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Abstract. The defining feature of active particles is that they constantly propel

themselves by locally converting chemical energy into directed motion. This active

self-propulsion prevents them from equilibrating with their thermal environment (e.g.,

an aqueous solution), thus keeping them permanently out of equilibrium. Nevertheless,

the spatial dynamics of active particles might share certain equilibrium features, in

particular in the steady state. We here focus on the time-reversal symmetry of

individual spatial trajectories as a distinct equilibrium characteristic. We investigate to

what extent the steady-state trajectories of a trapped active particle obey or break this

time-reversal symmetry. Within the framework of active Ornstein-Uhlenbeck particles

we find that the steady-state trajectories in a harmonic potential fulfill path-wise time-

reversal symmetry exactly, while this symmetry is typically broken in anharmonic

potentials.

PACS numbers: 05.70.Ln, 05.40.-a, 05.20.-y
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1. Introduction

For ordinary, passive Brownian motion in a confining potential, the steady state is

in thermal equilibrium with the surrounding heat bath. Accordingly, the steady-state

dynamics is reversible, i.e. it is equally likely to observe a specific trajectory being traced

out forward in time as to observe it being traced out in the reversed direction backward

in time. This path-wise reversibility is ultimately connected to conservation of entropy.

Along any trajectory, entropy production in the environment is exactly canceled by the

entropy change in the system. These statements can be made mathematically precise

by comparing path probability densities for the forward and backward dynamics [1–3].

For active Brownian motion [4–8], on the other hand, the active self-propulsion drive

creates a perpetual non-equilibrium situation which persists even in the steady state in a

confining potential. Typical systems we have in mind are active colloids or living bacteria

in suspension [5, 6, 9], which are manipulated by optical tweezers [10]. The active

particles are maintained out of equilibrium by the microscopic processes generating the

active self-propulsion. The details behind these processes are, however, mostly irrelevant

for the dynamical and collective behavior emerging on the scales of the size of the active

particles. Moreover, they are often inaccessible in typical experimental setups. Current

video microscopy technology is generally unable to map out the microscopic details

of, e.g., the movement of flagella of a bacterium or to track the chemical reactions on

the surface of a Janus-colloid, let alone to separate the induced active motion entirely

from thermal fluctuations. Individual trajectories of particles (in the form of particle

position as a function of time) are therefore the central physical observables in a typical

experiment. The question then arises, in how far the irreversible non-equilibrium nature

of the active self-propulsion is visible (or detectable) on the level of individual particle

trajectories [11–16]. Answering this question contributes to the endeavor of developing

a theoretical framework for the “thermodynamics of active matter” [17–31] as it helps

to understand under which conditions the (collective) steady state of active matter

emerging from self-propulsion appears to have equilibrium characteristics and under

which conditions its non-equilibrium nature becomes apparent.

We here focus on the trajectory-wise (ir)reversibility as described in the beginning

of the Introduction to assess how closely active steady-state dynamics resemble

equilibrium. In order to exclude the possibility of activity-induced currents in the spatial

coordinate as obvious signatures of non-equilibrium, we consider the simple situation of

active Brownian motion in a time-independent one-dimensional confining potential with

active driving which is unbiased in space and time. Since the microscopic mechanisms

which generate the active self-propulsion are of no interest for our trajectory-based

analysis, we adopt the common strategy to include self-propulsion as an effective force

into the equations of motion for a Brownian particle [4, 6]. A particularly successful

such model is the so-called active Ornstein-Uhlenbeck particle (AOUP) [32]. In the

AOUP model the active force is represented by a stochastic Ornstein-Uhlenbeck process

[33, 34], without including the matching damping kernel [35] such that the equilibrium
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fluctuation-dissipation relation [36, 37] is not fulfilled. In that way, the AOUP is

constantly driven out of thermal equilibrium by a fluctuating “self-propulsion” force with

exponentially decaying correlations which represent the directional persistence typical

for active self-propulsion. Due to its conceptual simplicity, the AOUP has become a quite

popular and successful model for active Brownian motion [8, 10, 11, 21, 28, 31, 38–59].

We present the mathematical details of the AOUP model in the next Section.

Then, in Section 3 we introduce the statistical weight of individual trajectories as

our main quantity of interest in order to quantify irreversibility by comparing forward

and backward paths. We study different “minimal” trapping potentials in Section 4

(harmonic trap), Section 5 (anharmonic double-well), and Section 6 (anharmonic single-

well) with surprising findings concerning the (ir)reversibility of individual steady-state

trajectories of the AOUP in the various traps. We conclude in Section 7 with a short

summary and discussion.

2. Model

We study a single particle in one dimension, which is in contact with a thermal

environment at temperature T and, additionally, is driven by active Ornstein-Uhlenbeck

fluctuations. This so-called active Ornstein-Uhlenbeck particle (AOUP) is confined by

an external potential U(x) with U(x) → ∞ as |x| → ∞ (faster than logarithmically).

The overdamped equation of motion reads

ẋ(t) = −1

γ
U ′(x(t)) +

√
2Da η(t) +

√
2D ξ(t) . (1)

Here, ξ(t) is a Gaussian white-noise process with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′).
The thermal diffusion coefficient D = kBT/γ is related to temperature T and viscous

friction γ via the fluctuation-dissipation relation (kB is Boltzmann’s constant), indicating

that the environment constitutes a thermal bath at equilibrium. The active fluctuations

are described by the stationary Ornstein-Uhlenbeck process η(t) satisfying

η̇(t) = − 1

τa

η(t) +
1

τa

ζ(t) (2)

with another Gaussian white noise source ζ(t), which is independent of ξ(t).

Consequently, η(t) is a Gaussian process with 〈η(t)〉 = 0 and

〈η(t)η(t′)〉 =
1

2τa

e−|t−t
′|/τa . (3)

This model of the active fluctuations is not directly related to the operational details

of the self-propulsion drive. The variable η(t) rather provides an effective, bath-like

description of the drive’s statistical properties. The actual observable quantities in

a typical experiment are particle positions x(t) as a function of time, i.e. AOUP

trajectories x = {x(t)}τt=0 starting at time t = 0 and ending at time t = τ .



How irreversible are steady-state trajectories of a trapped active particle? 5

3. Path weights and irreversibility

Our central quantity of interest is the probability to observe a trajectory x = {x(t)}τt=0

starting in x0 at time t = 0. We calculate this so-called path weight p[x] by considering

the joint path weight p[x, η|x0, η0] for the combined trajectory (x, η) = {(x(t), η(t))}τt>0

conditioned on a fixed starting configuration (x0, η0), and integrating over all possible

realizations of η = η0 ∪ η,

p[x] =

∫
Dη p[x, η|x0, η0] p0(x0, η0) , (4)

where the joint distribution of initial configurations (x0, η0) is given by p0(x0, η0). Since

the combined process (x, η) is Markovian, we can express its path weight via the standard

Onsager-Machlup path integral [60–62]

p[x, η|x0, η0] ∝ exp

{
−
∫ τ

0

t.

[
(ẋt − vt −

√
2Da ηt)

2

4D
+

(τaη̇t + ηt)
2

2
+

1

2

∂vt
∂x

]}
, (5)

where we introduce the shorthand notation xt ≡ x(t), ηt ≡ η(t) and vt ≡ −U ′(x(t))/γ.

Note that the integral in (5) has been derived using a mid-point discretization

(Stratonovich convention), which we tacitly assume for all stochastic integrals in the

following. This path weight is quadratic in the active driving η(t), such that the

functional integral
∫
Dη in (4) is a “Gaussian integral in function space” and can be

performed analytically [13], provided that the initial distribution is Gaussian in η0 too,

because
∫
Dη includes the integral over the initial point η0.

Using the path weight p[x], we can then assess the irreversibility of individual

trajectories by comparing the probability p[x] to observe a trajectory x = {x(t)}τt=0

forward in time with the probability p[x̃] to observe its time-reversed twin x̃ =

{x(τ − t)}τt=0 ‡. In fact, the log ratio of path probabilities

∆Σ[x] = kB ln
p[x]

p[x̃]
(6)

has been adopted as a natural measure to quantify the “breaking” of time-reversal

symmetry, i.e. to quantify irreversibility [1, 2, 63]. By definition, the process appears

reversible if ∆Σ[x] = 0, since then the forward and backward trajectories occur with

identical probabilities. A positive value indicates that the trajectory x is more likely

to be observed than its time-reversed twin x̃ and vice versa for a negative value. Its

mean (averaged over all possible trajectories) provides a way to estimate the arrow of

time on statistical grounds [64]. Physically, the log ratio of path probabilities (6) can be

related to the entropy production in the thermal environment and the path-wise mutual

information between particle trajectories and active fluctuations [13]. Without activity

(Da = 0), i.e. for passive particles, it coincides with the standard notion of total entropy

production as defined in stochastic thermodynamics [2, 3].

‡ In the absence of time-dependent forces, which is the case in our current setting, the probability

functional p is the same for forward and backward processes. Only if there were a time-dependent

experimental protocol for the external forces, we would need to reverse this protocol as well and would

in general obtain a different functional p̃.
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Figure 1. Anharmonic potential U(x) from (7) for k4 = 1 and k2 = −1 (upper panel)

and corresponding force −U ′(x) (lower panel). Potential minima are marked by solid

gray lines. Inflection points are marked by dashed yellow lines. The corresponding

conjugate points of equal force are marked by dash-dotted purple lines. The blue

arrows illustrate the jumps in the high-persistence limit of large τa.

In the following we apply ∆Σ[x] for assessing the reversible or irreversible character

of steady-state trajectories of an AOUP trapped in a confining potential. It will turn

out that the simplest trapping potentials to reveal essential irreversibility features are

a quartic potential (k4 ≥ 0),

U(x) =
k4

4
x4 +

k2

2
x2 , (7)

and its various “special cases”, i.e. a harmonic trap (k4 = 0 and k2 > 0, Section 4),

a double-well potential (k4 > 0 and k2 < 0, Section 5) and a quartic single-well

potential (k4 > 0 and k2 = 0, Section 6). See Fig. 1 (upper panel) for an example

of a quartic double-well potential with k2 = −1 and k4 = 1 in (7). We are interested

in trajectories that start, remain and end in the steady state. However, in a typical

initial setup (short) transients are often unavoidable, for instance, because the initial

particle distribution did not yet relax within the potential or did not yet build up its

steady-state correlations with the active fluctuations. The relative importance of these

transients quickly diminishes over time and thus they are irrelevant for sufficiently long

trajectories, i.e. longer than a few relaxation times within the potential and correlation
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times of the active fluctuations. In other words, performing numerical experiments for

long enough trajectories, the effect of short initial transients while approaching the joint

steady state of x and η can be neglected.

4. Harmonic trap

In this Section, we consider the case k4 = 0 and k2 > 0 in (7). This case of a harmonic

trap is interesting, because, by extending our method from [13], we can calculate ∆Σ[x]

analytically for an initial distribution p0(x0, η0) in (4) representing the joint steady state.

We thus end up with a steady-state expression for ∆Σ[x] that does not contain any of

the above mentioned transients.

4.1. Path probability ratio in the joint steady state

The joint system with degrees of freedom q = (x, η) is a two-dimensional Ornstein-

Uhlenbeck process, whose steady-state distribution takes the form [33, 65]

p∞(x, η) =
e−

1
2
qTC−1q√

(2π)2 detC
, (8)

where

C =

 γ
k2

[D +Daρ]
√

Da

2
ρ√

Da

2
ρ 1

2τa

 , ρ =
1

1 + k2 τa
γ

. (9)

Taking (8) as the initial distribution, p0(x0, η0) = p∞(x0, η0), we can write the path

weight (4) as (see also (5))

p[x] ∝
∫

Dη p∞(x0, η0) exp

∫ τ

0

t.

{
− 1

4D

[
ẋt − vt −

√
2Da ηt

]2

− τ 2
a

2

[
η̇t +

1

τa

ηt

]2

− 1

2

∂vt
∂x

}
=

∫
Dη exp

{∫ τ

0

t.

[
−(ẋt − vt)2

4D
− 1

2

∂vt
∂x

]
− 1

2
C̄11x

2
0

+

∫ τ

0

t.

[√
2Da

2D
(ẋt − vt)− δ(t)C̄12xt

]
ηt

− 1

2

∫ τ

0

t.

∫ τ

0

t.
′ ηtVHP(t, t′)ηt′

}
(10)

after partial integration of the η̇t terms in the second equality, and with the abbreviation

C̄ =

(
C̄11 C̄12

C̄12 C̄22

)
= C−1 =

1

D +Daρ2

(
k2/γ −

√
2Da

k2τa
γ
ρ

−
√

2Da
k2τa
γ
ρ 2τa(D +Daρ)

)
(11)

for the (symmetric) inverse of C. The differential operator VHP(t, t′) reads

VHP(t, t′) = δ(t− t′)
[
−τ 2

a∂
2
t′ + 1 +

Da

D
+ δ(t′)

(
−τ 2

a∂t′ − τa + C̄22

)
+ δ(τ − t′)

(
τ 2

a∂t′ + τa

)]
.

(12)
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Performing the Gaussian integral over η we obtain

p[x] ∝ exp

{∫ τ

0

t.

∫ τ

0

t.
′
[
− 1

4D

(
ẋt +

k2

γ
xt

)[
δ(t− t′)− Da

D
ΓHP(t, t′)

](
ẋt′ +

k2

γ
xt′

)]
−
∫ τ

0

t.

√
2Da

2D
C̄12ΓHP(t, 0)

(
ẋt +

k2

γ
xt

)
x0

− 1

2

[
C̄11 − C̄2

12 ΓHP(0, 0)
]
x2

0

}
, (13)

where we have plugged in vt = −k2xt/γ. Moreover, ΓHP(t, t′) denotes the operator

inverse of VHP(t, t′) in the sense that
∫ τ

0
t.
′ VHP(t, t′)ΓHP(t′, t′′) = δ(t − t′′) (since the

operator VHP(t, t′) is diagonal in t and t′, the integral simplifies into a differential

equation with ΓHP(t′, t′′) being its Green’s function, see Appendix A). It can be

constructed by a suitable extension of the procedure in [13] (see Appendix A),

ΓHP(t, t′) =
κ+−e−λ|t−t

′| + κ−+e−λ(2τ−|t−t′|) − κ++e−λ(t+t′) − κ−−e−λ(2τ−t−t′)

2τ 2
aλ (κ+− − κ−+e−2λτ )

. (14)

with the abbreviations

κ±± = κ±
(
1− κ±τa/C̄22

)
, κ± = 1±

√
1 +Da/D , (15)

and λ =
√

1 +Da/D/τa. The first subscript in κ±± refers to the first κ± on the right-

hand side of its definition and the second subscript to the second κ±.

Expression (13) together with the Green’s function ΓHP(t, t′) is thus the path

probability density for a Brownian particle trapped in a harmonic potential and driven

by an active Ornstein-Uhlenbeck process, when the two start out in a joint steady state.

To compare to the case of independent initial conditions, which we have studied in [13]

and which we briefly re-capitulate in Section 5 below, we observe that in this case C̄12 = 0

and C̄22 = 2τa, so that we recover (21) as stated below when using 1− κ±/2 = κ∓/2.

The path probability density for the time-reversed trajectories x̃ is given by the

same expression (13) (just equipping all x-symbols with a tilde), because there is no

external driving protocol, and the system remains in its stationary state at all times

along the forward trajectory so that the initial condition for the backward trajectory

is again the steady-state distribution (8). Using x̃(t) = x(τ − t) and x̃0 = x(τ) = xτ ,

we can then express p[x̃] in terms of the forward path. The resulting expression looks

similar to (13), but with opposite sign for all ẋt-terms, x0 substituted by xτ , and the

replacements t→ τ − t, t′ → τ − t′ in all non-trivial time-arguments of ΓHP.
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With these results we can finally calculate ∆Σ[x] as defined in (6),

∆Σ[x]

kB

=
1

D

∫ τ

0

t.

∫ τ

0

t.
′
{
ẋt

(
−k2

γ
xt′

)[
δ(t− t′)− Da

D
Γ̄HP(t, t′)

]
+
Da

4D
ẋtẋt′∆ΓHP(t, t′) +

Da

4D

(
k2

γ

)2

xtxt′∆ΓHP(t, t′)

}

−
√

2Da

2D

∫ τ

0

t.

{
ẋt C̄12

[
ΓHP(t, 0)x0 + ΓHP(τ − t, 0)xτ

]
+
k2

γ
xt C̄12

[
ΓHP(t, 0)x0 − ΓHP(τ − t, 0)xτ

]}
+

1

2

[
C̄11 − C̄2

12 ΓHP(0, 0)
] (
x2
τ − x2

0

)
. (16)

To arrive at this expression we have used the symmetry ΓHP(t, t′) = ΓHP(t′, t), and

we have introduced the abbreviations Γ̄HP = 1
2

[ΓHP(t, t′) + ΓHP(τ − t, τ − t′)] and

∆ΓHP = ΓHP(t, t′) − ΓHP(τ − t, τ − t′) for the mean and the difference of ΓHP(t, t′)

and its time-reversed counterpart ΓHP(τ − t, τ − t′).

4.2. Path-wise reversibility

Substituting the inverse (11) of (9) into (16), we can show that ∆Σ[x] = 0, and thus,

according to (6),

p[x̃]

p[x]
= 1 (17)

exactly, for any values of the system parameters. This reversibility holds on the level

of individual steady-state trajectories of arbitrary duration τ . Transients (towards the

steady state) may still be irreversible, but are not captured in (17) by construction, since

we are interested in characterizing the (ir)reversibility of the steady state of a trapped

AOUP and therefore calculated ΓHP(t, t′) for an initial setup corresponding to the joint

steady state of the Brownian particle and the active Ornstein-Uhlenbeck fluctuations.

The details of the derivation of (17) involve some rather tedious manipulations of

the log ratio (16) and are thus relegated to Appendix B. The crucial insight behind

these calculations is to integrate by parts in order to move all time derivatives from the

particle trajectory to the memory kernel ΓHP(t, t′), generating additional terms with one

or two time points on the boundary t = 0 or t = τ . Then we can demonstrate that

all three types of contributions to (16), namely the two-time integrals over t and t′, the

one-time integrals with the other time point lying on the boundary, and the boundary

contributions (which include the integral involving δ(t− t′)), vanish individually.

The ratio (17) tells us that for the steady state in a harmonic trap we will observe

every individual trajectory with a probability which is exactly equal to the probability

for observing the same trajectory in reversed time, i.e. probabilities to observe forward

and backward paths coincide and the process appears reversible. In a corresponding

experiment in which only the position of the particle is measured, it is therefore
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impossible to determine an “arrow of time”. Given a movie of the particle dynamics,

we will be unable to tell whether it is being played forwards or backwards, no matter

how long it is, i.e. no matter how many data points we have. As argued above, the

unbiased, time-correlated fluctuations do not favor a particular direction in space or

time, so we may have expected this result. In the following Sections we will check if

this reversibility property is specific to the combination of an Ornstein-Uhlenbeck noise

modeling the active forces with a harmonic trapping potential, or if it is valid for more

general confining potentials.

Before doing so, we remark that the situation is different in a scenario in which

the active fluctuations are an observable degree of freedom. If we were somehow

able to measure the force
√

2Da η(t) stemming from the active fluctuations, we could

compare probabilities for forward and backward histories of the joint process (x(t), η(t)).

In this x-η phase space, there is always an effective “torque” (a nonconservative

force component) as can be seen from the fact that η(t) drives ẋ(t), but there is no

feedback from x(t) to η̇(t) (see Eqs. (1) and (2)). Hence, there is a “current” in the

(x(t), η(t)) dynamics in the form of a net average rotation, breaking the phase space

symmetry, which will allow to distinguish forward from backward processes on statistical

grounds (see, e.g., Ref. [66] and Fig. 1 therein). For the particle coordinates alone, a

similar situation can arise in more than one spatial dimension under the influence of a

mechanical torque [67–73].

4.3. Remark on d > 1 dimensions

It is straightforward to convince ourselves that the same path-wise reversibility holds

for the steady state of an AOUP trapped in a harmonic potential of higher than one

dimension (or many non-interacting AOUPs in such a potential). In that case, the

equations of motion read

ẋ(t) = −Kx(t) +
√

2Da η(t) +
√

2D ξ(t) , (18a)

η̇(t) = − 1

τa

η(t) +
1

τa

ζ(t) , (18b)

with vector quantities of dimension d > 1 as obvious generalizations of the scalar

quantities from (1) and (2), and a positive definite symmetric d× d tensor K specifying

the harmonic trap. Note that the different dimensions (or particles) have identical

properties concerning thermal and active fluctuations, i.e. the d × d tensors in front of

ξ(t) and η(t) in (18a) and ζ(t) in (18b) are all proportional to the identity tensor.

Since K is symmetric we can diagonalize it with an orthogonal d × d tensor

O. The rotated thermal and active noise processes Oξ(t) and Oη(t) have the same

statistical properties as the original ones. In particular, their components are mutually

independent, such that the set of 2d equations (18a) and (18b) decouples into d

independent pairs of equations of the form (1), (2).

As a consequence, we can write the path probability density p[x] for the d-

dimensional particle trajectories x as a product of d independent path probability
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densities for the individual components. Accordingly, the irreversibility measure ∆Σ[x]

is a sum of d independent contributions of the form (16), which all vanish identically.

5. Double-well potential

In this Section, we consider the AOUP dynamics (1) in a double-well potential like the

one shown in Fig. 1, corresponding to choosing k4 > 0 and k2 < 0 in (7). Unlike the

purely harmonic trap from the previous Section, this case does not allow for calculating

∆Σ[x] with the joint steady state as initial distribution, because the analytical form

of this joint steady state is unknown. We therefore use the results from [13], which

we have obtained under the assumption that the active fluctuations alone are in their

steady state, independent of the initial position x0, i.e.

p0(x0, η0) = p0(x0)p0(η0|x0) = p0(x0)p0(η0) = p0(x0)

√
τa

π
e−τaη

2
0 , (19)

where
√

τa
π

e−τaη
2

is the steady state distribution of the process (2). For reasonable x0,

we are thus a short transient away from the joint steady state, with negligible effects on

the long-term steady state dynamics of the system.

The log ratio of path probabilities from [13] for a fixed initial position x0 of the

active particle reads

∆Σ[x]

kB

= ln
p[x]

p[x̃]
= ln

p[x|x0]

p[x̃|x̃0]
+ ln

p(x0)

p(x̃0)

=
1

D

∫ τ

0

t.

∫ τ

0

t.
′ ẋt vt′

[
δ(t− t′)− Da

D
Γ(t, t′)

]
+ ln

p(x0)

p(xτ )
, (20)

where vt = −U ′(x(t))/γ and

Γ(t, t′) =

(
1

2τ 2
aλ

)
κ2

+e−λ|t−t
′| + κ2

−e−λ(2τ−|t−t′| − κ+κ−
[
e−λ(t+t′) + e−λ(2τ−t−t′)]

κ2
+ − κ2

−e−2λτ
, (21)

with λ =
√

1 +Da/D/τa and κ± = 1 ±
√

1 +Da/D, as before. The first term in (20)

has two contributions in the double integral, one involving the non-local kernel Γ(t, t′),

which vanishes for Da = 0 and is therefore named the “colored-noise contribution”,

∆Σc[x]

kB

= −Da

D2

∫ τ

0

t.

∫ τ

0

t.
′ ẋt vt′ Γ(t, t′) ; (22a)

and a term proportional to δ(t− t′), which survives even for Da = 0 and is thus called

“white-noise contribution”,

∆Σw[x]

kB

=
1

D

∫ τ

0

t. ẋt vt =
1

kBT
[U(x0)− U(xτ )] . (22b)

The second term in (20) quantifies the irreversibility associated with the boundary

distributions at initial and final points in time, and is usually interpreted as the change

in system entropy between the initial and final configurations [13]. It is non-extensive

in the length τ of the trajectory and thus turns out to be negligible for sufficiently long

trajectories compared to the time-extensive contributions in ∆Σ[x].
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Figure 2. (a) A single trajectory (top) and corresponding irreversibility productions

∆Σ (bottom). (b) Close-up of the same trajectory (top) and irreversibility productions

(bottom) for the time interval from about 4300 to 4900. In the lower panels, the dots

mark the time points for which the values of ∆Σw (grey dots) and ∆Σc (orange dots)

have been evaluated from the integrals in (22b) and (22a); the connecting lines serve

as a guide to the eye. For numerical reasons and since the integrals in (22a) have

a smoothing effect anyway, we chose a time-resolution considerably coarser than the

original trajectory. Yellow dashed and purple dash-dotted lines in the top panels

represent the specific positions in the potential as marked in Fig. 1, solid gray lines

illustrate the positions of the potential minima. Unlike for a passive particle, for an

AOUP the maxima of the steady-state distribution do not coincide with the potential

minima due the active driving. Parameter values: k4 = 1, k2 = −1, τa = 250, Da = 10,

D = 0.01, γ = 1, kB = 1.

5.1. First numerical experiments

A typical trajectory is plotted in the upper panel of Fig. 2(a). The irreversibility ∆Σ as

a function of the trajectory duration is shown in the lower panels (blue), along with a

splitting into white-noise contributions ∆Σw (gray) and colored-noise contributions ∆Σc

(orange); the boundary term ln p(x0)
p(x̃0)

would typically be of the order of ∆Σw and has been

neglected in the plots. As it should, the white-noise contribution becomes stationary

pretty soon and does not grow extensively since the corresponding stochastic integral

depends only on the initial and final points of the trajectory. The active contribution,

however, increases sharply whenever the particle jumps from one minimum to the other.

Hence, we find that the steady-state trajectories in a quartic potential are irreversible,

and that the jumps between the two potential minima render the dynamics irreversible,

even though there is no net current from one side to the other. This means that it is in

principle possible to tell apart trajectories which run forward in time from those which
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run backward in time.

5.2. Explaining irreversibility

The quartic potential for k4 > 0, k2 < 0 and the resulting force are sketched

in Fig. 1. The potential has a local maximum at xmax = 0 and two minima at

x±min = ±
√
−k2/k4 (solid gray lines in Fig. 1). There are also two inflection points at

x±ifl = ±
√
−k2/3k4 = xmin/

√
3, where the force’s magnitude reaches a local extremum

(dashed yellow lines in Fig. 1). For every inflection point, there is one point on the

opposite side of the origin where the force takes the same value as it does at x±ifl
(dash-dotted purple lines in Fig. 1). We denote these conjugate equal-force points by

x±jmp = ∓
√
−4k2/3k4 = 2x∓ifl, such that U ′(x±jmp) = U ′(x±ifl).

Fily [74] analyzed such a setup in the limit of high persistence, for which τa is by far

the largest time scale in the system (see also [56, 75] for related studies). He showed that,

asymptotically for τa → ∞, the particle is never found in the region (x−ifl, x
+
ifl) between

the inflection points. To explain this observation, assume that the potential barrier

around the origin is sufficiently high so that purely thermally induced crossings of the

barrier are rare. However, if the active forcing is large enough to counter the restoring

potential forces when moving uphill towards the barrier, the particle can climb up the

hill towards the origin and reach the inflection point of maximum counterforce. Due

to persistence of the active fluctuations, the particle will then continue to push in the

direction of its active drive, and speed up because the opposing force will be weaker

until the origin is reached, from where on active and potential forces will even point

in the same direction. The active forces will only be balanced again once the particle

approaches the conjugate equal-force point beyond the barrier, where it will thus be

slowed down and “stopped” eventually. The transition from one side of the double-well

potential to the other thus looks like a “sudden jump”, in particular on the time-scale τa

of the active fluctuations. When the active fluctuations change sign, the same process

can then occur in the opposite direction.

As a consequence, the trajectories of such an active particle show hysteresis-

like behavior and exhibit a clear signature of an “arrow of time” despite the

conservative, time-independent confining forces: The particle preferantially “jumps”

from an inflection point x±ifl (dashed yellow lines in Fig. 1) to the corresponding equal-

force point x±jmp on the other side of the barrier (dash-dotted purple lines in Fig. 1), but

(practically) never the other way (from x±jmp to x±ifl). We can nicely see this behavior

in Fig. 2(b), showing close-up views of two transitions from the trajectory plotted in

Fig. 2(a). If we were to see a trajectory dominated by “jumps” from the points x±jmp to

the points x±ifl, we are most likely watching a trajectory which is “played” backward in

time. This intuitive picture suggests that the irreversibility of trajectories is encoded

predominantly in the “jumps” between the potential wells. Figure 2 highlights that our

dynamical measure ∆Σ[x], eq. (20), identifies these “jumps” as the principle source of

irreversibility, too.
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Figure 3. Two-point probability density p(x′, t′;x, t) for step size t′−t = 25. Potential

minima are marked by solid gray lines. Inflection points x±ifl are marked by dashed

yellow lines. The corresponding jump target points x±jmp are marked by dash-dotted

purple lines, see also Fig. 1. The dotted gray lines mark the diagonals x = x′ and

x = −x′ and guide the eye to assess the (a)symmetry of the plot. Parameter values as

in Fig. 2.

The irreversibility of trajectories also becomes apparent by inspection of the two-

point probability density p(x′, t′;x, t), shown for the time delay t′ − t = 25 in Fig. 3.

It illustrates the probability of observing the particle at a certain position x in the

potential at time t and at position x′ at a later time t′ = t+ 25. The mirror symmetry

x ↔ −x of the potential is reflected by the point symmetry in Fig. 3 with respect to

the origin (0, 0). The potential minima are located at the solid gray lines. The bright

spots around the crossings of these lines on the diagonal x = x′ (lower left and upper

right corner in Fig. 3) correspond to a high probability density and indicate that the

particle is most likely to stay in the potential well it is starting from at the beginning of

the time-interval t′− t = 25. The other two bright spots in Fig. 3 (upper left corner and

lower right corner) represent the “jumps” from one side of the potential to the other

side. Their irreversibility is visible in the asymmetry of the probability density spots

with respect to the diagonal x = x′. The starting positions (x coordinates) at time t

are close to the inflection points x ≈ x±ifl (vertical dashed yellow lines), while the final

positions (x′ coordinates) are the jump-target points x′ ≈ x±jmp (horizontal dash-dotted

purple lines). Analogous density spots that would correspond to the opposite “jumps”

from x ≈ x±jmp to x′ ≈ x±ifl are absent, implying that any steady-state trajectory of the

AOUP trapped in a double-well potential becomes more and more irreversible over time.

In this sense it “produces irreversibility” and encodes an “arrow of time”.
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5.3. Exploring irreversibility

As pointed out above, the clear hysteresis-like behavior and its irreversibility are

associated with the high persistence of the active fluctuations induced by large τa. We

expect, however, that particle trajectories become fully reversible in the strict limit

τa →∞, in which the dynamics of η(t) is “frozen” and the active velocity
√

2Daη(t) =√
2Daη(0) remains constant for all times. In that case the constant active velocity√
2Daη(0) can be absorbed into the potential as a tilting force, U(x) − γ

√
2Daη(0)x,

such that (1) effectively turns into a Langevin-equation for a passive Brownian particle

confined in a tilted double-well potential. The steady state is then identical to thermal

equilibrium in the tilted potential, and therefore any particle trajectory is reversible (on

the time-scales that are shorter than τa).

For smaller τa-values, on the other hand, we may expect that a “weakened” or

“smoothed-out” form of the hysteresis-like behavior is still producing irreversibility,

even if the irreversibility of the trajectories might not be visible to the naked eye any

more in the lucidity it is displayed in Fig. 2. To study the effect of decreasing τa,

there are two possible scenarios: On the one hand, we can keep the active diffusion

Da fixed, such that the process
√

2Da η(t) approaches a thermal white-noise process

with diffusion Da as τa → 0. Then, the particle feels an effective total temperature of

γ(D + Da)/kB = T + γDa/kB. Alternatively, we can require that the active velocity

va =
√
Da/τa remains fixed (which may be the more natural limit when taking the

AOUP as an approximation for an active Brownian particle [28, 38, 39]). Then, the

overall intensity decreases as τa becomes smaller until the particle just feels the thermal

fluctuations at temperature γD/kB = T as τa → 0. In both cases, the limit τa → 0

turns (1) into an equation of motion for a passive Brownian particle, so that again

all trajectories become reversible. In the following, we will explore the regime of

intermediate τa-values for both of the scenarios mentioned above, namely constant active

diffusion and constant active velocity. For a discussion of the τa → 0 and τa →∞ limits

for an AOUP in a slightly different setting we refer to Ref. [66].

5.3.1. Decreasing active correlation time at constant active diffusion. We first consider

decreasing τa for fixed Da = 10. Fig. 4 shows trajectories for τa = 50 (right), τa = 1

(middle) and τa = 0.1 (left) along with their irreversibility productions. The production

rate ∆Σ/τ is larger for τa = 50 than it is for τa = 250 in Fig. 2, and grows even further

as τa = 1. At the same time the frequency of jumps increases as τa is lowered. However,

eventually the production rate decreases again (τa = 0.1) and is expected to reach zero

in the white-noise limit τa → 0, while the number of “jumps” continues to grow. In

this limit, diffusion is so strong that the potential barrier around the origin affects the

dynamics only marginally. We remark that while ∆Σ is apparently negative in the

passive white-noise limit, the full entropy production is only obtained upon adding the

system contributions (the second term in (20)) and must be zero in the steady state

since for passive Brownian motion the steady state corresponds to thermal equilibrium.
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Figure 4. Single trajectories (top) and corresponding irreversibility productions ∆Σ

(bottom) for three systems with different active correlation times smaller than τa = 250

from Fig. 2: τa = 0.1 (left), τa = 1 (middle), and τa = 50 (right). All other parameter

values are as in Fig. 2. The frequency of jumps increases as τa decreases and the

self-propulsion force switches direction more often. In the lower panels, the dots mark

the time points for which the values of ∆Σw (grey dots) and ∆Σc (orange dots) have

been evaluated from the integrals in (22b) and (22a); the connecting lines serve as a

guide to the eye. The time-resolution is considerably lower than for the trajectories

in the upper panels. In particular for smaller values of τa the increasing number of

jumps in the trajectory is not resolved but rather smoothened-out in the ∆Σ curves.

The horizontal yellow dashed and purple dash-dotted lines in the top panels represent

the specific positions in the potential as marked in Fig. 1, solid gray lines illustrate the

positions of the potential minima.
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Figure 5. Irreversibility production rate 〈σ〉 in the quartic double-well potential as a

function of the active correlation time τa for fixed active diffusion Da = 10. All other

parameter values are as in Fig. 2.
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In our case, however, the total entropy production would assume a small positive value

from a short transient phase, because we are not starting from the (joint) steady state

and thus are slightly out of equilibrium in the beginning.

The dependence of the average irreversibility production rate

〈σ〉 = lim
τ→∞
〈∆Σ(τ)〉/τ (23)

on the active correlation time is summarized in Fig. 5. We can see the tendency

towards vanishing irreversibility production rate in the two limits τa → ∞ and τa → 0

as discussed above, and a maximum of irreversibility production at around τa ≈ 1.

Surprisingly, the irreversibility production rate at the persistence time τa = 250, for

which we can observe the distinct hysteresis-like behavior and discern an “arrow of

time” in the particle trajectories by naked eye (cf. Figs. 2 and 3), is about a factor

20 smaller than the maximal rate at τa ≈ 1. We might expect that this is due to a

maximized rate of “jumps” between potential wells at τa ≈ 1, maximizing the number of

irreversible hysteresis-like cycles. Intuitively, a maximal “jump” rate might occur when

the persistence time τa of the active fluctuations is of the order of the typical duration of

a “jump” from one potential well to the other, because then the next “jump” is initiated

right after having finished the previous one.

5.3.2. Decreasing active correlation time at constant active velocity. The second option

when taking the limit τa → 0 is to keep the self-propulsion velocity va =
√
Da/τa of the

particle fixed. In the high-persistence case from Fig. 2 above, its value is va = 1/5.

Data for three correlation times smaller than τa = 250 are shown in Fig. 6. We

observe that, compared to τa = 250 in Fig. 2, the frequency of jumps first increases

(τa = 100 and τa = 10) (note that the trajectories in Fig. 6 are about a factor 5 shorter

than in Fig. 2), accompanied by an increase of irreversibility production. Eventually,

however, the jump frequency decreases again (τa = 1) until jumps become very rare.

Summarizing, Fig. 7 shows the average irreversibility production rate 〈σ〉 from (23) as

a function of τa (analogous to Fig. 5). Again, we can see the irreversibility production

rate approaching zero in the limits τa → ∞ and τa → 0. The maximal rate is reached

at around τa ≈ 10 . . . 30, and is roughly three times as large as the rate at τa = 250,

for which we have discussed the hysteresis-like behavior of the particle trajectories and

the associated irreversibility in Sections 5.1 and 5.2 above. Compared to the finding

in Fig. 5 for the constant-Da scenario, the maximal irreversibility production rate in

Fig. 7 occurs at about a 10 times larger value for τa. This observation is consistent with

our intuitive explanation of matching time-scales τa and typical “jump times”, because

the latter is dominated by the active self-propulsion velocity va, which has the value

va =
√

10 at τa = 1 in Fig. 5 and va = 1/5 in Fig. 7, with roughly a factor 10 difference.

Finally, we would like to direct the reader’s attention to the left panel of Fig. 6. The

particle is staying in one and the same potential well during the whole duration of the

trajectory, i.e. it is not jumping between potential wells, but ∆Σ increases nevertheless

(though at a much slower rate than during the jumps). It therefore seems that the
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Figure 6. Single trajectories (top) and corresponding irreversibility productions ∆Σ

(bottom) for three systems with different active correlation times smaller than τa = 250

from Fig. 2: τa = 1 (left), τa = 10 (middle), and τa = 100 (right). Here, the active

velocity va =
√
Da/τa = 1/5 is kept constant, so that Da = 0.04 (left), Da = 0.4

(middle) and Da = 4.0 (right), respectively. All other parameter values are as in

Fig. 2. In the lower panels, the dots mark the time points for which the values of ∆Σw

(grey dots) and ∆Σc (orange dots) have been evaluated from the integrals in (22b)

and (22a); the connecting lines serve as a guide to the eye. The time-resolution is

considerably lower than for the trajectories in the upper panels. The horizontal yellow

dashed and purple dash-dotted lines in the top panels represent the specific positions

in the potential as marked in Fig. 1, solid gray lines illustrate the positions of the

potential minima.
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Figure 7. Irreversibility production rate 〈σ〉 in the quartic double-well potential as

a function of the active correlation time τa for fixed active speed va = 1/5. All other

parameter values are as in Fig. 2.
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Figure 8. (a) A single trajectory (top) and corresponding irreversibility productions

∆Σ (bottom) in a quartic single-well potential (k4 = 1, k2 = 0) for the same dynamical

parameters as in Fig. 6 (left panels) (i.e. τa = 1, Da = 0.04, D = 0.01, γ = 1, kB = 1).

(b) Close-up of the same trajectory (top) and irreversibility productions (bottom) for

the time interval from about 1000 to 1200. In the lower panels, the dots mark the time

points for which the values of ∆Σw and ∆Σc have been evaluated from the integrals

in (22b) and (22a); the connecting lines serve as a guide to the eye.

steady state of an AOUP is irreversible even in a single-well potential, provided the

potential is anharmonic (cf. Section 4). In the following Section, we are going to briefly

investigate the irreversibility properties of an AOUP trapped in a quartic single-well

potential.

6. Quartic single-well potential

In this Section, we turn to the case of the AOUP (1) moving in a quartic single-well

potential with k4 > 0 and k2 = 0 in (7). Figure 8 shows a stationary-state trajectory

(upper panels) of the AOUP together with the irreversibility production (lower panels)

for the same parameters of the active fluctuations as in the leftmost panels of Fig. 6.

Figure 10(a) displays the corresponding steady-state distribution. The effect of the

active fluctuations is visible in the broadening of the distribution (compared to the

Boltzmann distribution it would assume without activity), as the active fluctuations

push the particle more towards the flanks of the potential. From Fig. 8(a), we see that

the main contribution to irreversibility is due to the colored-noise memory kernel (22a)

characteristic for the active fluctuations, while the thermal white-noise component does

not produce irreversibility. Moreover, irreversibility seems to be produced more or less
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Figure 9. (a) A single trajectory (top) and corresponding irreversibility productions

∆Σ (bottom) in a quartic single-well potential (k4 = 1, k2 = 0) for the same dynamical

parameters as in Fig. 2 (i.e. τa = 250, Da = 10, D = 0.01, γ = 1, kB = 1). (b) Close-

up of the same trajectory (top) and irreversibility productions (bottom) for the time

interval from about 5000 to 6000. In the lower panels, the dots mark the time points

for which the values of ∆Σw (grey dots) and ∆Σc (orange dots) have been evaluated

from the integrals in (22b) and (22a); the connecting lines serve as a guide to the eye.
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Figure 10. Numerically computed steady-state distributions p∞(x) of the AOUP

trapped in a quartic single-well potential (k4 = 1, k2 = 0 in (7)). (a) Parameter values

as in Fig. 8 (i.e. τa = 1, Da = 0.04, D = 0.01, γ = 1, kB = 1). (b) Parameter values as

in Fig. 9 (i.e. τa = 250, Da = 10, D = 0.01, γ = 1, kB = 1). Deviations from perfect

mirror symmetry are due to statistical fluctuations.
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continuously without being connected to specific features of the trajectory (like the

“jumps” in the case of a double-well potential). This observation is confirmed by the

closeup in Fig. 8(b), where it becomes apparent that the transition-like movement of

the particle from one side of the potential well to the other is not accompanied by a

distinct production of irreversibility. We can “enhance” these transitions by increasing

the persistence time of the active fluctuations, such that the active forcing η(t) pushes

the particle to one side of the potential well for an extended period of time until η(t)

changes sign and drives the particle over to the other side. We show a corresponding

trajectory (upper panels) and the associated irreversibility (lower panels) for τa = 250

in Fig. 9 (and with Da = 10, i.e. the same active fluctuations for which we could observe

the “arrow of time” in the double-well potential, see Fig. 2). The trajectory now shows

“jump-like” transitions between the two edges of the potential well at around ±0.5; see,

in particular, the closeup in Fig. 9(b), and the associated steady-stated distribution in

Fig. 10(b) with two peaks at the edges of the potential and a depleted zone in the middle.

However, there is no clear indication that these “jump-like” transitions play a similar

role as a source of irreversibility like in the double-well potential. In fact, the trajectory

does not reveal any obvious features which would tell us that it is considerably less likely

to observe the same trajectory in the stationary state but traced out backward in time.

From numerical simulations we find the maximal rate of irreversibility production

in the quartic single-well potential (k4 = 1, k2 = 0) when varying τa according to the

constant va =
√
Da/τa scenario to be roughly 0.02 at around τa = 5. Surprisingly, this

maximal irreversibility production rate is only about a factor 3 smaller than the one in

the double-well potential (see Fig. 7), even though in these two systems irreversibility

is produced by significantly different physical processes on distinct scales (exploring

the single quartic well vs. jumping between potential wells). Despite these contrasts,

the similar irreversibility productions in the quartic single- and double-well potential

imply that the likelihood of observing time-reversed trajectories on average decreases

at comparable rates, and likewise the uncertainty when estimating the direction of the

arrow of time based on 〈σ〉 [64].

7. Conclusions

Active matter systems are inherently driven out of equilibrium as a result of their

capability to locally consume and convert energy (e.g., generating self-propulsion) [4–

8]. Yet, the non-equilibrium nature of this active driving may not always be visible or

detectable in the emergent dynamical behavior of active particles, in particular when

the active system is being observed on the level of spatial trajectories without resolving

the microscopic processes generating the active self-propulsion. Active matter systems

may therefore appear to bear certain equilibrium features despite their underlying non-

equilibrium nature. We here have assessed this potential resemblance by quantifying the

irreversibility of individual steady-state trajectories of active particles confined within

a static one-dimensional trapping potential. This setup excludes the occurrence of net
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(particle) currents and of non-equilibrium stationary states sustained by external time-

periodic driving forces. Without activity, it corresponds to an equilibrium situation with

perfect path-wise reversibility. To study the effect of activity on the (ir)reversibility

properties of particle trajectories we focused on the so-called active Ornstein-Uhlenbeck

particle (AOUP) as a “minimal”, but popular and successful model for active Brownian

motion [8, 10, 11, 21, 28, 31, 38–59]. In the AOUP model, active self-propulsion is

represented by a fluctuating colored-noise force (Ornstein-Uhlenbeck process) in the

equations of motion [32], see Section 2.

The most immediate effect of activity is to create steady-state distributions within

the trapping potential, which are different from the equilibrium Boltzmann distribution

(see Fig. 10 for an example), but which do not break any symmetry or carry any net

currents. Hence, intuition might have tempted us to expect the one-dimensional steady-

state dynamics to be path-wise reversible despite its active non-equilibrium character.

Our main results for the AOUP model are two-fold:

On the one hand, all steady-state trajectories are perfectly reversible in a harmonic

potential, exactly like in equilibrium. This result was proven analytically in Section

4. It is valid for any trajectory of arbitrary duration and for any values of the system

parameters. In particular, it does not play any role whether the activity is weak or

strong (controlled by Da in (1)) or whether the persistence time τa of the active driving is

short or long. Moreover, steady-state trajectories are reversible in a harmonic potential

in arbitrary dimensions, not just in a one-dimensional harmonic trap. Our finding

generalizes previous results regarding the reversibility of infinitely long trajectories of a

harmonically trapped AOUP [66] to individual, finite-time trajectories and corroborates

earlier reports that an AOUP in a potential with vanishing third derivative possesses

equilibrium-like properties [11, 28, 35, 55].

On the other hand, AOUP trajectories are irreversible in a quartic potential, even in

the steady state. We demonstrated this by evaluating the irreversibility production (20)

from numerically simulated trajectories (which are much longer than transient relaxation

processes). In a quartic double-well potential (Section 5) we identified the jumps between

the potential wells, driven by the active fluctuations, as the main source of irreversibility.

For large τa, the irreversible nature of the individual particle trajectories is even visible

to the naked eye, such that we may quite easily distinguish between trajectories being

traced out forward in time versus backward in time. In a quartic single-well potential,

irreversibility does not seem to be connected in such an obvious way to a distinct

feature of the particle trajectories. Nevertheless, irreversibility production can reach

rates comparable to those in the double-well potential. Moreover, in both the quartic

single- and double-well potentials, we find the irreversibility production to vanish, and

thus the AOUP trajectories to become reversible, for small and large τa, in agreement

with the fact that in these limits the steady-state AOUP can be mapped to a passive

Brownian particle at equilibrium (see Appendix C in [13] for an explicit computation of

the τa → 0 limit at constant Da for arbitrary potentials).

The associated decrease of the average irreversibility production rate 〈σ〉 with
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increasing τa is in contrast to the growing deviation of the steady-state distribution

from the equilibrium Boltzmann distribution (see Fig. 10). This apparent contradiction

(and others [15]) highlights that the non-equilibrium characteristics of the steady state

of active matter are complex and subtle, in particular with respect to their analogy

to the equilibrium state. Different hallmarks of equilibrium (Boltzmann distribution

vs. path-wise reversibility vs. violations of Einstein relation etc.) may capture different

aspects of this analogy. Concerning the log ratio of path probabilities ∆Σ, we would like

to emphasize here that—by construction—it does not measure entropy production in the

thermal environment and does not quantify departure from equilibrium in that sense.

In any model for active matter which simply represents activity by an “effective active

force” (like the AOUP model) the entropy production and the corresponding departure

from equilibrium due to the microscopic dissipative processes generating the active self-

propulsion drive cannot be captured (see also the detailed discussion in [13], and [76]

for an explicit model quantifying this microscopic entropy production). Rather, ∆Σ

assesses, in the very sense of its definition (6), how irreversible spatial AOUP trajectories

are and how closely the AOUP dynamics resembles the path-wise reversibility properties

of equilibrium systems.

As we have seen in the present study, the AOUP dynamics can appear time

reversible, and thus equilibrium-like, despite the non-equilibrium character of the active

self-propulsion. This result directly extends to other physical situations which are

described by our model (1), (2). In particular, the equations of motion (1), (2) are well

established to capture essential aspects of the dynamical behavior of a passive tracer

particle suspended in a “bath” of active swimmers [10, 13, 40, 41]. It would be interesting

to connect our findings to the thermodynamic (-like) properties of active matter [77], for

instance, by unravelling how the (ir)reversibility of active particle trajectories is related

to the active pressure [18, 78] or to motility-induced phase separation [79]. Moreover,

analogous studies should be carried out for other models of active Brownian motion,

like active Brownian particles or run-and-tumble particles [4].
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Appendix A. Calculation of ΓHP(t, t′)

In eq. (12) the explicit form of the “memory kernel” ΓHP(t, t′) in the path integral (13)

is given for the case of an AOUP being trapped in a harmonic potential. As mentioned

in the main text, it turns up as the operator inverse
∫ τ

0
t.
′ VHP(t, t′)ΓHP(t′, t′′) = δ(t− t′′)

of the differential operator

VHP(t, t′) = δ(t− t′)
[
−τ 2

a∂
2
t′ + 1 +

Da

D
+ δ(t′)

(
−τ 2

a∂t′ − τa + C̄22

)
+ δ(τ − t′)

(
τ 2

a∂t′ + τa

)]
(A.1)

when performing the Gaussian integral over all realizations η of the active fluctuations.

Since the operator VHP(t, t′) is “diagonal” in its time arguments, the integro-differential

equation determining ΓHP(t, t′) simplifies to the differential equation[
−τ 2

a∂
2
t + 1 +

Da

D
+ δ(t)

(
−τ 2

a∂t − τa + C̄22

)
+ δ(τ − t)

(
τ 2

a∂t + τa

)]
ΓHP(t, t′) = δ(t− t′) .

(A.2)

Similar equations have been solved in the Appendices of [13, 16], investigating setups

for AOUPs with initial conditions different from the stationary state in a harmonic

trap considered here. The mathematical procedure for finding the solution of (A.2) is

essentially the same as in [13, 16]. In fact, the differential equation (36) studied in the

Appendix of [16] is identical to our (A.2) here when identifying 1/σ2 with C̄22. We can

therefore read off ΓHP(t, t′) directly from the solution (17) in [16] by setting σ2 = 1/C̄22.

For the sake of completeness, we here briefly repeat the main ideas and a few

central steps of the calculation. Exploiting that (A.2) is a linear differential equation we

compose ΓHP(t, t′) from two parts, ΓHP(t, t′) = G(t, t′) + H(t, t′). The first part is the

Green’s function of the inhomogeneous equation [−τ 2
a∂

2
t +(1+Da/D)]G(t, t′) = δ(t− t′)

with homogeneous boundary conditions G(0, t′) = G(τ, t′) = 0, the second part solves

the homogeneous problem [−τ 2
a∂

2
t + (1 + Da/D)]H(t, t′) = 0 such that the boundary

terms are fixed as prescribed by (A.2). We construct both parts, G(t, t′) and H(t, t′),

from the general solution

Γ(t) = a+eλt + a−e−λt , λ =
1

τa

√
1 +

Da

D
, a± = const (A.3)

of the homogeneous ordinary differential equation[
−τ 2

a∂
2
t + 1 +

Da

D

]
Γ(t) = 0 (A.4)

associated with (A.2).

For G(t, t′), two such solutions, one for 0 < t < t′ and one for t′ < t < τ ,

are matched at t = t′ such that the δ(t − t′)-inhomogeneity appears when evaluating

[−τ 2
a∂

2
t + (1 +Da/D)]G(t, t′). The corresponding matching conditions at t = t′ and the

homogeneous boundary conditions G(0, t′) = G(τ, t′) = 0 fix the two sets of parameters

a± from the ansatz (A.3) (one set for 0 < t < t′ and one for t′ < t < τ) [13]. Via
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these matching conditions at t = t′, the time point t′ enters the solution G(t, t′); it is

otherwise a fixed parameter in the differential equations for G(t, t′) and H(t, t′), just

like D, Da, τa and C̄22.

For the function H(t, t′), we again make an ansatz of the form (A.3). We fix the

coefficients a± by ensuring that the full solution ΓHP(t, t′) = G(t, t′) + H(t, t′) with the

Green’s function G(t, t′) already known from the previous step of the calculation fulfills

(A.2). Plugging G(t, t′) +H(t, t′) into (A.2), and using [−τ 2
a∂

2
t + (1 +Da/D)]G(t, t′) =

δ(t − t′) and [−τ 2
a∂

2
t + (1 +Da/D)]H(t, t′) = 0, we are left with the boundary

contributions proportional to δ(t) and δ(τ − t) on the left-hand side of (A.2) (expressed

in terms of derivatives of G(t, t′), the various system parameters, and the unknowns

a±) and with zero on the right-hand side of (A.2). Requiring that each of these

boundary contributions vanishes, we obtain a± for the function H(t, t′). Finally,

the sought solution ΓHP(t, t′) is obtained according to the superposition ΓHP(t, t′) =

G(t, t′) +H(t, t′).

Appendix B. Reversibility in the harmonic potential

The goal is to show that ∆Σ[x] as given in (16) is identically zero. We start by moving the

time-derivatives within the integrals from ẋt and ẋt′ to ΓHP(t, t′) via partial integration

and by sorting the resulting expression for ∆Σ[x] into contributions containing genuine

double time integrals, single time integrals and pure boundary terms,

∆Σ[x]

kB

=
1

2

∫ τ

0

t.

∫ τ

0

t.
′ xtK2(t, t′)xt′ +

1

2

∫ τ

0

t. xt [Kτ (t)xτ −K0(t)x0] +
1

2
K
(
x2
τ − x2

0

)
,

(B.1)

with

K2(t, t′) =
Da

2D2

[
−4k2

γ
Γ̄

(1,0)
HP (t, t′) +

(
k2

γ

)2

∆ΓHP(t, t′) + ∆Γ
(1,1)
HP (t, t′)

]
,

(B.2)

Kτ (t) =
Da

2D2

[
4k2

γ
Γ̄HP(t, τ)− 2∆Γ

(1,0)
HP (t, τ)

]
+

√
2Da

D
C̄12

[
k2

γ
ΓHP(τ − t, 0)− Γ

(1,0)
HP (τ − t, 0)

]
, (B.3)

K0(t) =
Da

2D2

[
4k2

γ
Γ̄HP(t, 0)− 2∆Γ

(1,0)
HP (t, 0)

]
+

√
2Da

D
C̄12

[
k2

γ
ΓHP(t, 0)− Γ

(1,0)
HP (t, 0)

]
, (B.4)

K = C̄11 −
(
C̄2

12 +

√
2Da

D
C̄12

)
ΓHP(0, 0)− Da

2D2
∆ΓHP(0, 0)− 1

D

k2

γ
,

(B.5)
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where we recall that Γ̄HP = 1
2

[ΓHP(t, t′) + ΓHP(τ − t, τ − t′)] and ∆ΓHP = ΓHP(t, t′) −
ΓHP(τ − t, τ − t′), as defined below eq. (16). To find these expressions we have exploited

∆ΓHP(0, τ) = ∆ΓHP(τ, 0) = 0, ∆ΓHP(τ, τ) = −∆ΓHP(0, 0), and we have used the

symmetry ΓHP(t, t′) = ΓHP(t′, t), implying, e.g., ΓHP(τ, t′) = ΓHP(t′, τ). Moreover,

we have introduced the notation Γ
(i,j)
HP (t, t′) to denote the i-th derivative of ΓHP(t, t′)

with respect to its first argument and the j-th derivative with respect to its second

argument, an explicit example being Γ
(1,0)
HP (τ − t, 0) = ∂ΓHP(t,t′)

∂t

∣∣∣
t=τ−t,t′=0

= ∂ΓHP(τ−t,0)
∂(τ−t) =

−∂ΓHP(τ−t,0)
∂t

. Note that the contribution K contains the δ(t − t′)-integral from (16)

as a boundary term. In the following we consider the four contributions (B.2)-(B.5)

separately.

For convenience we briefly recall some central quantities. We start with the

abbreviations from (15),

κ±± = κ±
(
1− κ±τa/C̄22

)
= κ±

(
1− κ±

D +Daρ
2

2(D +Daρ)

)
= (1± λτa)

[
1− (1± λτa)

D +Daρ
2

2(D +Daρ)

]
=
(

1±
√

1 +Da/D
)[

1−
(

1±
√

1 +Da/D
) D +Daρ

2

2(D +Daρ)

]
, (B.6)

where in the second line we have used the explicit form of C̄22 from (11), and in the

third line the definition of κ± = 1 ± λτa = 1 ±
√

1 +Da/D given in eq. (15). Some

combinations of these constants, which we will need in the following calculations, are

κ++ + κ−− = − τ 2
a

[
(k2/γ)2 + λ2

] Daρ
2

D +Daρ
, (B.7)

κ++ − κ−− = τ 2
a (2k2λ/γ)

Daρ
2

D +Daρ
, (B.8)

κ+− − κ++ = − 1

2
(λτa + 1) (κ++ − κ−− − 2λτa)

= λτa (λτa + 1)
D +Daρ

2

D +Daρ
, (B.9)

κ−+ − κ−− = − 1

2
(λτa − 1) (κ++ − κ−− − 2λτa)

= λτa (λτa − 1)
D +Daρ

2

D +Daρ
. (B.10)

We also recall the explicit form of the integral kernel ΓHP(t, t′) from (14),

ΓHP(t, t′) =
κ+−e−λ|t−t

′| + κ−+e−λ(2τ−|t−t′|) − κ++e−λ(t+t′) − κ−−e−λ(2τ−t−t′)

2τ 2
aλ (κ+− − κ−+e−2λτ )

, (B.11)

and the definitions Γ̄HP = 1
2

[ΓHP(t, t′) + ΓHP(τ − t, τ − t′)] and ∆ΓHP = ΓHP(t, t′) −
ΓHP(τ − t, τ − t′).
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We can now compute the various combinations and derivatives of ΓHP(t, t′)

appearing in (B.2),

Γ̄
(1,0)
HP (t, t′) =

λ sign(t′ − t)
[
κ+−e−λ|t−t

′| − κ−+e−λ(2τ−|t−t′|)]
2τ 2

aλ (κ+− − κ−+e−2λτ )

−
λ
2

(κ++ + κ−−)
[
e−λ(2τ−t−t′) − e−λ(t+t′)

]
2τ 2

aλ (κ+− − κ−+e−2λτ )
, (B.12)

∆ΓHP(t, t′) =
(κ++ − κ−−)

[
e−λ(2τ−t−t′) − e−λ(t+t′)

]
2τ 2

aλ (κ+− − κ−+e−2λτ )
, (B.13)

∆Γ
(1,1)
HP (t, t′) = λ2 ∆ΓHP(t, t′) . (B.14)

The first line in (B.12) is an odd function upon exchange of t and t′ and therefore does not

contribute to the double integral in (B.1). The remaining terms in K2(t, t′) are propor-

tional to
[
(2k2λ/γ) (κ++ + κ−−) +

[
(k2/γ)2 + λ2

]
(κ++ − κ−−)

] [
e−λ(2τ−t−t′) − e−λ(t+t′)

]
.

With (B.7) and (B.8) we see that these terms are zero as well.

Next, we consider Kτ (t), see eq. (B.3). The expressions involving ΓHP(t, t′) read

Γ̄HP(t, τ) =

[
κ+− − 1

2
(κ++ + κ−−)

]
e−λ(τ−t) +

[
κ−+ − 1

2
(κ++ + κ−−)

]
e−λ(τ+t)

2τ 2
aλ (κ+− − κ−+e−2λτ )

, (B.15)

∆Γ
(1,0)
HP (t, τ) =

λ(κ++ − κ−−)
[
e−λ(τ−t) + e−λ(τ+t)

]
2τ 2

aλ (κ+− − κ−+e−2λτ )
, (B.16)

ΓHP(τ − t, 0) =
(κ+− − κ++) e−λ(τ−t) + (κ−+ − κ−−) e−λ(τ+t)

2τ 2
aλ (κ+− − κ−+e−2λτ )

, (B.17)

Γ
(1,0)
HP (τ − t, 0) =

−λ (κ+− − κ++) e−λ(τ−t) + λ (κ−+ − κ−−) e−λ(τ+t)

2τ 2
aλ (κ+− − κ−+e−2λτ )

. (B.18)

Plugging them into (B.3), using C̄12 = −
√

2Da
k2τa
γ
ρ/(D+Daρ

2) (see (11)), and skipping

common t-independent factors, we find

Kτ (t) ∝
{

2k2τa

γ

[
κ+− − κ++ +

1

2
(κ++ − κ−−)

]
− λτa(κ++ − κ−−)

− 2Dρ

D +Daρ2

k2τa

γ

(
k2τa

γ
+ λτa

)
(κ+− − κ++)

}
e−λ(τ−t)

+

{
2k2τa

γ

[
κ−+ − κ−− −

1

2
(κ++ − κ−−)

]
− λτa(κ++ − κ−−)

− 2Dρ

D +Daρ2

k2τa

γ

(
k2τa

γ
− λτa

)
(κ−+ − κ−−)

}
e−λ(τ+t)

(B.19)

Using (B.8), (B.9), (B.10), and keeping in mind that 1/ρ = 1 + k2τa/γ and Da/D =

(λτa)2 − 1, we recognize that the expressions in curly brackets in front of e−λ(τ−t) and

e−λ(τ+t) both vanish, such that we conclude Kτ (t) = 0. By a completely analogous

calculation we can show that K0(t) = 0 as well (cf. (B.4)).
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We finally turn to K, eq. (B.5). With the expressions for C̄11 and C̄12 from

(11), we can simplify C̄11 − k2/(Dγ) = [k2/(Dγ)] −Daρ2

D+Daρ2
and C̄2

12 + (
√

2Da/D)C̄12 =

2τa[k2/(Dγ)] −Daρ2

D+Daρ2
D+Daρ
D+Daρ2

. Then, using

ΓHP(0, 0) =
(κ+− − κ++) + (κ−+ − κ−−) e−2λτ

2τ 2
aλ (κ+− − κ−+e−2λτ )

, (B.20)

∆ΓHP(0, 0) =
(κ++ − κ−−)

(
e−2λτ − 1

)
2τ 2

aλ (κ+− − κ−+e−2λτ )
, (B.21)

and eqs. (B.8), (B.9), (B.10), we rewrite K as

K =
k2

Dγ

−Daρ
2

D +Daρ2

[
1− (λτa + 1) + (λτa − 1) e−2λτ

κ+− − κ−+e−2λτ

+
Da

D

D +Daρ
2

2(D +Daρ)

e−2λτ − 1

κ+− − κ−+e−2λτ

]

=
k2

Dγ

−Daρ
2

D +Daρ2

{
1−

[
1 + λτa +

Da

D

D +Daρ
2

2(D +Daρ)

]
1

κ+− − κ−+e−2λτ

+

[
1− λτa +

Da

D

D +Daρ
2

2(D +Daρ)

]
e−2λτ

κ+− − κ−+e−2λτ

}
. (B.22)

Recalling that Da/D = (λτa)2 − 1 = −(1− λτa)(1 + λτa) and comparing the two terms

in the square brackets with (B.6), we can identify the square bracket in the first line

as κ+− and the square bracket in the second line as κ−+. We therefore conclude that

K = 0.

In summary, we hence find that ∆Σ[x] given in (16) vanishes identically, as claimed

in the main text (see Sec. 4).
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