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We theoretically demonstrate the realization of a chiral edge mode in a system beyond natural
science. Specifically, we elucidate that a kagome network of rock-paper-scissors (K-RPS) hosts a
chiral edge mode of the population density which is protected by the non-trivial topology in the bulk.
The emergence of the chiral edge mode is demonstrated by numerically solving the Lotka-Volterra
(LV) equation. This numerical result can be intuitively understood in terms of cyclic motion of a
single rock-paper-scissors cycle which is analogous to the cyclotron motion of fermions. Furthermore,
we point out that a linearized LV equation is mathematically equivalent to the Schrödinger equation
describing quantum systems. This equivalence allows us to clarify the topological origin of the chiral
edge mode in the K-RPS; a non-zero Chern number of the payoff matrix induces the chiral edge
mode of the population density, which exemplifies the bulk-edge correspondence in two-dimensional
systems described by evolutionary game theory.

I. INTRODUCTION

Notion of topology plays a central role in condensed
matter physics [1–7]. One of the remarkable properties
of topological system is the emergence of edge states [8]
protected by the topology in the bulk which is a source
of anomalous behaviors. For instance, integer quantum
Hall systems show the quantized Hall conductance with
extremely high accuracy [1, 9–11] due to the chiral edge
mode (i.e., one-way propagating modes localized around
the edge).

So far, insulators and superconductors have been ex-
tensively analyzed as platforms of topological physics.
However, recently, it turned out that topological phenom-
ena [12, 13] 1 extend beyond the quantum systems [14–
24]. In particular, the chiral edge modes protected by
topological properties have been reported for various
systems, such as photonic crystals [25–29], mechanical
metamaterials [30–45], equatorial waves [46], active mat-
ter [47–49], and so on. This progress is significant not
only from an academic viewpoint but also from an en-
gineering viewpoint because such topologically protected
chiral edge modes may result in new inventions, e.g., the
topological insulator laser [50, 51] and potential applica-
tion to a novel energy transfer system of extremely low
transmission loss.

In spite of the above progress, the chiral edge modes
are still restricted to systems of natural science. Discov-
ery of chiral edge modes beyond the natural science is
crucial as it may provide a new perspective.

The aim of this paper is to report the discovery of a
chiral edge mode in a system of evolutionary game theory

∗ yoshida@rhodia.ph.tsukuba.ac.jp
1 References 12 and 13 mentions topology of game theory. We

note, however, that topology discussed in these references dif-
fers from the topology of eigenvectors (, or eigenstates). One
can characterize the topology of the eigenstates by topological
invariant which is computed from eigenvectors.
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FIG. 1. (Color Online). Kagome network of rock-paper-
scissors. At site I strategy sI is assigned as illustrated by a
colored dot; red, blue, and yellow dots denote strategies, rock
(R), paper (P), scissors (S), respectively. In this panel, the
arrows connecting sites illustrate the payoffs; R beats S; S
beats P; P beats R. (The explicit form of the payoffs is shown
in Eq. (1) for a single RPS cycle.) This kagome network of
rock-paper-scissors is described by evolutionary game theory
rather than by solid state physics. However, it can be mapped
to a spinless fermion model [see Fig. 4].

which is beyond natural science [52–54] 2. Specifically, we
elucidate that a chiral edge mode of the population den-
sity 3 emerges in a kagome network of rock-paper-scissors
(K-RPS) 4 [see Fig. 1] due to the non-trivial topology in
the bulk. On each site of the K-RPS, one of the strate-
gies, rock (R), paper (P), and scissors (S), is assigned.
The payoff of a player on a given site is described by the

2 Evolutionary game theory can be applied not only to natural
science but also to social science [52–54].

3 For definition of the population density, see just below of Eq. (2).
4 Namely, players choose the given strategy assigned at each site

as Fig. 1.
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arrows of bonds connecting the sites. The emergence of
the chiral edge mode is demonstrated by the numerically
solving the Lotka-Volterra (LV) equation. This result can
be intuitively understood by focusing on cyclic motion of
the single rock-paper-scissors (RPS) cycle which is analo-
gous to the cyclotron motion of fermions under a uniform
magnetic field. Furthermore, we elucidate the topologi-
cal origin of the chiral edge modes by pointing out the
mathematical equivalence of a linearized LV equation of
the K-RPS and the Schrödinger equation of a fermionic
kagome lattice model with the non-trivial topology [see
Fig. 4]. This equivalence elucidates the bulk-edge corre-
spondence for two-dimensional systems described by evo-
lutionary game theory; a non-zero Chern number of the
payoff matrix induces the chiral edge modes observed in
the time-evolution of the population density of players
located at the sites of the K-RPS.

Topological band structure and a zero mode have
been discussed for a RPS chain [24]. We would like
to stress, however, that the presence of the chiral edge
modes remains unsolved because Ref. 24 analyzes the
one-dimensional system. Novelty of our work is discover-
ing the topological origin of the one-way mode by point-
ing out the mathematical equivalence of the linearized
LV equation and the Schödinger equation.

II. CYCLOTRON MOTION IN A SINGLE RPS
CYCLE

As a first step, we show that “cyclotron motion” can
be observed in a single RPS cycle [55], which plays a
key role in the emergence of chiral edge modes beyond
natural science.

Consider two players who choose one of the strategies
(s1, s2, s3) = (R,P,S). The rule of the game is illustrated
in Fig. 2(a); R beats S; S beats P; P beats R. In this
case, the payoff of a player is AIJ if the player chooses
the strategy sI and the other player choosing sJ (I, J =
1, 2, 3). Here the payoff matrix of this game is given by

A =

 0 −1 1
1 0 −1
−1 1 0

 . (1)

Now, let us consider the case where a large number of
players repeat the game. It is known that the dynamics
of this game is described by the LV equation [24, 56] 5

∂txI = xIe
T
I Ax, (2)

5 If the players know the prediction and try to behave in a dif-
ferent way, the population density may not follow this equation.
However, so far, it is assumed that Eq. (2) holds. Namely, it
has been assumed that the increase/decrease of the population
density corresponds to the payoff [56]

S
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FIG. 2. (Color Online). (a): Sketch of a RPS cycle. The ar-
rows in panel (a) denote the dominance relationship between
the strategies; R beats S; S beats P; P beats R. (b): Dynam-
ics of the RPS cycle with an initial condition xini = ( 1

4
, 1
4
, 1
2
).

(c): Sketch of the dynamics of the RPS cycle. The size of the
circle indicates the population density.

with x = (x1, x2, x3)T and x1, x2, and x3 being the pop-
ulation density 6 of players who choose the strategies R,
P, and S, respectively. We suppose that the vector x is
normalized

∑
I xI = 1 unless otherwise noted. The vec-

tor eI is the unit vector whose I-th element takes one;
[eI ]J = δIJ . When a player chooses the strategy sI , the
expectation value of the payoff is written as eTI Ax. Thus,
Eq. (2) indicates that the population density xI increases
in order to enhance the payoff.

We note that the vector c = (1, 1, 1)T /3 satisfies

Ac = 0, (3)

which means that x = c is a stationary state. This vec-
tor describes a Nash equilibrium [57, 58] 7 for a classi-
cal game theory where the strategy of players does not
change over time and players play the game only once.
For the relation Ac = 0, the following fact is essential: at
each site, the number of bonds with the out-going arrow
is equal to the number of bonds with the in-coming ar-
row. Because of this fact, for arbitrary I, the expectation
value eTI Ac is zero, which results in the relation Ac = 0.
Noting these facts, we can also find the stationary state
for the K-RPS.

A slight deviation from the stationary state c results
in cyclic motion which is analogous to the cyclotron mo-
tion of fermions in the Landau levels. The time-evolution
with the initial state xini = ( 1

4 ,
1
4 ,

1
2 ) is shown in Fig. 2(b).

Here, we choose A21 = 1 as a unit of time [see Eq. (2)].
As illustrated in Fig. 2(c), the data shown in Fig. 2(b)

6 As mentioned in the main text, we normalize the vector x so
that

∑
I xI = 1 holds. In this sence, xI denotes the population

density
7 It should be noted that the Nash equilibrium does not necessarily

corresponds to evolutionary stable strategy. Indeed, it is known
that there is no evolutionary stable strategy in the single-rock-
paper-scissors cycle [57, 58]



3

indicate the cyclic motion, which can be intuitively un-
derstood by noticing that the population density propa-
gates along the arrows illustrated in Fig. 2(a). Namely,
with the given initial state, xini = ( 1

4 ,
1
4 ,

1
2 ), players who

choose strategy R gain the highest payoff (i.e., eTI Ax be-
come maximum for I = 1). Thus, after time-evolution,
the population density of players choosing strategy R in-
creases. In a similar manner, we can see that the popu-
lation density of players choosing strategy P increases in
the next step.

The above results elucidate that the players of the sin-
gle RPS cycle mimic the “cyclotron motion” as if they
were fermions in the Landau levels. We note that analogy
of cyclotron motion can be mathematically shown (see
Appendix B). As we see in Sec. III, the “cyclotron mo-
tion” in the single RPS play an important role to search
a system exhibiting a chiral edge mode.

III. DYNAMICS OF THE K-RPS

A typical example of quantum systems exhibiting chi-
ral edge modes is an integer quantum Hall system.
Fermions in this two-dimensional system show the cy-
clotron motion which breaks time-reversal symmetry.
Keeping this fact in mind, one can expect the emer-
gence of chiral edge modes (i.e., one-way propagating
the population density localized around the edge) in a
two-dimensional network constructed from the RPS cy-
cles which mimic the cyclotron motion. Specifically, we
consider the K-RPS illustrated in Fig. 1 which indeed
hosts a chiral edge modes.

A. Numerical results

By solving the LV equation (2) numerically, we demon-
strate the presence of chiral edge modes in the K-RPS.
The payoff matrix A ∈ M(Ntot,R) can be read off from
the arrow assigned to each bond [see Fig. 1]. Here Ntot

denotes the number of sites. In order to analyze the
time-evolution, we employ a fourth order Runge-Kutta
method [59]. We discretize time as tn = n∆t with
∆t = 0.1 and n = 0, 1, 2, . . ..

We analyze the dynamics with an initial state 8

which slightly deviates from a stationary state c(K) =
(1, 1, 1...., 1)T /Ntot (x = c(K) + δx). The relation
Ac(K) = 0 holds because the number of bonds with the
in-coming arrow is equal to the number of bonds with the
out-going arrow for each site of the K-RPS [see Fig. 1 and
the argument below Eq. (3)].

8 We have also analyze evolution of an initial state which describes
a population density deviating from Ntotc(K) only at the center
of the system. In this case, we observe that the deviation prop-
agates homogeneously
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FIG. 3. (Color Online). Time-evolution of the population
density for the K-RPS. In these figures, the absolute value of
the deviation |δx| (δx = x −Ntotc

(K)) is plotted; the vector
x satisfies

∑
I xI = Ntot + 0.1. For t = 0, δxI takes 0.1 at

the site denoted by the blue arrow in panel (a); otherwise δxI
is zero. The deviation of the population density propagates
along the edge in the counter-clockwise direction as illustrated
by the black arrows in panels (b)-(d). We have simulated the
time-evolution up to tmax = 200. For 0 ≤ t ≤ tmax, the chiral
edge mode is observed. More detailed data are shown in Fig. 6
of Appendix A. The scale of color plot in panels (a)-(c) is the
same as the one in panel (d).

Figure 3 clearly indicates the presence of the chiral
edge mode; sites of the high population density (red dots)
propagates along the edge in the counter-clockwise direc-
tion. Our numerical results also imply topological stabil-
ity of the chiral edge mode. In Appendix A, we demon-
strate the following two facts. (i) The system hosts the
chiral modes even with an initial condition significantly
deviating from c(K) [see Fig. 7]. (ii) Even in the presence
of a defect on the edge, the chiral edge mode propagates
by detouring around the defect [see Fig. 8]. The latter
result is particularly counter-intuitive. The above results
indicate the robustness of the chiral edge mode.

B. Intuitive discussion

The dynamics obtained in Fig. 3 is intuitively under-
stood as follows.

Firstly, we recall that the K-RPS is composed of the
single RPS cycle. This fact means that the population
density propagates along the out-going arrows in order
to maximize the payoff. For instance, when the popula-
tion density at site denoted with “E” is higher than the
other sites [see Fig. 1], it propagates around the path il-
lustrated in the red dashed line in Fig. 1, which implies
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the presence of the chiral edge modes.
The localization of the chiral edge mode can be de-

duced as follows. Firstly, we note that in the bulk, sites
are connected by four bonds; out-going arrows are as-
signed to two of the bonds, and in-coming arrows are
assigned to the other two bonds. Thus, in contrast to
the players on the edge sites, those in the bulk have two
options of out-going arrows which results in the localiza-
tion of the chiral mode around the edge. For instance,
when the population density at site “E” on the edge prop-
agates to site “B” in the bulk along the path denoted
with green dashed-line in Fig. 1, it passes through five
branches. Because the propagation is suppressed at each
of these branches, the deviation of the population density
is localized around the edges.

The above results explicitly demonstrates the emer-
gence of the chiral edge mode in the K-RPS. As we see
in Sec. IV B, the topology in the bulk governs the chiral
edge modes. This is supported by a simulation showin in
Fig. 9 of Appendix A where the payoff matrix is flipped,
A → −A, (Namely, we impose the opposite rule instead
of the ordinary one; R beats P; P beats S; S beats R).
The obtained data show the edge mode propagating the
opposite direction.

IV. TOPOLOGICAL CHARACTERIZATION OF
THE CHIRAL EDGE MODES OF THE K-RPS

So far, we have seen that the K-RPS hosts a chiral
edge mode. Here, we elucidate the topological origin by
pointing out a relation between the K-RPS [Fig. 1] and
the fermionic quantum model [Fig. 4] with the non-trivial
topology.

A. A linearized LV equation and the Schrödinger
equation

In order to see the relation between the K-RPS and
the fermionic kagome lattice model, we linearize the LV
equation around the stationary state c(K).

For x slightly deviating from c(K) =
(1, 1, 1, . . . , 1)T /Ntot, the LV equation is rewritten
as

∂teI · δx = eI · (c(K) + δx)eTI A(c+ δx)

= (c(K) + δx) · eIeTI A(δx)

∼ (c(K))TPIAδx, (4)

with PI = eIe
T
I . From the first to the second line, we

have used the relation Ac(K) = 0. In the last line, we
have discarded the second order term of (δx)2.

Noting the relation NtotPIc
(K) = eI , we can write the

above linearized equation as

i∂tδx =
1

Ntot
Hδx, (5)

with a Hermitian matrix H = iA, which is mathemat-
ically equivalent to the Schrödinger equation up to the
prefactor.

R
P
S

(a) (b)

2 2

2 2
a1

a2

a3

α β

γ

FIG. 4. (Color Online). Sketch of fermionic lattice model
with magnetic fluxes introduced in Ref. 60. a spinless fermion
acquires a phase φ when it hops around a triangle along the ar-
rows. The K-RPS shown in Fig. 1 is mapped to the fermionic
model with φ = 3π/2.

Taking into account the explicit form of the payoff ma-
trix A, we can see that the K-RPS is mapped to the tight-
binding model of spinless fermion in the kagome lattice
which hosts a chiral edge mode due to the non-trivial
topology in the bulk. To see this more clearly, let us dis-
cuss the following eigenvalue problem which governs the
dynamics described by the linearized LV equation (5):∑

j

Aij(k)ψjn = ψin(k)εn, (6a)

A(k) =

 0 −(1 + ei2k·a2) (1 + e−2ik·a1)
(1 + e−i2k·a2) 0 −(1 + e2ik·a3)
−(1 + e2ik·a1) (1 + e−2ik·a3) 0

 ,

(6b)

where A(k) with k = (kx, ky) is the Fourier transformed
payoff matrix. Here, ψjn (j, n = 1, 2, 3) denotes the j-th
component of the eigenvector ψn with the eigenvalue εn.
The vectors connecting the neighboring site are defined
as a1 := (0,−1), a2 := (1, 0), and a3 := (−1, 1) [see
also Fig. 4]. Because A(k) is anti-Hermitian [A(k) =
−A†(k)], the eigenvalues are pure imaginary (εn ∈ iR).
We note that the Hermitian matrix H(k) = iA(k) is
identical to the Bloch Hamiltonian of spinless fermions
in the kagome lattice with magnetic fluxes φ = 3π/2 (for
details of the fermionic system see Appendix B). The
symmetry class of H(k) is class D where particle-hole
symmetry is preserved [61–63].

The above results clarify the mathematical equiva-
lence of the linearized LV equation of the K-RPS and
the Schrödinger equation of the fermionic kagome lattice
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model with the non-trivial topology 9. This equivalence
and the bulk-edge correspondence [8] provides a topolog-
ical perspective of the chiral edge modes of the K-RPS
whose details are discussed below.

B. Topological characterization of the chiral edge
modes of the K-RPS

Based on the above results, we address the topological
characterization of the chiral edge mode in the K-RPS.

Specifically, we characterize the edge mode by the fol-
lowing steps. Firstly, we analyze the bulk band structure
as well as the Chern number [see Eq. (7)]. Secondly, by
diagonalizing the system under the cylinder geometry, we
demonstrate that the topological properties in the bulk
induce the chiral edge mode, which is known as the bulk-
edge correspondence [8] in the context of topological in-
sulators/superconductors. Here, the system under the
cylinder geometry denotes the system where the periodic
(open) boundary condition is imposed along the x- (y-)
direction.

Firstly, we discuss the bulk properties by diagonalizing
the Fourier transformed payoff matrix A(k) which is anti-
Hermitian. Figure 5(a) plots the band structure of A(k).
Because each band is separated by a gap in the two-
dimensional Brillouin zone, the Chern number of each
band is quantized which is defined as

NCh =
∑
µν

εµν

∫
dkxdky

2πi
∂kµAnν , (7a)

Anµ =
∑
j

ψ†nj(k)∂kµψjn(k), (7b)

Here, εµν (µ, ν = x, y) denotes the anti-symmetric tensor
satisfying εxy = 1.

Employing the method based on Ref. 64, we find that
the Chern number of the bottom (top) band takes −1 (1)
[see Fig. 5(a)].

9 We stress that the above argument elucidates just the math-
ematical equivalence of the linearized LV equation and the
Schrödinger equation. Thus, the equivalence does not mean that
the population density itself obeys the Schrödinger equation

-0.5  0  0.5 -0.5 0  0.5

-4

 0

 4 (a)

NCh=-1

NCh=0

NCh=1

kx/π ky/π 

Im ε 

-4

 0

 4

-0.5  0  0.5

 Ly=10 (b)

Im
 ε

 

kx/π 

 0

 1

FIG. 5. (Color Online). (a): Band structure of “Bloch
Hamiltonian” A(k). The Chern number takes NCh = −1, 0,
and 1 for the bottom, middle, and top bands, respectively.
(b): Spectrum of the K-RPS under the cylinder geometry.
Color of data points represents the absolute value of the po-
larization |Pn| defined in Eq. (8). Polarization for each eigen-
state is plotted in Fig. 10 of Appendix C.

The non-trivial topology characterized by the Chern
number in the bulk predicts the chiral edge modes around
the boundary. Indeed, the spectrum of the matrix A un-
der the cylinder geometry exhibits the chiral edge modes
[see Fig. 5(b)]. In Fig. 5(b) the color assigned to each
eigenvalue εn denotes the absolute value of the polariza-
tion |Pn| of the corresponding eigenvector ψn(kx)

Pn = 1− 2

Ly

∑
Jy

ψ†nJy (kx)Jyψjyn(kx), (8)

where Jy (Jy = 1, 2, ..., Ly) labels the sites along the y-
direction. Figure 5(b) indicates that the chiral modes
denoted by red-colored dots are localized around edges
(for more details, see Fig. 10 of Appendix C). The re-
placement A → −A flips the sign of Chern number.
Correspondingly, the direction of the chiral edge mode
changes as mentioned in Sec. III A (see Fig. 9 in Ap-
pendix A). These behaviors correspond to the behaviors
of the fermionic lattice model (Fig. 4) where the magnetic
fluxes are flipped (φ→ −φ).

The above results elucidate that the chiral edge mode
of the population density in the K-RPS is induced by the
non-trivial topology of the bulk, which exemplifies the
bulk-edge correspondence [8] 10 for two-dimensional sys-
tems described by evolutionary game theory; the density
profile of player propagates as a wave in the counter-
clockwise direction along the edge due to NCh = 1

We note that previous work [24] has studied the dy-
namics in a one-dimensional system. However, the chiral
edge mode protected by the non-trivial topology in the
bulk has not been reported so far.

V. SUMMARY

In this paper, we have discovered the emergence of the
chiral edge mode beyond natural science.

10 The Chern number computed for the periodic boundary con-
ditions predicts the existence of the chiral edge modes with a
boundary, which is known as the bulk-edge correspondence [8]
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Specifically, we have elucidated that the K-RPS hosts
a chiral edge mode of the population density which is
protected by the non-trivial topology in the bulk. The
emergence of the chiral edge mode is demonstrated by nu-
merically solving the LV equation. The dynamics is also
intuitively understood by focusing on the “cyclotron mo-
tion” of the single RPS cycle. Furthermore, we have also
elucidated the topological origin of the chiral edge mode
by mapping the K-RPS to the fermionic kagome lattice
model. The former (latter) is described by evolutionary
game theory (quantum mechanics). By making use of the
above mapping, we have found that due to the non-zero
Chern number of the payoff matrix in the bulk, the chiral
edge mode of the population density emerges regardless
of the other details of the K-RPS, which exemplifies the
bulk-edge correspondence in two-dimensional systems de-
scribed by evolutionary game theory. We note that the
chiral edge mode induced by bulk topology should also be
observed in other systems because its emergence depends
only on the non-trivial topology in the bulk [65]

We finish this paper with two remarks. We note that
a topological band structure in a one-dimensional chain
of RPS has been analyzed in Ref. 24. As well as the dis-

covery of the chiral edge mode, the novelty of this paper
is elucidating the mathematical equivalence of the lin-
earized LV equation and the Schrödinger equation clar-
ifying the topological origin of the one-way propagating
mode observed in the time-evolution. We also note that
the experimental observation of the chiral edge mode is
a significant open question to be addressed. Because
RPS cycles have been reported for a wide variety of sys-
tems, e.g., a system of bacteria [66], and human soci-
eties [54, 67, 68], we expect the observation of chiral
modes in such systems.
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Appendix A: Details of time-evolution for the
K-RPS

The time-evolution of the population density– In
Fig. 3, the sign of deviation is discarded. For the
complementally information, we plot the deviation δx
(δx = x−Ntotc

(K)) in Fig. 6.
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FIG. 6. (Color Online). Time-evolution of the population
density for the K-RPS. In these figures, the deviation from
Ntotc

(K) (δx = x−Ntotc
(K)) is plotted; the vector x satisfies∑

I xI = Ntot + 0.1. For t = 0, δxI takes 0.1 at the site
denoted by the blue arrow in panel (a); otherwise δxI is zero.
The deviation of the population density propagates along the
edge in the counter-clockwise direction as illustrated by the
black arrows in panels (b)-(d). The scale of color plot in
panels (a)-(c) is the same as the one in panel (d). The data,
which are more suited for printing in gray-scale, are provided
in Fig. 3.

Time-evolution for the K-RPS with other conditions–
Here, we discuss the dynamics of the K-RPS with three

distinct cases; (i) the dynamics with an initial condition
significantly deviating from Ntotc

(K), (ii) the dynamics
of the system with a defect on the edge, and (iii) the dy-
namics of the system where the payoff matrix is replaced
as A→ −A.

 0

 10

 20

 30

 0  10  20  30  40

 (a)

y

x

 0

 10
t=0

 0

 10

 20

 30

 0  10  20  30  40

 (c)

y

x

 0

 10
t=20.8

 0

 10

 20

 30

 0  10  20  30  40

 (d)

y

x

 0

 10
t=25

(a)

(c) (d)

 0

 10

 20

 30

 0  10  20  30  40

 (b)

y

x

 0

 10
t=10.4(b)

FIG. 7. (Color Online). Time-evolution of the popula-
tion density for the K-RPS. In each panel, the deviation from
Ntotc

(K) (δx = x−Ntotc
(K)) is plotted; the vector x satisfies∑

I xI = Ntot+9. For t = 0, δxI takes 9 at the site denoted by
the blue arrow in panel (a); otherwise, δxI takes zero. The de-
viation of the population density is positive which propagates
along the edge in the counter-clockwise direction as indicated
by the black arrows in panels (b)-(d). The scale of color plot
in panels (a)-(c) is the same as the one in panel (d).

Firstly, we discuss the dynamics of the K-RPS [see
Fig. 1(a)] with an initial condition significantly deviating
from Ntotc

(K). In Fig. 7, we can find a one-way prop-
agating mode localized at the edge even when the ini-
tial condition is significantly deviates from Ntotc

(K); the
propagation is denoted by the arrows.

Secondly, we demonstrate that even in the presence of a
defect on the edge, the chiral edge mode propagates along
the edge by detouring around the defect. Figure 8 plots
the deviation of the population density δxI around the
defect. This figure indicates that the population density
detours around the defect, which supports the robustness
of the chiral edge mode.

Thirdly, we discuss the effect of the replacement A→
−A on the dynamics. As we can see in Fig. 9, the re-
placement A→ −A flips the chirality of the edge mode,
which is consistent with the fact that the replacement A
to −A flips the sign of the Chern number.
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FIG. 8. (Color Online). Time-evolution of the population
density for the K-RPS with a defect on the edge. Sites de-
noted with black dots are isolated from the other sites, which
serves as a defect. Except for the presence of the defect,
the set up and the initial condition are the same as those of
Fig. 7. The deviation of the population density is positive
whose propagation is denoted by arrows. The scale of color
plot in panels (a)-(g) is the same as the one in panel (e).

Appendix B: Spinless fermions in a kagome lattice
with magnetic fluxes

The Hamiltonian of spinless fermions in the kagome
lattice has been introduced in Ref. 60. However, in order
to make this paper self-contained, we briefly describe the
model.

Consider spinless fermions in the kagome lattice with
magnetic fluxes. The Hamiltonian reads

Hfermi =
∑
〈ij〉

tijd
†
idj , (B1)

where d†j (dj) creates (annihilates) a spinless fermion at
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FIG. 9. (Color Online). Time-evolution of the population
density for the K-RPS. Each panel is plotted in a similar way
as Fig. 7. The deviation of the population density is positive
whose propagation in the clockwise direction is denoted by
black arrows in panels (b)-(d). The scale of color plot in
panels (a)-(c) is the same as the one in panel (d).

site j. We note that i appearing as subscripts specifies
sites. The hopping integral tij (tij = t∗ji) describes hop-

ping from site j to site i which takes tij = t0e
iφ when

it describes hopping apparel to arrows in Fig. 4. The
summation is taken over neighboring sites.

Applying the Fourier transformation, Eq. (B1) is
rewritten as

Hfermi =
∑
k

d†kh(k)dk, (B2a)

with

h(k) =

 0 e−iφ/3(1 + e2ik·a2) eiφ/3(1 + e−2ik·a1)
h.c. 0 e−iφ/3(1 + e2ik·a3)
h.c. h.c. 0

 , (B2b)

dk =
(
dαk dβk dγk

)T
, (B2c)
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and dsk = 1√
NUC

∑
Rj
e−ik·(Rj)dj . Here, s labels sublat-

tices (s = α, β, γ), and Rj denotes a position of a unit
cell including site j. For φ = 3π/2, Eq. (B2b) is reduced
to iA(k) with A(k) defined in Eq. (6b).

We note that Eq. (B2b) is equivalent to Eq. (5) of
Ref. 60, which can be seen by applying the unitary trans-
formation,

U =

 1 0 0
0 e−ik·a2

0 0 eik·a1

 0 1 0
0 0 1
1 0 0

 . (B3)

We note that the K-RPS can be mapped to the above
fermionic system regardless of the number of unit cells.
Indeed a single-RPS can be mapped to a fermionic three-
site system forming a loop. The Hamiltonian reads

H3sites = −i

 0 −1 1
1 0 −1
−1 −1 0

 , (B4)

describing cyclotron motion of a spinless fermion in this
three-site system. The above result elucidate mathemat-
ical equivalence between the cyclic motion in the single-
RPS and the cyclotron motion in the fermionic three-sites
system. To be more specific, the linearized LV equation

for the single-RPS is mathematically equivalent to the
Schrödinger equation for the Hamiltonian H3sites.

Appendix C: Polarization of each eigenstate

The polarization Pn of each eigenstate is shown in
Fig. 10. Noting that Pn takes Pn = −1 (Pn = 1) when
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FIG. 10. Spectrum of the K-RPS under the cylinder ge-
ometry. Color of data points represents the polarization Pn

defined in Eq. (8). The data, which are more suited for print-
ing in gray-scale, are provided in Fig. 5(b).

the state ψn(kx) is localized at Jy = 1 (Jy = Ly) [see
Eq. (8)], we can see that the chiral mode denoted by
blue-colored (red-colored) dots is localized around Jy = 1
(Jy = Ly) [see Fig. 10].
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