [1, 2]. That is, the particle is
sometimes taken out of the simulation. In the formu-
lation with the Feynman-Kac formula, the weight fac-

tor exp
(∫ tf

t
g(x, τ)dτ

)
in Eq. (14) plays the role of the

particle-annihilation process.
The direct Monte Carlo method for the stochastic dif-

ferential equation in Eq. (14) gives the control inputs,
as discussed in Ref. [2]. Hence, there is no need to em-
ploy the space-discretization as for the HJB equation.
However, the path-integral control does not give all the
feedback-control inputs at once; the framework gives the
control input only for a specific initial position x. If one
wants to evaluate the feedback control in advance as in
the case of the HJB method, the Monte Carlo simula-
tions in the path-integral control should be performed
repeatedly for various initial positions. This means that
the space-discretization for the initial positions is needed
eventually.

III. KOOPMAN OPERATOR AND CONTROL

DEMONSTRATION

This section gives the main contribution of the present
paper. The connection from (iii) to (iv) in Fig. 1 is
given. After general discussions, a concrete example, the
stochastic van der Pol equation, is used to demonstrate
the control; the explicitly derived equations will be useful
to understand the general discussions.

A. Derivation of PDE for Koopman operator

Here, a viewpoint of the Koopman operator is newly
introduced. As discussed below, this viewpoint gives us
the fact that we only need to focus on a specific statistic.
Hence, a basis expansion is naturally introduced, which
gives the coupled ordinary differential equations. After
some general discussions, an explicit example for the van
der Pol system will be given; the example will help the
understanding of the discussion here.
Firstly, a brief introduction of the Koopman operator is

given; for details, see Refs. [9, 11]. Consider a dynamical
system (with stochasticity) (M, t, F ), where M ⊆ RN

is the state space, t is a time, and F : M → M is the
time-evolution operator. Then, we have

x(tf) = F (x(ti);ω), (17)

where ω ∈ Ω is an element in the probability space as-
sociated with the dynamics. That is, the time-evolution
operator F changes the system state x at the initial time
ti to the system state x at time tf . Next, consider an
observable ζ : M → C. The Koopman operator K as-
sociated with the time-evolution operator F is defined

through the composition

Kζ = ζ ◦ F. (18)

The Koopman operator has been used for various ap-
plications ranging from control problems, as introduced
in Sec. I, to prediction and change-point detection tasks
[19, 20].
Note that the Koopman operator gives a map for the

functions of the state space. It would be typical to use
some statistical quantities as ζ. It indicates that we con-
sider the time-evolution of the statistical quantities in-
stead of that in the original state space. It is a well-known
fact that the Koopman operator is linear even when the
original dynamics F is nonlinear. On the other hand,
the Koopman operator is infinite-dimensional. Hence, we
will need finite-dimensional approximations in its practi-
cal use.

Secondly, let us continue to rewriting the path-integral
control; this naturally leads to the framework from the
viewpoint of the Koopman operator. Note that Eq. (16)
gives the time-evolution in the state space. Addition-
ally, Eq. (14) indicates that the statistic exp(−ϕ(x)/λ)
should be focused on after the time-evolution by Eq. (16).
Hence, the following definition is introduced here:

z = exp

(
−
ϕ(x)

λ

)
. (19)

That is, the factor f(x) in Eq. (14) is replaced with a
new stochastic variable z. Then, using Itô’s lemma, we
have

dz = ã(x, z, t)dt+ b̃(x, z, t)TdW (t), (20)

where ã(x, z, t) and b̃(x, z, t)T are adequately derived
from Itô’s lemma (As for the Itô’s lennma, see also Ap-
pendix B.) Note that the diffusion coefficient depends
on the state variable x, although the constant diffusion
coefficients are used in the original differential equation
(1) and the stochastic differential equation (16) in the
path-integral control. Putting these stochastic variables
together, we have the following extended stochastic dif-
ferential equation:

d

[
x

z

]
=

[
a(x, t)

ã(x, z, t)

]
dt+

[
B 0

b̃(x, z, t)T 0

][
dW (t)

0

]
.

(21)

Let us rewrite this as

dx′ = a
′(x′, t)dt+B′(x′, t)dW ′(t), (22)

where x
′ is the N + 1 dimensional vector including the

new variable z, a′(x′, t) is the N +1 dimensional vector,
B′(x′, t) is the (N + 1) × (NW + 1) matrix, and W

′(t)
is the NW + 1 vector. Then, using the Feynman-Kac
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TABLE I. Summary of the differences among the HJB equation, the path-integral control, and the proposed method.

HJB Path-integral control Proposed

Equation PDE SDEs Coupled ODEs

Solver Deterministic (e.g., Runge-Kutta) Monte Carlo Deterministic (e.g., Runge-Kutta)

Discretization Time and space Time Time (and basis expansions with a finite cut-off)

formula inversely, we obtain the following backward time-
evolution equation

∂ψ′

∂t
+ L′ψ′ + gψ′ = 0, (23)

where

L′ =
∑

i

a′i(x
′, t)∂x′

i

+
1

2

∑

i,j

[
B′(x′, t) (B′(x′, t))

T
]

ij
∂x′

i
∂x′

j
. (24)

Note that Eq. (23) is solved backwardly tf → ti, and its
initial condition is

ψ′(x′, tf) = exp

(
−
ϕ(x)

λ

)
. (25)

Because Eq. (23) does not satisfy the probability con-
servation law, the function ψ′(x′, t) is not a probability
density function. Instead of the time-evolution of the
system state x

′, we perform the time-evolution of the
function ψ′(x′, tf) in Eq. (25), i.e.,

∂ψ′

∂t
= (−L′ − g)ψ′. (26)

The time-evolution operator −L′ − g governs the time-
evolution for the function of the state space. Hence, re-
calling the explanation for the Koopman operator, the
integration with −L′ − g plays a role as the Koopman
operator here. Note that Eq. (26) is linear, although the
extended stochastic differential equation in Eq. (21) is
nonlinear.

B. Derivation of coupled ordinary differential

equations

We focus on the key fact that there is no need to con-
sider a time-evolution of arbitrary functions here; the
initial condition is fixed as Eq. (25). This fact naturally
gives the following type of basis expansion:

ψ′(x′, t) =
∑

n1,...,nN ,nz

P (n1, . . . , nN , nz, t)x
n1

1 . . . xnN

N znz .

(27)

The basis expansion gives the initial condition for
P (n1, . . . , nN , nz, ti) as

P (n1, . . . , nN , nz, tf) = δn1,0 . . . δnN ,0δnz,1. (28)

That is, it is enough to focus only on z at the initial
time. As for the system state n1, . . . , nN , we could em-
ploy other types of polynomials, such as the Hermite
polynomials, as discussed in Ref. [21].
Then, the partial differential equation (23) is re-

placed with the coupled ordinary differential equations
for P (n1, . . . , nN , nz, t). The time-evolution is also per-
formed backwardly, i.e., tf → ti. Various numeri-
cal solvers are available here; for example, the famous
Runge-Kutta method is employed in the demonstration
in Sec. III D. Then, the coefficients P (n1, . . . , nN , nz, ti)
are evaluated numerically. Hence, Eq. (6) immediately
gives the feedback control inputs at the initial time ti of
the original control system. Using the basis expansion in
Eq. (27), we have

u(x, ti) =
λR−1UT∂xψ

′(x, ti)∑

n1,...,nN ,nz

P (n1, . . . , nN , nz, ti)x
n1

1 . . . xnN

N znz

.

(29)

The derivative of ψ′(x, ti) with respect to x is easily
calculated because the factors {P (n1, . . . , nN , nz, ti)} in
Eq. (27) are already known. Of course, we must pay at-
tention to the fact that z is also a function of x, and its
derivatives should be considered adequately.
One may think that it is possible to apply the basis ex-

pansion like the one here directly to the stochastic HJB
equation (12). However, we have noticed the usage of
the basis expansion through the discussions based on the
Koopman operator. The expansion with respect to the
desired observable z is naturally obtained from the per-
spective of the Koopman operator, as we have seen so
far.
There is a remaining comment. When the origi-

nal stochastic differential equation has terms with non-
polynomial functions such as sin and cos, it is not
straightforward to obtain the time-evolution equation
with discrete-states like P (n1, . . . , nN , nz, t). We need
a further variable transformation in these cases. Such a
variable transformation was discussed in Ref. [22]. After
the variable transformation, the usage of Itô’s lemma will
recover the current discussion.
A quick summary is given hare. For the stochastic op-

timal control, only a limited type of expectation is enough
to obtain the control inputs. We can interpret the cal-
culation of the expectation as a mapping of functions to
functions, which leads to the natural introduction of the
Koopman operator. The new variable z is introduced
via the path-integrals and Itô’s lemma, and the intro-
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duction of the new variable plays an important role in
the basis expansion for ψ′(x′, t). As a result, the connec-
tion revealed in the present paper gives a new numerical
method to evaluate control inputs. The new numerical
method is different from the previous ones. The differ-
ences are summarized in Table I. That is, the original
HJB equation is the partial differential equation (PDE);
the Monte Carlo method for stochastic differential equa-
tions (SDEs) is employed in the path-integral control. In
contrast, coupled ordinary differential equations (ODEs)
for discrete state space are used here. Of course, as de-
noted in the end of Sec. II B, the HJB equation also
gives the coupled ordinary differential equations after the
space-discretization. However, the meanings of the dis-
crete state space is different from the proposed one; in
the proposed method, the coupled ordinary differential
equations for the coefficients in the basis expansion in
Eq. (27) are solved numerically. The basis function is
intrinsically infinite one, and hence a finite cut-off is nec-
essary. We will see that the small cut-off is enough to
reproduce the HJB results in the explicit example below.

C. Demonstration for the derivation

As an example for demonstration, the following van
der Pol system with noise is used here:
{
dx1 = x2dt+B11dW1(t),

dx2 =
[
ǫ
(
1− x21

)
x2 − x1

]
dt+B22dW2(t).

(30)

The van der Pol system with noise has already been used
for a test of the filtering problem [23, 24]. Figure 2 shows
sample trajectories with parameters ǫ = 1.0, B11 = 0.1,
and B22 = 1.0. The trajectories were obtained by simu-
lation with the Euler-Maruyama approximation [18, 25];
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FIG. 2. Sample trajectories for Eq. (30). There are noise
terms for x1 and x2. The oscillating behavior is typical for
the van der Pol system.

the time-discretization ∆t = 10−4 was employed.

1. Dynamics and targets for control

Here, assume that we can control only the second vari-
able x2 in Eq. (30). That is,

U =

[
0 0

0 U22

]
, R =

[
0 0

0 R22

]
. (31)

Hence, the following stochastic differential equation is
used for our control problem:

{
dx1 = x2dt,

dx2 =
[
ǫ
(
1− x21

)
x2 − x1 + U22u2(t)

]
dt+B22dW2(t),

(32)

where u2(t) = −R−1
22 U22∂x2

J(x, t). Note that B11 in
Eq. (30) is removed; as mentioned in Sec. II A, the noise
term is not permitted in the control framework here when
the stochastic variables are not under direct control set-
tings. It would be a natural assumption that x2 is sub-
ject to large noise because the variable is connected to
the external control inputs.
In the present work, the control targets are set as x1 →

1 and x2 → 0. Hence, the following terminal cost and
running cost are used:

ϕ(x) = V (x, t) =
(x1 − xc1)

2

2σ2
1

+
(x2 − xc2)

2

2σ2
2

, (33)

where xc1 = 1.0 and xc2 = 0.0. In the numerical demon-
stration later, the other parameters are set as σ1 = 0.5,
σ2 = 0.5, U22 = 1.0, and R22 = 0.25; these parameters
lead to λ = 0.25 via Eq. (7).
Some comments for the choice of the example are given

here. There are some works for the control problem
based on the data-driven Koopman operator methods.
However, most of them focus on deterministic systems.
Although the Ornstein-Uhlenbeck process with noise is
employed as one of the examples in Ref. [14], the system
has only one coordinate. The above van der Pol system
with noise has two coordinates, and the oscillating be-
havior makes the control problem difficult. Although the
present paper aims to investigate the theoretical connec-
tion behind the control problems, it would be preferable
to show the proposed framework can control the oscillat-
ing behavior. Hence, the oscillating system with noise is
employed here.

2. Coupled ordinary differential equations

The discussion in Sec. III A gives the time-evolution
operator L′ in Eq. (23). For the example here, the fol-
lowing time-evolution operator is derived:
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L′ = x2∂x1
+ (ǫ(1− x21)x2 − x1)∂x2

+

(
B2

22

2

(
−

z

λσ2
2

+
z (x2 − xc2)

2

2λ2σ4
2

)

−
z(x2 − xc2)(ǫ(1− x21)x2 − x1)

λσ2
2

−
x2z(x1 − xc1)

λσ2
1

)
∂z

+
1

2
B2

22∂
2
x2

−

(
B22z(x2 − xc2)

λσ2
2

)
∂x2

∂z

+
1

4

(
B22z

2(x2 − xc2)
2

λ2σ4
2

)
∂2z . (34)

The term without partial derivatives is obtained as fol-
lows:

g = −
1

λ

(
(x1 − xc1)

2

2σ2
1

+
(x2 − xc2)

2

2σ2
2

)
. (35)

The basis expansion in Eq. (27) gives coupled ordinary
differential equations for P (n1, . . . , nN , nz, t). Since the
derivation is tedious, a simple demonstration is shown
here in a pedagogical way. Assume that we have only
one variable x; a combination of the differential operator
and an expansion similar to Eq. (27) gives

∂
∑

n=0

P (n, t)xn =

∞∑

n=0

nP (n, t)xn−1 =

∞∑

n=1

nP (n, t)xn−1

=
∞∑

n=0

(n+ 1)P (n+ 1, t)xn. (36)

Hence, the differential operator ∂ corresponds to (n +
1)P (n + 1, t), i.e., ∂ → (n + 1)P (n + 1, t). In similar
ways, we have the following relations:





x→ P (n− 1, t),

x2 → P (n− 2, t),

x∂ → nP (n, t),

∂2 → (n+ 2)(n+ 1)P (n+ 2, t),

x2∂ → (n− 1)P (n− 1, t),

x2∂2 → n(n− 1)P (n, t).

(37)

As for the example for the demonstration, the similar
discussion leads to the following coupled ordinary differ-

ential equations:

∂

∂t
P (n1, n2, nz, t)

=−
1

2λσ2
2

P (n1, n2 − 2, nz) +
xc2
λσ2

2

P (n1, n2 − 1, nz)

−
(xc2)

2

2λσc
2

P (n1, n2, nz)−
1

2λσ2
1

P (n1 − 2, n2, nz)

+
xc1
λσ2

1

P (n1 − 1, n2, nz)−
(xc1)

2

2λσc
1

P (n1, n2, nz)

+ (n1 + 1)P (n1 + 1, n2 − 1, nz)− ǫn2P (n1 − 2, n2, nz)

+ ǫn2P (n1, n2, nz)− (n2 + 1)P (n1 − 1, n2 + 1, nz)

+
ǫ

λσ2
2

nzP (n1 − 2, n2 − 2, nz)

−
ǫxc2
λσ2

2

nzP (n1 − 2, n2 − 1, nz)

−
ǫ

λσ2
2

nzP (n1, n2 − 2, nz) +
ǫxc2
λσ2

2

nzP (n1, n2 − 1, nz)

−
B2

22

2λσ2
2

nzP (n1, n2, nz) +
1

λσ2
2

nzP (n1 − 1, n2 − 1, nz)

−
xc2
λσ2

2

nzP (n1 − 1, n2, nz)−
1

λσ2
1

nzP (n1 − 1, n2 − 1, nz)

+
xc1
λσ2

1

nzP (n1, n2 − 1, nz) +
B2

22

2λ2σ4
2

nzP (n1, n2 − 2, nz)

−
B2

22x
c
2

λ2σ4
2

nzP (n1, n2 − 1, nz) +
B2

22(x
c
2)

2

2λ2σ4
2

nzP (n1, n2, nz)

+
B2

22

2
(n2 + 2)(n2 + 1)P (n1, n2 + 2, nz)

−
B2

22

λσ2
2

n2nzP (n1, n2, nz)

+
B2

22x
c
2

λσ2
2

(n2 + 1)nzP (n1, n2 + 1, nz)

+
B2

22

2λ2σ4
2

nz(nz − 1)P (n1, n2 − 2, nz)

−
B2

22x
c
2

λ2σ4
2

nz(nz − 1)P (n1, n2 − 1, nz)

+
B2

22(x
c
2)

2

2λ2σ4
2

nz(nz − 1)P (n1, n2, nz). (38)

Note that there is an infinite number of equations
in the derived coupled ordinary differential equations.
Hence, we need a finite cut-off. In the following numer-
ical demonstration, the cut-offs with ni < 60 for n1, n2

are employed. Note that the state for nz does not change
in Eq. (38). It means that it is enough to consider only
the initial state for nz.

D. Numerical demonstration of control

Here, some numerical demonstrations for the concrete
example in Sec. III C are given.
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FIG. 3. A form of the evaluated ψ. The solid lines correspond
to the numerical results for the HJB equation, and those of
the proposed method are depicted with the filled circles.

1. Settings for numerical simulations

Recall that the aim here is the control as x1 → 1 and
x2 → 0. Other parameters are written in Sec. III C.
Therefore, the numerical solution for Eq. (38) with the
finite cut-offs gives the coefficients P (n1, n2, nz, t), which
leads to the feedback control inputs directly via Eq. (29).
Here, the 4th-order Runge-Kutta method with ∆t =
10−4 is employed. In all of the following simulations,
we set ti = 0 and tf = 0.1.

2. Numerical checks for the function ψ

In order to confirm that the proposed method in
Secs. III A and III B works well, the function ψ is nu-
merically evaluated, which is the key function to derive
the feedback control inputs as discussed in Sec. II. As
explained in Sec. III B, the initial condition is set as fol-
lows:

P (n1, n2, nz, t = tf) =

{
1 for n1 = 0, n2 = 0, nz = 1,

0 otherwise.

(39)

Although the function ψ′ is used in Sec. III B, the sub-
stitution of an explicit value of z recovers the function ψ.
As for the comparison, the function ψ was also evaluated
numerically via the HJB method. In the HJB method,
a region with x1 ∈ [−2, 2] and x2 ∈ [−2, 2], the space-
discretization with ∆x1 = ∆x2 = 0.01, and the time-
discretization ∆t = 10−4 are used. Note that the HJB
method needs to a little large region in order to neglect
the effects from the boundary conditions. The result is
shown in Fig. 3, which gives a good agreement, and there-
fore we can see that the proposed method works well.
Note that the numbers of equations for the coupled

ordinary differential equations are different intrinsically
between the HJB method and the proposed one. In the
HJB method, the above space-discretization needs the

lattice with (2 − (−2))/0.01 × (2 − (−2))/0.01 = 400 ×
400 = 160, 000 points. In contrast, the proposed method
with the above finite cut-offs gives 60×60 = 3, 600 points.
Note that nz does not change, and hence there is no need
to consider the state-space for nz. Although this is a
naive comparison, the proposed method contributes to
reducing the computational costs.

3. Controlled dynamics

Once the coefficients P (n1, n2, nz, t = ti) are evaluated
numerically, we can immediately calculate the feedback
control inputs by Eq. (29). Next, the evaluated feed-
back control inputs are applied to the original system
in Eq. (30). Note that the feedback control inputs are
evaluated by removing the noise for x1, as discussed in
Sec. III C, but the system to be controlled has the noise
term for x1. We will confirm that this procedure even
works well in numerical experiments.
There are some choices for the application of the ob-

tained feedback control inputs. In the following numer-
ical demonstration, a kind of model predictive control,
i.e., the receding horizon implementation, is employed
[26]. The receding horizon implementation considers a
small finite time interval and calculates the feedback-
control at time 0. Note that Eq. (30) is time-invariant.
Hence, the evaluation for the control inputs between
ti = 0 and tf = 0.1 is enough; the evaluated feedback
control inputs u(x1, x2) ≡ u(x1, x2, t = 0) are applied all
the time in the control.
There is one additional technique from a practical

viewpoint. Because of the finite cut-offs for ni, large val-
ues for x1 and x2 may cause unexpected behavior. Hence,
by defining

x̃i =





xmin
i if xi < xmin

i ,

xmax
i if xi > xmax

i ,

xi otherwise,

(40)

we employ u(x̃1, x̃2) in the feedback-control. In the nu-
merical demonstration here, the settings xmin

i = −1.5
and xmax

i = 1.5 for i = 1, 2 are used.
In summary, the discussions in Sec. III A are used to

evaluate the feedback control inputs, and then the feed-
back control inputs are applied to the original van der Pol
system with noise. The control simulation is performed
for the original stochastic differential equation using the
Euler-Maruyama approximation with ∆t = 10−4. At
each time step, the system state (x1, x2) is observed, and
the feedback control input u(x̃1, x̃2) is evaluated. Then,
we here raise the following question: Although the con-
trol input is applied only to x2, is it possible to control
x1 together?
Figure 4 shows the numerical demonstration. The gray

thin lines are the original behavior of the system, and the
bold solid and dashed lines show the controlled one. The
original system is noisy and oscillating, and the control
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FIG. 4. Demonstration for stochastic control. The gray thin
lines are original dynamics without control. The target for
x1 (the bold solid line) is 1, and that for x2 (the bold dashed
line) is 0.

input is applied only to the variable x2. Despite the dif-
ficult setting, both variables are adequately controlled
around the desired targets. Actually, the feedback con-
trol inputs derived from the HJB equation give a similar
control result.

IV. CONCLUDING REMARKS

The present paper clarifies one of the aspects of the
importance of the Koopman operator perspectives. As
pointed out in the papers for the Koopman mode de-
composition [10, 11], the backward-type equation such
as backward Kolmogorov equations is directly related to
the evaluation for the Koopman operator. It is true even
in the case of stochastic optimal controls. We can see
the relationship via the path-integral approach; the tar-
get observable is considered as a new variable, and Itô’s
lemma is employed. Although the Koopman operator
deals with the general mapping of functions, it becomes
clear that the focus only on one observable and the ba-
sis expansion are enough for our aim. Such perspective
of the Koopman operators would give new insights and
algorithms for other topics in physics.

Finally, some notices for practical viewpoints and fur-
ther works are given. The connection revealed in the
present paper leads to the coupled ordinary differential

equations for the discrete state space ni, . . . , nN and nz.
It will reduce the computational costs compared with
the direct space-discretization for the original stochastic
HJB equation, as in the example of the present paper.
However, the naive application of the proposed method
to high-dimensional systems would not work because of
the curse of dimensionality. One may avoid the prob-
lem by using the Monte Carlo method for chemical reac-
tion systems, i.e., the Gillespie algorithm [27, 28]. Ad-
ditions of some terms to the derived coupled ordinary
differential equations recover the probabilistic conserva-
tion law [29], and hence we can employ the Monte Carlo
method. Such an approach has been used for the non-
linear Kalman filter problem in Ref. [24]. One may also
use a discussion based on combinatorics. Recently, the
methods based on combinatorics were employed to com-
pute the Mori–Zwanzig memory integral in generalized
Langevin equations [30, 31]. Similar discussions were
employed to the adjoint backward equation of stochastic
differential equation [32]. Such methods based on com-
binatorics may reduce the computational cost. Further-
more, the applicability of the control method to stochas-
tic chaos remains as future work. Although practical con-
trol systems usually treat non-chaotic systems, chaotic
behavior in nonlinear stochastic differential equations has
been studied well (e.g., see Ref. [33]), and the control
problems for systems with stochastic chaos are interest-
ing from the viewpoint of physics. In the present work,
the receding horizon implementation is used, which needs
only a short time evolution. Hence, the chaotic behavior
would not largely affect the control because of the short
time estimation. However, general discussions for con-
trol in stochastic chaos would be needed. After mitigat-
ing the curse of dimensionality problem in the Koopman
approach, we will have a numerical tool to tackle this
problem in the future.
The present work discusses the perspective of the

Koopman operators to the stochastic optimal control. It
is often enough to focus only on a specific observable
quantity, and this perspective gives a new algorithm. To
the best of my knowledge, this is the first attempt to
employ this perspective. I hope that the discussion and
the demonstration here stimulate various researchers in
theoretical and practical communities.
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Appendix A: Derivation of the Stochastic Hamilton-Jacobi-Bellman Equation

For readers’ convenience, the derivation of the stochastic HJB equation is briefly explained. For details, see Kappen’s
original paper [2].
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The optimal cost-to-go function J(x, t) defined in Eq. (5) can be rewritten as follows:

J(x, t)

= min
u(t→tf )

Ex

[
ϕ(x(tf)) +

∫ t′

t

dτ

(
1

2
u(τ)TRu(τ) + V (x(τ), τ)

)
+

∫ tf

t′
dτ

(
1

2
u(τ)TRu(τ) + V (x(τ), τ)

)]

= min
u(t→t′)

Ex

[∫ t′

t

dτ

(
1

2
u(τ)TRu(τ) + V (x(τ), τ)

)
+ min

u(t′→tf )
E
x(t′)

[
ϕ(x(tf)) +

∫ tf

t′
dτ

(
1

2
u(τ)TRu(τ) + V (x(τ), τ)

)]]

= min
u(t→t′)

Ex

[∫ t′

t

dτ

(
1

2
u(τ)TRu(τ) + V (x(τ), τ)

)
+ J(x(t′), t′)

]
. (A1)

Here, we set t′ = t + dt and perform the Taylor expansion for J(x(t′), t′) around t. Taking the expansion up to the
first order in dt, we have

Ex [J(x(t+ dt), t+ dt)] = Ex

[
J(x, t) + ∂tJ(x, t)dt+ (∂xJ(x, t))

T
dx+

1

2
Tr
((
∂2
x
J(x, t)

) (
dxdxT

))]

= J(x, t) + ∂tJ(x, t)dt+ (∂xJ(x, t))
T
(a(x, t) + Uu(t)) dt+

1

2
Tr
(
BBT∂2

x
J(x, t)

)
dt, (A2)

where

Tr
((
∂2
x
J(x(t), t)

) (
dxdxT

))
=
∑

ij

∂2J(x(t), t)

∂xi∂xj
dxidxj (A3)

and

Tr
(
BBT∂2

x
J(x(t), t)

)
=
∑

ij

[
BBT

]
ij

∂2J(x(t), t)

∂xi∂xj
. (A4)

Hence, we have the following time-evolution equation for J(x, t) with taking the limit dt→ 0:

−∂tJ(x, t) = min
u

(
1

2
u(t)TRu(t) + V (x, t) + (a(x, t) + Uu(t))T ∂xJ(x, t) +

1

2
Tr
(
BBT∂2

x
J(x, t)

))
. (A5)

The minimization with respect to u gives

u = −R−1UT∂xJ(x, t), (A6)

which leads to

−∂tJ(x, t) =−
1

2
(∂xJ)

TUR−1UT∂xJ(x, t) + V (x, t) + a(x, t)T∂xJ(x, t) +
1

2
Tr
(
BBT∂2

x
J(x, t)

)
. (A7)

The time-evolution equation (A7) should be solved with the boundary condition J(x, tf) = ϕ(x).
Next, the nonlinearity in Eq. (A7) is removed. By defining

J(x, t) = −λ logψ(x, t), (A8)

where a constant λ to be defined, we rewrite the first and final terms in r.h.s. of Eq. (A7) as

−
1

2
(∂xJ)

TUR−1UT∂xJ(x, t) +
1

2
Tr
(
BBT∂2

x
J(x(t), t)

)

= −
λ2

2ψ2

∑

ij

∂ψ

∂xi

[
UR−1UT

]
ij

∂ψ

∂xj
+

λ

2ψ2

∑

ij

[
BBT

]
ij

∂ψ

∂xi

∂ψ

∂xj
−

λ

2ψ

∑

ij

[
BBT

]
ij

∂2ψ

∂xi∂xj
. (A9)

Hence, it is easy to see that the terms quadratic in ψ vanish when we set

BBT = λUR−1UT. (A10)

Note that Eq. (A10) also determines the actual value of λ. Finally, the following equation is derived

∂tψ(x, y, t) = −Hψ(x, y, t), (A11)

H = −
V (x, t)

λ
+
∑

i

ai∂xi
+

1

2

∑

i,j

[
BBT

]
ij
∂xi

∂xj
, (A12)

which corresponds to Eq. (9) and Eq. (10).
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Appendix B: Brief Summary of Itô’s Lemma

As for the details of Itô’s lemma, for example, see Ref. [25]. Consider the following multivariate stochastic differential
equation:

dx = a(x, t)dt+B(x, t)dW (t), (B1)

where a(x, t) is a vector for drift terms, B(x, t) is a matrix for diffusion terms. W (t) is a vector for Wiener processes,
whose elements satisfy

dWi(t)dWj(t) = δijdt, (B2)

that is, dWi(t) and dWj(t) are independent each other. Itô’s lemma plays an important role to consider an arbitrary
function of f(x). In the stochastic calculus, a change of variables is not given by conventional differential calculus,
and Itô’s lemma suggests the following formula:

df(x) =





∑

i

ai(x, t)∂xi
f(x) +

1

2

∑

i,j

[
B(x, t)BT(x, t)

]
ij
∂xi

∂xj
f(x)




 dt+
∑

i,j

Bij(x, t)∂xi
f(x) dWj(t). (B3)

The second term in the curly bracket is different from the conventional calculus.
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(Springer, Cham, 2020).

[16] S. Peitz and S. Klus, in The Koopman Operator in Sys-
tems and Control: Concepts, Methodologies, and Appli-
cations, edited by A. Mauroy, I. Mezić, and Y. Susuki
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