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We study the effects of a periodically driven electric field applied to a variety of tight-binding models in one
dimension. We first consider a non-interacting system with or without a staggered on-site potential, and we find
that periodic driving can generate states localized completely or partially near the ends of a finite-sized system.
Depending on the system parameters, such states have Floquet eigenvalues lying either outside or inside the
continuum of eigenvalues of the bulk states. In the former case we find that these states are completely localized
at the ends and are true edge states, while in the latter case, the states are not completely localized at the ends
although the localization can be made almost perfect by tuning the driving parameters. We then consider a
system of two bosonic particles which have an on-site Hubbard interaction and show that a periodically driven
electric field can generate two-particle states which are localized at the ends of the system. We show that many
of these effects can be understood using a Floquet perturbation theory which is valid in the limit of a large
staggered potential or large interaction strength. Some of these effects can also be understood qualitatively by
considering time-independent Hamiltonians which have a potential at the sites at the edges; Hamiltonians of
these kinds effectively appear in a Floquet-Magnus analysis of the driven problem. Finally, we discuss how the
edge states produced by periodic driving of a non-interacting system of fermions can be detected by measuring
the differential conductance of the system.

I. INTRODUCTION

Quantum systems whose Hamiltonians are periodically
driven in time have been extensively studied in recent years.
There has been tremendous progress, both theoretically1–9 and
experimentally10–17, in generating novel many-body phases
of matter by using periodic driving and understanding vari-
ous properties of such systems. Two particularly interesting
phenomena which can occur are dynamical localization5,18–20

and the generation of states localized at the boundaries of the
system21–48. A periodically driven system can be studied by
calculating the Floquet operator UT which evolves the sys-
tem over one time period T of the driving. We can use UT
to study the behavior of the system at stroboscopic intervals,
i.e., at integer multiples of T . In the phenomenon of dynami-
cal localization, particles appear to be stationary if the system
is viewed stroboscopically, namely, certain states with one or
more particles located at some particular places are eigen-
states of UT . In the generation of boundary states, UT has
some eigenstates which are localized near the boundaries of
the system.

The states of a periodically driven system are labeled by the
eigenvalues of UT . It is possible for states localized near the
boundaries to have Floquet eigenvalues which lie within the
continuum of eigenvalues of the bulk states; these are called
‘Floquet bound states in a continuum’49–51. When we numeri-
cally find states which appear to be candidates for such bound
states, we have to study their wave functions carefully to de-
cide if they are true bound states (with normalizable wave
functions) or if they merely have large values in some re-
stricted regions of space but are not normalizable (for an in-
finite system size) because their wave functions do not go to
zero fast enough outside those regions. [We note that in time-
independent systems, it is possible for true bound states to
appear in the continuum of energies of the bulk states. How-
ever, in such cases there are symmetries which do not allow
such states to hybridize with the bulk states52. In the absence

of any symmetries, the hybridization with bulk states prevents
the existence of true bound states in the continuum].

It is known that interactions between particles can lead to
the formation of multiparticle bound states at the edges of a
system when there is no driving53, while interactions along
with periodic driving can produce multiparticle bound states
inside the bulk of a system20. This naturally leads to the
question of whether interactions and driving can produce such
bound states at the edges of a system rather than in the bulk.

Finally, it is important to find ways of detecting edge states
when they appear in a system. For instance, when a one-
dimensional topological superconductor is generated by pe-
riodic driving of one of the system parameters, it is known
that Majorana end modes can be generated and these can give
rise to peaks in the differential conductance at certain values
of the voltage bias applied across the system35.

Keeping all the above considerations in mind, our paper is
planned as follows. In Sec. II, we briefly introduce the pe-
riodically driven tight-binding models that we will study in
detail. These include a non-interacting system and a Bose-
Hubbard model with two particles. In both cases, the phase
of the nearest-neighbor hopping will be taken to vary sinu-
soidally with time with a frequency ω and an amplitude a;
this describes the effect of a periodically varying electric field
through the Peierls prescription. In Sec. III, we look at a non-
interacting system with a single particle, with and without an
on-site staggered potential v. We numerically calculate the
Floquet operator UT which evolves the system through one
time period T = 2π/ω, and find its eigenvalues and eigen-
states. In both cases, we hold the magnitude g of the nearest-
neighbor hopping fixed and study the ranges of the parameters
ω, a and v for which one or more Floquet eigenstates appear
near each edge of a long but finite system. When the stag-
gered potential v is much larger than g, we study the problem
analytically using a Floquet perturbation theory. The results
obtained from this are compared with those obtained numeri-
cally. We then study the time evolution of a state which is not
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a Floquet eigenstate and is initially localized at the edge of the
system.

In Sec. IV, we study the Bose-Hubbard model with an on-
site interaction strength u. We consider a system with two
particles and study the effect of periodic driving of the hop-
ping phase to find the range of parameters ω, a and u in
which there are Floquet eigenstates with the particles local-
ized near the edges of the system. In the limit that the in-
teraction strength u is much larger than g, we again develop
a Floquet perturbation theory to find when such bound states
occur and see how well this matches the numerical results. We
also study the time evolution of a state which initially has both
particles at the edge.

In Sec. V, we study how the edge states can be detected us-
ing transport measurements. To this end, we consider a tight-
binding model of non-interacting fermions in which there are
semi-infinite leads on the left and right which are weakly cou-
pled to a finite length wire in the middle. In the wire, the
hopping phase is periodically driven as in Sec. II. We find
that when the differential conductance across the system has
peaks when the chemical potential of the leads is equal to the
quasienergies of the edge states of the isolated wire.

We present some additional material in the Appendices. In
Appendix A we provide a brief introduction to Floquet theory
and the calculation of Floquet eigenstates and eigenvalues. In
Appendix B we use the Floquet-Magnus expansion to derive
the effective Hamiltonian to first order in 1/ω, where ω is the
driving frequency. This shows that an important effect of pe-
riodic driving in a finite system is to generate a potential at the
sites at the two ends. In Appendix C we therefore study some
time-independent models to understand qualitatively the role
of such an edge potential in producing edge states. The first
model is a non-interacting system with a staggered potential
v while the second model is the Bose-Hubbard model with
an interaction strength u and two particles. In both cases, we
include a potential A at the end sites. We study the condi-
tions under which an edge state (consisting of one particle in
the first model and two particles in the second model) appears
near the ends.

Our main results are as follows. We find that a tight-binding
model in one dimension can host one or more states at each
end when the phase of the hopping amplitude is periodically
driven in time. The range of driving parameters where such
edge states appear increases significantly when a staggered
potential or an on-site Bose-Hubbard interaction is present.
The edge states can be detected by measuring the differential
conductance across a periodically driven wire.

II. INTRODUCTION TO OUR PERIODICALLY DRIVEN
SYSTEMS

In this section we will briefly introduce the models that we
will study to see if periodic driving of a finite-sized system
can give rise to states which are localized at its ends. We
will study two lattice models in one dimension, one without
interactions and one with interactions, and look for edge states
in each case. In this paper we will set the lattice spacing equal

to unity and work in units where ~ = 1 (unless mentioned
explicitly).

(i) We will first consider a tight-binding model, with possibly
a staggered on-site potential, which is driven by an oscillating
electric field.

H = − g
L−2∑
n=0

(e
ia
ω sin(ωt)c†ncn+1 + e−

ia
ω sin(ωt)c†n+1cn)

+ v

L−1∑
n=0

(−1)n c†ncn. (1)

The time-dependent electric field appears through a vector
potential in the phase of the nearest-neighbor hopping fol-
lowing the Peierls prescription54 as follows. If the electric
field is ~E = ~E0 cos(ωt), the vector potential will be given
by ~A = −(c/ω) sin(ωt) ~E0, since ~E = −(1/c)∂ ~A/∂t. If
q is the charge of the particle, the phase of the hopping
from a site at ~rj to a site at ~ri is given by (q/~c) ~A · (~ri −
~rj) = −(q/~ω) sin(ωt) ~E0 · (~ri − ~rj). The parameter a in
the phases in the first line of Eq. (1) is therefore given by
a = −(q/~) ~E0 · (~rn − ~rn+1). We have also allowed for a
staggered on-site potential v in the model, and we will study
the model with and without v.

(ii) We will then consider an interacting model of bosons,
namely, the Bose-Hubbard model which is again driven by
a time-dependent electric field as described above.

H = − g
L−2∑
n=0

(e
ia
ω sin(ωt)c†ncn+1 + e−

ia
ω sin(ωt)c†n+1cn)

+
u

2

L−1∑
n=0

ρn(ρn − 1), (2)

where ρn = c†ncn. In this interacting model, we will study if
periodic driving can give rise to bound states of two bosons
which are localized at one end of the system.

In all cases, we will calculate the Floquet operator UT
which is a unitary operator which time evolves the system
from t = 0 to t = T , where T = 2π/ω is the time period (see
Appendix A). We will then study the eigenvalues and eigen-
states of UT . Note that it is sufficient to consider the case
a ≥ 0 in Eqs. (1) and (2), since a→ −a is equivalent to shift-
ing the time by T/2 = π/ω, and the eigenvalues of UT do
not change under time shifts (however, the eigenstates of UT
change by a unitary transformation as discussed in Appendix
A). We will sometimes use the fact that the Floquet eigenval-
ues are invariant under time shifts to choose values of the shift
where UT has some special symmetries.
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III. TIGHT-BINDING MODEL WITHOUT
INTERACTIONS

A. Tight-binding model

We begin with a nearest-neighbor tight-binding model in
one dimension. Since we will only consider a system with
one particle in this section, it does not matter if the particle
is a fermion or a boson and interactions between particles will
not play any role. The time-independent (undriven) model has
the Hamiltonian

H = − g

L−2∑
n=0

(c†ncn+1 + c†n+1cn). (3)

When this model is driven by an oscillating electric field as
discussed above, the Hamiltonian is given by

H = − g
L−2∑
n=0

(e
ia
ω sin(ωt)c†ncn+1 + e−

ia
ω sin(ωt)c†n+1cn).

(4)

An undriven tight-binding model only admits extended states
whose wave functions are given by plane waves on the lattice.
We will find that periodic driving can generate edge states in
an open-ended (finite length) system for certain values of the
driving amplitude a.

It is interesting to note that for an infinite chain in which
n goes from −∞ to ∞ in Eq. (4), the effective Hamiltonian
Heff and therefore the energy-momentum dispersion can be
found exactly (see Appendix B). The dispersion is found to be

Ek = − 2gJ0

( a
ω

)
cos k. (5)

Interestingly, a flat band is generated if J0(a/ω) = 0 giving
rise to dynamical localization.

Before presenting our numerical results, we discuss the
concept of inverse participation ratio (IPR) which provides
a measure of how well a wave function is localized. Let
ψj(n) be the j-th Floquet eigenstate and n runs over the lat-
tice sites 0 to L−1. We assume that this is normalized, so that∑L−1
n=0 |ψj(n)|2 = 1. Then the IPR of the j-th eigenstate is

defined as Ij =
∑L−1
n=0 |ψj(n)|4. If a state ψj(n) is extended

equally over all sites, then |ψj(n)|2 = 1/L for all n, which
implies that Ij =

∑L−1
n=0 |ψj(n)|4 = 1/L. But if ψj(n) is

localized over a distance ξ (which is of the order of the decay
length of the eigenstate, where the decay length remains con-
stant as L→∞), then we have |ψj(n)|2 ∼ 1/ξ in a region of
length ξ and ∼ 0 elsewhere; this implies that Ij ∼ 1/ξ which
remains finite as L → ∞. Thus, if L is sufficiently large, a
plot of Ij versus j will be able to distinguish between states
which are localized (over a length scale ξ � L) and states
which are extended. Once we find a state ψj for which Ij is
significantly larger than 1/L (which is the value of the IPR for
a completely extended state), we look at a plot of the proba-
bilities |ψj(n)|2 versus m to see whether it is indeed an edge

state. As discussed below, we will sometimes find that there
are states with large IPR but which are not true bound states
at the edges; their wave functions are much larger at the ends
than in the bulk but the wave functions do not go to zero in the
bulk even when L → ∞. As a result, the IPR for such states
may be much larger than 1/L for system sizes L of the order
of 100 but the IPR would eventually become of order 1/L if
L was of the order of a million or more.

We now present our numerical results. We have chosen the
parameter values g = 1 and ω = 1 and the system size L =
101. In Fig. 1 we show plots of the largest and second largest
values of the IPR as a function of a in the range 0 to 30; these
are shown by red and blue curves respectively. We find that the
maximum value of the IPR is very large in certain ranges of
a. We will call these large-IPR states. We will discuss below
if these states are truly localized at the edges of the system.
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FIG. 1: Plots of the two maximum IPR values (red solid and
blue dashed lines) and minimum IPR value (black dash-dotted
line) as a function of the driving amplitude a in the range
[0, 30]. We see that states with maximum IPR� 1/L, called
large-IPR states, appear in certain intervals of a. We have
considered a 101-site system with g = 1 and ω = 1.
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FIG. 2: Four edge states for a = 5.6 (type-1 region), for a
100-site system with g = 1 and ω = 1.

Interestingly we see that the peaks in the IPR occur in the
vicinity of the zeros of the Bessel function J0(a/ω). An im-
portant thing to note is that in most of the regions where large-
IPR states exist, there are four such states (two at each end
of the system). These are the regions where both red and
blue curves have large values; we will call these type-1 re-
gions. The probabilities |ψ(n)|2 for the four states are shown
in Figs. 2 for a 100-site system with g = 1, ω = 1 and
a = 5.6. The states shown in Figs. 2 (a) and (b) have some-
what different profiles, one of them being closer to the end
than the other. There also exist small regions where only the
red curve have a large value in Fig. 1; we call these type-2
regions. These regions are given by the intervals [1.97, 2.07],
[5.17, 5.27], [8.40, 8.47], etc. In these regions, we have two
large-IPR states, one at each end, if the number of sites L is
even, and one large-IPR state (which has a mode localized at
each end simultaneously) if L is odd. For a 100-site system
with g = 1, ω = 1, and a = 8.44, we find that the probabil-
ities for the edge states look very similar to the ones shown
in Fig. 2 (a) and are therefore not shown here. The Floquet
eigenvalues for a = 5.6 (type-1) and a = 8.44 (type-2) cases
are shown in Figs. 3 and 4.
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FIG. 3: Plot of the real and imaginary parts of the Floquet
eigenvalues a = 5.6 (type-1 region), for a 100-site system
with g = 1 and ω = 1. There are four large-IPR states (shown
in black) which are pairwise degenerate (hence we only see
two black dots). These are well separated from the bulk states
(shown by the red curve), and they correspond to bound states
at the edges.
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FIG. 4: Plot of the real and imaginary parts of the Floquet
eigenvalues for a = 8.44 (type-2 region), for a 100-site sys-
tem with g = 1 and ω = 1. There are two large-IPR states
(shown in black) whose eigenvalues lie close to 1. These lie
within the bulk states (shown by the red curve), and they are
not true edge states.

We find that there is a significant difference between the
large-IPR states of type-1 and type-2. The type-1 states are
exponentially localized at the edges; their wave functions go
to zero rapidly as we go away from the edges; hence they are
true edge states. (For example, for g = 1, ω = 1 and a = 5.6
which lies in the type-1 region, we find that for the edge states,
the probability |ψ(n)|2 in the middle of a 100-site system is
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only about 10−32 which is essentially zero). Hence their IPR
remains large and constant as the system size is increased.
This is shown in Fig. 5 for a system with g = 1, ω = 1, and
a = 5.6 (type-1 region). The type-2 states have a large am-
plitude at the edges, but their wave functions approach some
finite (although very small) values as we go away from the
edges. Thus the type-2 states are not perfectly localized at
the edges; they have a small but finite weight deep inside the
bulk, even when the system size becomes very large. This dif-
ference in behavior is related to the following. We will see
below that the Floquet eigenvalues of the type-1 edge states
differ from those of the bulk states by a gap which remains
finite as the system size L → ∞. In contrast, the Floquet
eigenvalues of the type-2 states lie in the middle of those of
the bulk states; the gap between the eigenvalues of these large-
IPR states and the bulk states goes to zero as the system size
goes to infinity. We will see that the type-2 large-IPR states
are actually made up of a linear combination of some bulk
states.
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FIG. 5: Plot of the largest two IPRs and the minimum IPR
versus system size from L = 100 to 1000 (in steps of 50),
for g = 1, ω = 1 and a = 5.6 (type-1 region). The largest
two IPRs correspond to the states at the two ends which are
true edge states, hence the IPRs do not change with the system
size. The minimum IPR corresponds to one of the bulk states.

We now present some numbers to provide a more detailed
understanding of the large-IPR states which are actually not
bound states at the edges. For convenience, we will discuss
in this paragraph what happens if the phase of the hopping in
Eq. (4) is given by cos(ωt) rather than sin(ωt); then a Flo-
quet eigenstate ψ which exists at the left edge (starting at site
n = 0) will have ψ(n) = 0 for all odd values of n (see the
discussion about symmetry in item (iii) below). It then turns
out that we can tune one of the driving parameters (say, a) to
find a value for which there is a state which is almost perfectly
localized at one end of the system. For instance, for a 100-site
system with g = 1, ω = 1, we find that for a = 8.439, there
is a state which is large at the left end, with Floquet eigen-
value equal to 1 and IPR equal to 0.9982. In this state, we
find that the probabilities at the different sites are given ap-

proximately by |ψ(0)|2 = 0.9991, |ψ(2)|2 = 8.2 × 10−4,
|ψ(4)|2 = 1.8 × 10−6, |ψ(6)|2 = |ψ(8)|2 = |ψ(10)|2 =
· · · = 1.2 × 10−6, and |ψ(n)|2 = 0 if n is odd. The fact
that the Floquet eigenvalue is equal to 1 implies that deep
inside the bulk, this state must be a superposition of states
with momenta k = ±π/2, so that its energy is equal to
Ek = −2gJ0(a/ω) cos k = 0 (see Appendix B). Next, we
find that the above values of |ψ(n)|2 remain unchanged even
when L is increased to, say, 1000. This can be understood as
follows. The numerical program automatically normalizes the
wave functions for a finite-sized system; hence for a system
with L sites and therefore L/2 even-numbered sites (we will
assume that L � 1), the probabilities at the even-numbered
sites are given by

(|ψ(0)|2, |ψ(2)|2, |ψ(4)|2, |ψ(6)|2, · · · )

' 1

1 + 1.2× 10−6(L/2)

× (0.9991, 8.2× 10−4, 1.8× 10−6, 1.2× 10−6, · · · ).
(6)

We then see that the probabilities at the first few sites will
not change much from the values they have for L = 100
till L starts becoming comparable to 1/(1.2 × 10−6) ∼ 106.
Clearly, one needs to go to enormous system sizes to distin-
guish between a true edge state (type-1) and a state which is
not a bound state but has an IPR close to 1 when L is about
100.

We thus conclude that periodic driving of a non-interacting
tight-binding model with certain values of the driving ampli-
tude a can generate large-IPR states. These are bound states
at the edges for type-1 but not true edge states for type-2 (al-
though they can be made almost indistinguishable from a true
edge state by tuning the driving parameters as we have seen
above).

We will now discuss the symmetry properties of the Flo-
quet operator UT which will, in turn, imply symmetries of the
large-IPR states. The symmetries of UT follow from its defi-
nition as a time-ordered product (Appendix A). Using Eq. (4),
we can write the Hamiltonian H for one particle as a L × L
matrix in the basis of states |n〉 (which denotes the state where
the particle is at site n). The symmetries of UT then follow
from the symmetries of H as follows.
(i) The fact that sin(ωt) = − sin(ω(T − t)) implies that
H∗(t) = H(T − t). This implies that U∗T = U−1

T . If ψ
is a Floquet eigenstate satisfying UTψ = eiθψ, this symme-
try implies that ψ∗ is also a Floquet eigenstate with the same
eigenvalue. We can then consider the superpositions ψ + ψ∗

and i(ψ − ψ∗) to show that ψ can be chosen to be real.
(ii) If we combine the parity transformation |n〉 → |L−1−n〉
with |n〉 → (−1)n|n〉 and complex conjugation, we find that
H(t) → −H∗(t). This implies that UT is unitarily related
to U∗T . This implies that if ψ(n) denotes the n-th component
of an eigenstate of UT with eigenvalue eiθ, then a state ψ′

with ψ′(n) = (−1)nψ∗(L − 1 − n) is an eigenstate of UT
with eigenvalue e−iθ. This implies that if there is a Floquet
eigenstate with a large weight near the left edge of the system
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with eigenvalue eiθ, there will be an eigenstate with a large
weight near the right edge with eigenvalue e−iθ. It is clear
that these two states have the same IPR since

∑L−1
n=0 |ψ(n)|4

is invariant under ψ(n)→ (−1)nψ(L− 1− n).
(iii) If we shift the time t → t + T/4, the term in the phase
of the hopping amplitude in Eq. (4) changes from sin(ωt) to
cos(ωt). If we combine this with the transformation |n〉 →
(−1)n|n >, we have that H(t) → −H(T − t). More specif-
ically, the transformation |n〉 → (−1)n|n〉 is done by the
unitary and diagonal matrix W whose diagonal elements are
given by Wnn = (−1)n; since W 2 = I , the eigenvalues of
W are equal to ±1. Then

WH(t)W = − H(T − t), (7)

and this implies that WUTW = U−1
T . Hence, for every Flo-

quet eigenstate ψ with eigenvalue eiθ, there will be an eigen-
state Wψ with eigenvalue e−iθ. We now recall that Floquet
eigenvalues do not change under time shifts while eigenstates
change by a unitary transformation; however, if there is a state
with a large weight near one particular edge, its unitary trans-
formation will give a state with a large weight at the same
edge. We therefore conclude that near each edge, large-IPR
states will either come in pairs with Floquet eigenvalues equal
to e±iθ (if eiθ 6= ±1), or they can come singly if the eigen-
value is equal to ±1. Further, the argument in the previ-
ous paragraph shows that there will be corresponding states
with large weight at the opposite edge with the same eigen-
values. Also, if there is a single large-IPR state ψ near an
edge with Floquet eigenvalue equal to ±1, Wψ will have the
same eigenvalue and therefore must be identical to ψ up to a
sign. Hence ψ must be an eigenstate of W . This means that
the components of ψ, denoted as ψ(n) must be zero if n is
odd (even) depending on whether Wψ is equal to +ψ or −ψ.

B. Tight-binding model with a staggered potential

We will now study the effects of a staggered potential v.
The Hamiltonian with driving is given by

H = − g
L−2∑
n=0

(e
ia
ω sin(ωt)c†ncn+1 + e−

ia
ω sin(ωt)c†n+1cn)

+ v

L−1∑
n=0

(−1)nc†ncn, (8)

where v is the strength of the staggered potential. The numer-
ical results that we obtain are as follows. We have considered
a 101-site system with g = 1 and ω = 1. We then find that
v and −v give identical plots for the IPRs. (We can show
that the symmetry (ii) discussed above continues to hold if we
also transform v → −v, provided that L is odd). We vary
the driving amplitude a from 0 to 30 in steps of 0.1, and plot
the largest two IPRs as a function of v. Figure 6 shows the
IPRs for v = ±1. We find that large IPR values correspond to
a pair of eigenstates which are localized at the opposite ends
of the system and have the same Floquet eigenvalues. Since

large values of IPRs imply the presence of edge states, we see
that the regions where edge states exist are significantly larger
compared to the case with v = 0 (Fig. 1).

We can understand why the edge states at the opposite ends
have the same Floquet eigenvalues as follows. When the num-
ber of lattice sites, L, is odd, the Hamiltonian and therefore the
Floquet operator UT are invariant under a combination of par-
ity (n → L − 1 − n) and a → −a. We have seen earlier that
changing a → −a does not change the Floquet eigenvalues.
The above symmetry therefore implies that if ψL is a Floquet
eigenstate localized near the left edge with a Floquet eigen-
value eiθ, there will be a Floquet eigenstate ψR localized near
the right edge with the same eigenvalue eiθ.
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FIG. 6: Largest two IPRs as a function of the driving ampli-
tude a for staggered potentials v = 1 and −1, for a 101-site
system with g = 1 and ω = 1. The largest and second largest
IPRs are shown as red solid and blue dashed lines. The small-
est IPR is shown by a black dash-dotted line near the bottom.
The two figures look identical due to a parity symmetry as
discussed in the text.

There is an interesting difference between the cases where
the number of sites is even and odd. In Fig. 7, we show the
largest two eigenvalues for v = ±1 for a 100-site system in
Fig. 7. We find once again that large values of the IPR cor-
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respond to a pair of eigenstates which are localized at oppo-
site ends of the system; however their Floquet eigenvalues are
complex conjugates of each other, unlike the case of an odd
number of sites where the Floquet eigenvalues of the state at
opposite ends are equal to each other.
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FIG. 7: Largest two IPRs (which coincide with each other) as
a function of the driving amplitude a for staggered potentials
v = 1 and −1, for a 100-site system with g = 1 and ω =
1. The smallest IPR is shown by a dash-dotted line near the
bottom. The two figures are not identical as there is no parity
symmetry when the number of sites is even.

In Fig. 8 we show the Floquet eigenvalues for a 100-site
system with g = 1, ω = 1, v = 1 and a = 4. The four
isolated points correspond to edge states (two at each end).
The value a = 4 has been chosen since it corresponds to a
peak in the largest two IPRs as shown in Fig. 7 (a).
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FIG. 8: Plot of the real and imaginary parts of the Floquet
eigenvalues for a 100-site system with g = 1, v = 1, ω = 1
and a = 4. There are four large-IPR states (shown in black).
These are well separated from the bulk states (shown by the
red curves), and they correspond to bound states at the edges.
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FIG. 9: Largest two IPRs as a function of the driving fre-
quency ω for staggered potentials v = 0 and 1, for a 101-site
system with g = 1 and a = 5.6. The smallest IPR is shown
by a black solid line near the bottom.

In Fig. 9 we show the largest two IPRs as a function of ω
for a 101-site system with g = 1 and a = 5.6; we have taken
v = 0 and 1 in Figs. 9 (a) and (b) respectively. The figures
show that edge states appear in a larger range of values of ω
when v is non-zero. However, edge states do not appear in
either case when ω becomes large enough.

1. Floquet perturbation theory for g � v

We have seen numerically that the introduction of a non-
zero v enhances the regions of a where edge states exist. We
would now like to understand this analytically. Since we have
taken the frequency ω to be of the same order as the hopping
amplitude g, the Floquet-Magnus expansion in powers of 1/ω
would not be useful here55,56. We will therefore use a dif-
ferent approach to understand the appearance of edge states.
Namely, we will consider the limit g � v, and will use a Flo-
quet perturbative expansion in g to obtain a time-independent
Hamiltonian. We will then match the results obtained in this
way to those found numerically.

We begin by briefly discussing the Floquet perturbation the-
ory57–59. We write the Hamiltonian in Eq. (8) asH = H0 +V ,
where

H0 = v

L−1∑
n=0

(−1)nc†ncn,

V = − g
L−2∑
n=0

[e
ia
ω sin(ωt)c†ncn+1 + e−

ia
ω sin(ωt)c†n+1cn].

(9)

The eigenstates of H0 are the states localized at various sites
|n〉 = |0〉, |1〉, |2〉, · · · , and the eigenenergies are En = +v or
−v depending on whether n is even or odd. Now let |ψ〉 be a
solution of the time-dependent Schrödinger equation. Then

i
dψ

dt
= (H0 + V (t)) ψ. (10)

We now write ψ in terms of the eigenstates of H0 as

|ψ(t)〉 =
∑
m

cm(t) e−iEmt|n〉. (11)

Substituting this in Eq. (10), we get an equation for the coef-
ficients cn(t),

dcm
dt

= − i
∑
m′ 6=m

〈m|V (t)|m′〉 ei(Em−Em′ )t cm′(t). (12)

We now solve Eq. (12) up to terms of order g2. Integrating the
above equation, we obtain

cm(T )

= cm(0) − i
∑
m′ 6=m

∫ T

0

dt〈m|V (t)|m′〉ei(Em−Em′ )tcm′(0)

−
∑

m′ 6=m,m′′

∫ T

0

dt〈m|V (t)|m′〉ei(Em−Em′ )t

×
∫ t

0

dt′〈m′|V (t′)|m′′〉ei(Em′−Em′′ )t′cm′′(0). (13)

We can re-write Eq. (13) as a matrix equation

cm(T )e−iEmT =
∑
m′

(I − iTH
(1)
F − T 2

2
H

(2)
F )mm′cm′(0),

(14)
where I is the identity matrix. We can now write the matrix
appearing in Eq. (14) in the form

Ueff = e−iHeffT ≡ I − iTH
(1)
F − T 2

2
H

(2)
F (15)

up to order T 2. Namely, we have a unitary matrix Ueff which
is related to an effective Hamiltonian Heff which is correct
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up to order g2. We find that Heff in terms H(1)
F and H(2)

F is

Heff = H
(1)
F +

iT

2
[H

(2)
F − (H

(1)
F )2]. (16)

We can now numerically compute the eigenvalues and eigen-
states ofUT = T exp(−i

∫ T
0
H(t)dt) and compare these with

the same quantities for Ueff .
We note first that if g = 0, the eigenstates of UT are just

states localized at different lattice sites; there is a large degen-
eracy as states localized at even and odd number of sites have
the same eigenvalues. With the introduction of even a small g,
we see a drastic change in the eigenstates. For g/v ' 1/100
we find two localized edge states (one at each end) while all
the other states are extended over the whole system. We find
this numerically for both the periodically driven system (UT )
and the Floquet perturbative calculation (Ueff ). For a 100-
site system with g = 1, ω = 1, a = 2.6, and a large staggered
potential v = 10.1, we find that both UT and Ueff have ex-
actly two eigenstates localized at the edges (one at each edge),
while all the other states are bulk states delocalized over the
entire lattice. Further, the probabilities |ψ(n)|2 for the edge
states for UT and Ueff look almost identical to each other
(and are similar to the ones shown in Fig. 2 (a)).

To summarize this section, we see that the introduction of a

small hopping g in the driven system with a staggered poten-
tial v can change the properties of the eigenstates significantly.
We observe this numerically for both the driven system and
the effective Hamiltonian obtained from Floquet perturbation
theory.

2. Study of the maximum IPR versus v for different values of a

We will now study the variation of the largest three IPRs
as a function of v for different values of a; this will give us
information about the ranges of v where localized edge states
exist. In Fig. 10 we show the results for 100-site and 101-
site systems, with g = 1 and ω = 1. It is interesting to look
at the point v = 0. We see that the maximum IPR in the
vicinity of v = 0 is small for values of a, like a = 4, which
do not correspond to large IPR regions in Fig. 1, while it is
large for values of a, like a = 2.6, which lie in the large IPR
region in Fig. 1. Hence the results for v = 0 are consistent
between Figs. 1 and 10. For larger values of v, we see sharp
drops in the IPR values; this is due to hybridization between
the edge states at the two ends of system which reduces their
probabilities and therefore their IPRs.
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FIG. 10: Largest three IPRs (shown as red solid, blue dashed and black dash dots, respectively) as a function of v for different
values of a and number of sites, for g = 1 and ω = 1. (a) a = 2.6 and 100 sites, (b) a = 2.6 and 101 sites, (c) a = 4 and 100
sites, and (d) a = 4 and 101 sites. The results are seen to depend on whether the number of sites is even or odd.

3. Time evolution of a state initialized at one edge

The driven system has another symmetry if the driving
of the phase in Eq. (8) is taken to be cos(ωt) instead of
sin(ωt). We then see that H(T − t) = H(t). If we also
change v → −v and cn → (−1)ncn, using the opera-
tor W defined around Eq. (7), we have H(T − t,−v) =
−WH(t, v)W . Following an argument similar to the one
given there, we see that if UT (v) is the Floquet operator for
a particular value of v, the Floquet operator for −v is given
by UT (−v) = W (UT (v))−1W . Hence for every Floquet
eigenstate of UT (v) given by ψ(v) with Floquet eigenvalue
eiθ, there will be a Floquet eigenstate of UT (−v) given by
ψ(−v) = Wψ(v) with Floquet eigenvalue e−iθ. Thus the
results for +v and −v will be similar, and it is therefore suf-
ficient to study the case v ≥ 0. In the rest of this section, we
will take the phase in Eq. (8) to be cos(ωt).

We will now study the dynamics of states initialized near
one edge of the system in the presence of periodic driving. We
will start at time t = 0 with a state which is localized at the
left edge of the system and study how it evolves with time; the
initial state will not be taken to be an eigenstate of the Floquet
operator. We will look at how the probability that the particle

returns to that edge (we will consider the first three sites to be
the edge, so the edge probability is equal to |ψ(0)|2+|ψ(1)|2+
|ψ(2)|2) varies with the stroboscopic time which will be taken
to be integer multiples of the time period T . We have studied
a 100-site system with g = 1, ω = 1, and a = 2.6 (where we
know that edge states exist for v = 0) and a = 4 (where there
are no edge states for v = 0). In Figs. 11 and 12, the sign of
v is the sign of the staggered potential at the first site from the
left (n = 0).
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FIG. 11: Edge probability of a state initialized at the left edge
for a 100-site system with g = 1, ω = 1, and a = 2.6.
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FIG. 12: Edge probability of a state initialized at the left edge
for a 100-site system with g = 1, ω = 1, and a = 4.

We conclude the following from Figs. 11 and 12.
(i) For a = 2.6 where we know that edge states exist at v = 0,
the probability of staying at the edge remains close to 1 for
all times. When |v| is increased to 1 and 2, the probability
becomes smaller. However, when |v| is increased further to 3
and 5, the probability of staying at the edge again comes close
to 1 at all times.
(ii) For a = 4 where there is no edge state at v = 0, the
probability of staying at the edge remains close to zero, except
for sharp peaks at some particular times. As |v| is increased to
3 and 5, the probability rises and stays close to 1 at all times.
(iii) Even for values of v and a where the probability of stay-
ing close to the edge is small at most times, we see sudden
jumps in the probability at some regular time intervals.

These features can be explained as follows. If the system
has an edge state at a particular value of a and v, then an ini-
tial state which is close to the edge will have a large overlap
with that eigenstate and will therefore have a large probability
for the particle to stay near the edge. This matches with our
earlier plots showing the regions of a and v where edge states
exist. When there are no edge eigenstates which are localized

at the edges, the probability of staying near the edges is low.
However there are peaks in the probability of coming close to
the edge; this occurs because the particle initially starts at one
edge, moves into the bulk, and then repeatedly gets reflected
back and forth between the two edges. The probability be-
comes large whenever it returns to the original edge. This oc-
curs at time intervals given by the recurrence time 2L/vmax,
where L is the size of the system and vmax is the maximum
velocity of the particle when it is subjected to periodic driving.
For instance, when the staggered potential v = 0, the maxi-
mum velocity if vmax = |2gJ0(a/ω)|. This is because the
effective Hamiltonian has a nearest-neighbor hopping ampli-
tude equal to−gJ0(a/ω) (see Appendix B). Hence the energy
dispersion in the bulk is given by Ek = −2gJ0(a/ω) cos k;
the group velocity is then given by vk = 2gJ0(a/ω) sin k,
which has a maximum value of |2gJ0(a/ω)|.

IV. BOSE-HUBBARD MODEL WITH PERIODIC DRIVING

We will now consider a model with interacting particles.
Specifically we will consider the Bose-Hubbard model and
investigate if periodic driving can give rise to two-particle
bound states which are localized at one edge of the system.
On a lattice of size L, the Bose-Hubbard model subjected to
periodic driving by an electric field has a Hamiltonian of the
form

H = − g
L−2∑
n=0

(e
ia
ω sin(ωt)b†nbn+1 + e−

ia
ω sin(ωt)b†n+1bn)

+
u

2

L−1∑
n=0

ρn(ρn − 1), (17)

where ρn = b†nbn is the particle number operator at site n. To
study a system with two bosons numerically, we construct the
Hamiltonian in the basis |n1, n2〉, where n1 and n2 denote the
positions of the two bosons, and we can assume that n1 ≤ n2

since the particles are indistinguishable. For a system with
L sites, the Hamiltonian in this basis will be a L(L + 1)/2-
dimensional matrix. After constructing the Hamiltonian we
calculate the Floquet operator UT as explained in Appendix
A. We then look at the Floquet eigenstates and their IPRs to
identify bound states in which both the particles are localized
near one edge of the system. In our calculations, we will de-
fine the edge as consisting of the three states |0, 0〉, |0, 1〉 and
|1, 1〉, i.e., the probability at the edge will mean the sum of the
probabilities of these states. In all our numerical calculations
we will take g = 1 and ω = 1, and vary the driving amplitude
a and the interaction strength u.

Before presenting the numerical results, we note a useful
symmetry which relates the Floquet operators for positive and
negative values of u. This can be seen most clearly if we take
the phase of the hopping to be cos(ωt) instead of sin(ωt) in
Eq. (17); then the symmetry cos(ω(T −t)) = cos(ωt) implies
that the Hamiltonian H(t) → −H(T − t) if we change u →
−u and bn → (−1)nbn. The latter corresponds to a trans-
formation by a unitary and diagonal matrix W2 which gives
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W2|n1, n2〉 = (−1)n1+n2 |n1, n2〉; note that W 2
2 = I . This

implies that the Floquet operators for interaction strengths±u
are related as UT (−u) = W2(UT (u))−1W2. Hence, if there
is a two-particle bound state ψ(u) at one edge of the system
with a Floquet eigenvalue eiθ for interaction u, there will be a
two-particle bound state ψ(−u) at the same edge with a Flo-
quet eigenvalue e−iθ for interaction −u; the wave functions
for the two eigenstates will be related as ψ(−u) = W2ψ(u).
This implies that the probabilities of the different basis states
|n1, n2〉 will be identical in the two eigenstates. This symme-
try between positive and negative values of u implies that it is
sufficient to study the case u ≥ 0.

A. Edge probability versus u for different values of a

We recall from Fig. 1 that driving the non-interacting model
with a = 2.6 gives rise to edge states, while a = 4 does not
lead to edge states. To study the possibility of interactions
producing two-particle bound states which are localized near
one of the edges, we will specifically choose these two values
of a and study the probability at the edge as a function of
the interaction strength u; we define the edge probability to
be the sum of the probabilities of the two particles being at
the locations |0, 0〉, |0, 1〉 and |1, 1〉. The numerical results
obtained for a 30-site system are shown in Fig. 13. We note
the following features in the figure.

(i) For a = 2.6, the edge probability is fairly large at u = 0.
This is because the non-interacting system has edge states as
we saw in Fig. 1, and therefore there are states in which both
the particles occupy those states. However, as u is turned on,
either to positive or negative values, the edge probability first
drops and then starts rising again with increasing u. Thus a
two-particle bound state at the edge becomes more likely as u
increases.

(ii) For a = 4, the edge probability is small at u = 0; this is
because the non-interacting system does not have edge states
as shown in Fig. 1. As u is turned on, the probability at the
edge first rises, then drops and then starts rising again as u
increases.
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FIG. 13: Largest two edge probabilities at edge as a function
of u. For a = 2.6, u = 0 gives a large probability at the
edge, while for a = 4, u = 0 gives an edge probability close
to 0. The overall trend is that as u increases the edge prob-
ability increases. Note that a large edge probability does not
necessarily imply a bound state.

B. Floquet perturbation theory for g � u

We now present a Floquet perturbation theory in the limit
that g � u along the same lines as in Sec. III B 1. We write
the Hamiltonian as a sum

H = H0 + V,

H0 =
u

2

L−1∑
n=0

ρn(ρn − 1),

V = − g
L−2∑
n=0

(e
ia
ω sin(ωt)b†nbn+1 + e−

ia
ω sin(ωt)b†n+1bn),

(18)

and treat V (t) as a perturbation. We first consider the limit
g = 0, so the Hamiltonian is H0 = (u/2)

∑L−1
n=0 ρn(ρn − 1).

Then the eigenstates of the Hamiltonian are simply the ba-
sis states |n1, n2〉, and driving has no effect on this system.
We now find that introducing even a small amount of hop-
ping (g � u) has a drastic effect. Namely, we find that all
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bulk states are delocalized and there are only two two-particle
bound states which are localized at one of the ends of the sys-
tem. We can use Floquet perturbation theory to first order in
g to understand the emergence of two-particle edge states for
small hopping. Before showing the results we first discuss
Floquet perturbation theory for this system. For convenience,
we will denote the eigenstates ofH0, |n1, n2〉 by a single sym-
bol |m〉, where m takes L(L + 1)/2 possible values. The
eigenenergies of H0 are E = 0 or u depending on whether
the two bosons are on the same site or on different sites. Since
there are degeneracies in the eigenenergies of H0, we have to
use degenerate Floquet perturbation theory. We look for solu-
tions of the time-dependent Schrödinger equation |ψ〉 for the
time-periodic Hamiltonian H . We can write

|ψ(t)〉 =
∑
m

cm(t)e−iEmt|m〉. (19)

Then the Schrödinger equation leads to the following equa-
tions for the amplitudes cm(t),

dcm
dt

= − i
∑
m′ 6=m

〈m|V (t)|m′〉ei(Em−Em′ )t cm′(t). (20)

Up to first order in g and T , the effective time-evolution oper-
ator relating cm(T )e−iEmT to cm(0) is then given by

Ueff = I − iTH
(1)
F , (21)

where

(H
(1)
F )mm′

= (H0)mm′ +
1

T

∫ T

0

dt ei(Em−Em′ )t 〈m|V (t)|m′〉.

(22)

We will now show a comparison of the numerical results ob-
tained for the driven system and those obtained from the ef-
fective Hamiltonian H(1)

F obtained from Floquet perturbation
theory. We consider a 30-site system with g = 0.1, u = 20.2
and ω = 1, so that g � u. We have shown the results for
a = 2.6 in Figs. 14 and 15. In Fig. 14 we see two states
with large IPRs which are two-particle bound states local-
ized at one of the two ends of the system. The probabilities
|ψ(n1, n2)|2 of these states are shown in Figs. 15 (a-d). We
find a good match between the results obtained numerically
(Figs. 15 (a) and 15 (c)) and perturbatively (Figs. 15 (b) and
15 (d)).
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FIG. 14: Comparison between IPR plots for the driven system and the perturbatively obtained Hamiltonian respectively for a
30-site system with g = 0.1, u = 20.2, ω = 1, and a = 2.6. The IPR plots show two states with large IPRs implying a localized
bound state at each of the edges.
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FIG. 15: Comparison between numerical results for the driven system and the perturbatively obtained Hamiltonian respectively
for a 30-site system with g = 0.1, u = 20.2, ω = 1, and a = 2.6. The two-particle probability |ψ(n1, n2)|2 vs (n1, n2), where
n1 ≤ n2, obtained numerically and perturbatively are shown for the two states in plots (a), (c) and (b), (d) respectively.

C. Time evolution of a two-particle state initialized at one edge

We will now study the time evolution of the probability of
two particles remaining close to the edge where they are ini-
tialized. We will take the initial state to be one where both
particles are at the site labeled 0. We define the probabil-
ity of the two particles to remain near the edge as the sum
|ψ(0, 0)|2 + |ψ(0, 1)|2 + |ψ(1, 1)|2 and track this as a function
of time. We study this for different values of the driving am-
plitude a and the interaction strength u > 0. We again choose
two values of a given by 2.6 and 4, one lying within the re-
gion where single-particle edge states exist, and one lying in
the region where there are no edge states. We consider a 20-
site system with g = 1 and ω = 1. The numerical results are
shown in Figs. 16 and 17 for a = 2.6 and 4 respectively. We
note the following.
(i) For a = 2.6 where the non-interacting driven model hosts
edge states, we see that for u = 0 the particle always stays
near the edge, hence the probability remains non-zero for all
times. For a = 4 which does not give edge states when driven,
the probability for u = 0 drops to zero quickly. Thus the two
bosons quickly spread out into the bulk of the system.

(ii) For a moderately strong interaction strength u = ±2, ± 4
(of the same order as the hopping g), the probability to remain
at the edge remains small for all times. Hence a moderate
amount of either attraction or repulsion makes the bosons de-
localize into the bulk.
(iii) For large u = ±10, ± 20 the two particles remain local-
ized near the edge for all times. For large and attractive u this
is easy to understand as the two particles being at the zeroth
site form a deep attractive well leading to a bound state. This
is also true for large and repulsive u since the particles form a
deep repulsive well which leads to a bound state on a lattice.
(It is interesting to note, for instance, that a large attractive
or repulsive potential at one site on a lattice can host a bound
state localized near that site, whereas in a continuum model, a
δ-function potential can host a bound state only if it is attrac-
tive). Hence a small hopping (g � |U |) cannot delocalize the
two bosons for either sign of u.
(iv) An interesting feature in some of the plots is the oscil-
lation of the probability with a large time period for certain
parameter values. For instance, for a = 2.6 this happens for
u = ±6 as we see in Fig. 16. This can be understood as fol-
lows. If there are two Floquet eigenstates which are localized
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at the edge, have slightly different Floquet eigenvalues, and
have a large overlap with the initial state where both particles
are at the zeroth sites, then the time-evolved state will oscillate
back forth with a time period with is inversely proportional to
the difference of the quasienergies of the two bound state. In-
deed we find that for the parameter values given above there
are two such eigenstates at the edge with closely spaced Flo-
quet eigenvalues.
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FIG. 16: Return probability of a state initialized with both
particles at left edge. We have taken a 20-site system with
a = 2.6 and g = 1.
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FIG. 17: Return probability of a state initialized with both
particles at edge. We have taken a 20-site system with a = 4
and g = 1.

V. DETECTION OF EDGE STATES USING TRANSPORT
MEASUREMENTS

In this section we will discuss how it may be possible to
detect the edge states studied in the earlier sections by look-
ing at transport across the driven system. In particular, if
one attaches metallic leads to the two ends of the system, we
find that signatures of the edge states may appear as peaks in
the differential conductance when one applies a voltage bias

across the system which is equal to the quasienergy of one of
the edge states. To find the differential conductance across a
periodically driven system we have to calculate use Floquet
scattering theory60,61.

Floquet scattering theory works most easily if we con-
sider a model without interactions. We will consider a sys-
tem of non-interacting electrons described by the driven tight-
binding system discussed in Sec. III, which is attached to two
leads which are not driven. We will ignore the spin of the
electron in this section; to include the effect of spin we will
only need to multiply our final results for the conductance by
a factor of 2. The Hamiltonian of our system will have the
following parts. The periodically driven part in the middle
(called the wire W ) will have L sites going from n = 0 to
L− 1; the Hamiltonian in this region will be

HW = − g

L−2∑
n=0

(ei
a
ω sin(ωt)c†ncn+1 + e−i

a
ω sin(ωt)c†n+1cn).

(23)
(We will ignore the staggered potential v in this section). The
leads on the left and right sides of the wire, L andR, consist of
sites from n = −∞ to −1 and from n = L to∞ respectively,
with the Hamiltonians

HL = − gl
−2∑

n=−∞
(c†ncn+1 + c†n+1cn),

HR = − gl
∞∑
n=L

(c†ncn+1 + c†n+1cn). (24)

(Note that the energy bands in the wire and leads will lie in
the ranges [−2g, 2g] and [−2gl, 2gl], respectively, and we are
allowing these to differ from each other). Finally, there will be
couplings between the left and right leads and the wire given
by the Hamiltonian

HC = − gc (c†−1c0 + c†0c−1 + c†L−1cL + c†LcL−1). (25)

We will now consider an electron which is incident from
the left lead with an energy E0 = −2gl cos(k0) and wave
function ψ(n) = ei(k0n−E0t); the energy must lie in the range
[−2gl, 2gl]. When the electron enters the wire region which is
being driven with a frequency ω, it may lose or gain energy in
multiples of ω. Hence it may get reflected back to the left lead
or transmitted to the right lead with an energy Ep = E0−pω,
where p is an integer. This must be related to the momentum
kp by the relation Ep = −2gl cos(kp). For this to describe a
propagating wave, we must have kp real which means that Ep
must lie in the range [−2gl, 2gl]. If Ep lies outside this range,
the corresponding wave functions eikpn should decay expo-
nentially as we go away from the wire into the leads; hence
kp will be complex and we have to choose the imaginary part
of kp appropriately. We find that kp has to be chosen as fol-
lows.
(i) For −2gl ≤ Ep ≤ 2gl, we have kp = cos−1[−Ep/(2gl)],
and we choose 0 ≤ kp ≤ π. The group velocity for this
case is given by vp = dEp/dkp = 2gl sin(kp) which satisfies
vp ≥ 0. This will appear in the expressions for the currents in
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the leads.
(ii) For Ep < −2gl, we have kp = i cosh−1(−Ep

2gl
). This

corresponds to a decaying wave function which does not con-
tribute to the current in the leads.
(iii) For Ep > 2gl, we have kp = i cosh−1(

Ep

2gl
) + π. This

also corresponds to a decaying wave function and does not
contribute to the current.

Next, we find the reflection and transmission amplitudes,
rp back to the left lead and tp to the right lead respectively,
for different values of Ep. To do this, we write down the wave
functions in the wire and the leads and use their continuity at
the junctions between the different regions. The wave func-
tions are as follows.
(i) Region I (left lead):

ψ(n) = ei(k0n−E0t)

+

∞∑
p=−∞

rp e
i(−kpn−Ept) for n ≤ −1. (26)

(ii) Region II (wire):

ψ(n) =

∞∑
p=−∞

cn,p e
−iEpt for 0 ≤ n ≤ L− 1. (27)

(iii) Region III (right lead):

ψ(n) =

∞∑
p=−∞

tp e
i(kpn−Ept) for n ≥ L. (28)

We now solve the Schrödinger equation idψ/dt = Hψ,
where ψ denotes all the ψ(n)’s combined into a column, and
the Hamiltonian H in this equation can be obtained from
the second-quantized Hamiltonians in Eqs. (23-25) in the
usual way. Solving these equations, which naturally involves
matching the wave functions at the junctions between the dif-
ferent regions, and equating the coefficients of e−iEpt on the
two sides of every equation for all values of p, we obtain the
following L+ 2 equations for each value of p,

gc c0,p − gl rp = gl δp,0,

gc rp e
ikp + Ep c0,p

+ g

∞∑
m=−∞

Jm(a/ω) c1,p+m = − gc e−ik0 δp,0,

g
∑
m

(−1)mJm(a/ω) cn−1,p+m + Ep cn,p

+ g
∑
m

Jm(a/ω) cn+1,p+m = 0 for 1 ≤ n ≤ L− 2,

g
∑
m

(−1)mJm(a/ω) cL−2,p+m + Ep cL−1,p

+ gc tp e
ikpL = 0,

gc cL−1,p − gl tp e
ikp(L−1) = 0. (29)

We can write Eqs. (29) as a matrix equation where the left-
hand side consists of a matrix acting on a column of rp, tp and

cn,p’s, and the right-hand side is given by a column formed
out of the right-hand sides of the same equations. Invert-
ing this matrix equation we can obtain the rp, tp and cn,p’s
in principle. However, this is a infinite-dimensional matrix
equation and we must therefore truncate it to find the solu-
tions numerically. If we keep only 2nH + 1 values of p, going
from p = −nH to +nH , we will obtain a (L+ 2)(2nH + 1)-
dimensional matrix from which we can find rp, tp and cn,p.
To see if the truncation error is small enough, we can verify
how well the current conservation relation

v0 =
∑
p

vp (|rp|2 + |tp|2) (30)

is satisfied, where vp is the group velocity for energy Ep, and
the sum over p in Eq. (30) only runs over values for which Ep
lies in the range [−2gp, 2gp].

In the above analysis, we have assumed that the electron is
incident from the left lead with an energy E0. We can sim-
ilarly consider what happens if an electron is incident from
the right lead with the same energy E0. We denote the cor-
responding reflection and transmission amplitudes by r′p back
to the right lead and t′p to the left lead respectively. We now
note that the Hamiltonians in Eqs. (23-25) have a parity sym-
metry if we shift t → t + π/ω (this interchanges the factors
of e±i(a/ω) sin(ωt) appearing in Eq. (23)). Hence we will have
|tp|2 = |t′p|2 and |rp|2 = |r′p|2. This implies that the outgoing
current in the right lead will be given by60

IR =
e

h

∫ 2gl

−2gl

dE0

∞∑
p=−∞

vp
v0
|tp|2 [f(L(E0) − fR(E0)],

(31)
where fL/R(E0) = [e(E0−µL/R)/(kBT ) + 1]−1 denotes the
Fermi-Dirac functions for the left (right) leads respectively,
the chemical potentials are µL/R = −eVL/R where VL/R de-
note the voltages applied to the leads, −e denotes the elec-
tron charge, h = 2π~, and we have ignored the electron spin
in writing Eq. (31). At zero temperature (T = 0), we get
IR = 0 if VL = VR. If we set VR = −E0/e and take the limit
VL → VR, the differential conductance G = IR/(VL − VR)
is given by

G =
e2

h

∑
p

vp
v0
|tp|2, (32)

where |tp|2 is evaluated at the energy E0. We can now plot G
as a function of E0 to see if any peaks appear due to the edge
states produced by the driving in the wire region.

We will now present our numerical results for the edge
states and their effects in a plot of G versus of E0 in Figs. 18
and 19. We take the coupling between the wire and the
leads to be small, i.e., gc � gl, so that the edge states
are not significantly disturbed by this coupling. We choose
g = gl = 1, gc = 0.01 and ω = π/4, and consider two values
of a/ω = 2.5 and 5.6 where we know that edge states exist.
We indeed see that there are peaks when E0 is equal to the
quasienergy of any of the edge states or E0 differs from the
quasienergies by integer multiples of ω. In general we also
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find contributions to G from the bulk states in the wire, but
in the limit gc � g, these vanish, and we only see contribu-
tions from the edge states. It is important to note here that
although the band width in the leads, 4gl, is equal to the bare
band width in the wire, 4g, the driving reduces the effective
band width in the wire to 4g|J0(a/ω)|, as explained in Ap-
pendix B (for a/ω = 2.5 and 5.6, |J0(a/ω)| = 0.048 and
0.027 respectively). As a result, we have edge states whose
Floquet eigenvalues lie well outside the effective band width
of the wire but inside the band width of the leads. This makes
it possible to detect these edge states by sending in an electron
with the appropriate energy from the leads, while easily dis-
tinguishing their contributions from those of the bulk states in
the wire.
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FIG. 18: (a) Floquet eigenvalues of edge states (isolated red
dots): −0.5925 ± 0.8056i corresponding to quasienergy =
±0.2756. (b) We see peaks in the differential conductance
G (in units of e2/h) when the incident electron has the same
energy. The other peaks in G correspond to side bands with
energies equal to ±0.2756± pω.
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FIG. 19: (a) Floquet eigenvalues of edge states (isolated
red dots): 0.3755 ± 0.9268i corresponding to quasienergy =
±0.1482. (b) We see peaks in the differential conductance
G (in units of e2/h) when the incident electron has the same
energy. The other peaks in G correspond to side bands with
energies equal to ±0.1482± pω

Figure 18 (a) shows that the Floquet eigenvalues for a
driven 100-site system (with no leads) for g = 1, ω =
π/4, and a/ω = 2.5. The edge states are clearly distin-
guishable from the bulk states; their Floquet eigenvalues are
−0.5925 ± 0.8056i, and the the corresponding quasienergies
are ±0.2756. To calculate the differential conductance, we
have chosen a smaller system with L = 10, so that the states
at the two edges can hybridize with each other and thereby
lead to transmission across the wire. We choose g = gl = 1
and gc = 0.01; the small values of gc (which is equivalent
to having a large barrier between the wire and the leads) en-
sures that the bulk states in the wire contribute very little to
the conductance. Figure 18 (b) shows a plot of G versus E0.
We see that there are exactly at the quasienergies ±0.2756
corresponding to the edge states and also at side bands whose
energies differ from the edge states by integer multiples of ω.
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In Figs. 19 (a) and (b), we show the same results for
a/ω = 5.6; all the other parameters have the same values
as in Figs. 18. The edge states now have Floquet eigenvalues
0.3755 ± 0.9268i, corresponding to quasienergies ±0.2756.
Once again we see peaks inG at these quasienergies and other
energies differing from them by integer multiples of ω.

We emphasize that the detection of edge states through a
measurement of the conductance requires that the states at
the two edges must hybridize with each other by a signifi-
cant amount; if they do not hybridize, the electron will not be
transmit from one end to the other. The hybridization between
the two edges is crucially dependent on the system size L. We
find numerically that the hybridization becomes very small
beyond about L = 20 for the parameter values that we have
chosen. This is because the wave function decreases exponen-
tially with some decay length as we go away from the edge;
hence the overlap between the edge states at the two ends will
become very small if L becomes larger than the decay length.
Figure 20 shows a plot of the maximum value of G (i.e., max-
imized as a function of the incident energy) versus the system
size L, for the same parameter values as in Figs. 18. We see
that there is a sharp drop beyond about L = 20.
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FIG. 20: Maximum differential conductance G (in units of
e2/h) versus system size L. We have chosen ω = π/4, a/ω =
2.5 (so that J0(a/ω) is close to zero), g = gl = 1.0, and
gc = 0.01

VI. DISCUSSION

We begin by summarizing our results. We find that a tight-
binding model in one dimension can host edge states when
the phase of the hopping amplitude is periodically driven in
time by applying an oscillating electric field. The presence of
a staggered potential or an on-site Bose-Hubbard interaction
generally enhances the regions where such states appear. The
edge states only appear when the driving frequency is of the
order of the hopping. For frequencies much larger than the
hopping, we find that there are no edge states; the reason for

this is explained at the end of Appendix C 1. Hence we cannot
use the Floquet-Magnus expansion55,56, which is valid at high
frequencies, to study the edge states. We have used a Floquet
perturbation theory to show that when the staggered potential
or the interaction strength is much larger than the hopping,
periodic driving can generate states localized at the edges. The
results obtained by this method agree well with those found
numerically. Finally, we have shown that a measurement of
the differential conductance across a periodically driven wire
with non-interacting electrons can detect the edge states; the
conductance has peaks when the voltage bias coincides with
the quasienergy of one of the edge states.

We now recall our most interesting findings. In the case
of a non-interacting model, we have studied the ranges of the
various parameters for which one or more Floquet eigenstates
exist near each edge of a long but finite system. In some cases,
we find that these states are truly localized at the edges; their
wave functions decay rapidly to zero as one moves away from
the edges and are therefore normalizable. In other cases, we
find that the wave functions are much larger at the edges than
in the bulk; however, they do not go to zero as we go deep into
the bulk, and the wave functions are therefore not normaliz-
able. (By tuning the driving parameters, however, the wave
functions of these states can be made to go to almost zero in
the bulk and therefore look very similar to true edge states).
We find that the two kinds of states are respectively associated
with Floquet eigenvalues which lie outside or within the con-
tinuum of eigenvalues of the bulk states. We have then studied
the time evolution of a state which is not a Floquet eigenstate
and is initially localized at the edge of the system. Depending
on the system parameters, we find that the state can, with a
finite probability, remain localized near the edge for all times
or can move away completely into the bulk. The former hap-
pens if the system has Floquet eigenstates which are localized
at the edges. A similar phenomenon occurs in the periodi-
cally driven Bose-Hubbard model with two particles when we
study the time evolution of a state which initially has both
particles at the edge. Once again we find that the particles can
remain at the edge with a finite probability or move away into
the bulk, depending on the system parameters, and the former
happens if there are Floquet eigenstates which are localized at
the edges. At the end, we have studied how the edge states
can be detected using transport measurements. We consider
a tight-binding model of non-interacting fermions in which
semi-infinite leads are weakly coupled to a finite length wire
in the middle. The hopping phase is periodically driven in
the wire; this effectively reduces the value of the hopping in
the wire and this can make the band width in the wire much
smaller than in the leads. We find that when the isolated wire
(i.e., without any leads) has edge states whose Floquet eigen-
values lie outside the range of eigenvalues of the bulk states of
the wire, the differential conductance across the system with
leads has peaks when the chemical potential of the leads is
equal to the quasienergies of the edge states. Hence the con-
ductance can provide clear evidence of the presence of edge
states.

We would like to point out two directions for detailed inves-
tigations in the future. First, we do not know if the edge states
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have a topological significance. There does not seem to be a
topological invariant which can tell us how many such states
should appear at each edge for a given set of system param-
eters. Second, it would be interesting to examine the effects
of disorder on the various edge states. We have found that the
edge states are robust to some amount of disorder if their Flo-
quet eigenvalues are separated by a gap from the eigenvalues
of the bulk states. This gap-induced protection has been found
in other driven systems as well47,48.

It may be possible to test the results presented in this paper
in systems of cold atoms trapped in an optical lattice which is
periodically shaken16,62. In such systems, the driving param-
eters can be experimentally varied over a wide range which
would allow one to change the ratio a/ω across several ze-
ros of the Bessel function as in Fig. 1. Regarding the Bose-
Hubbard model, the on-site two-body interaction U can be
modulated by magnetic Feshbach resonance63. There are ex-
periments on static systems where the ratio U/g could be var-
ied over a large range64. Periodic driving of such a system
would allow one to test our results for this model. Finally,
transport measurements for detecting the edge states can be
carried out in quantum wire systems where a portion of the
wire is subjected to electromagnetic radiation which is asso-
ciated with an oscillating electric field.
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Appendix A: Basics of Floquet theory

In this Appendix we will briefly present the basics of Flo-
quet theory55,56. Consider a time-periodic Hamiltonian with
period T , so H(t+ T ) = H(t). According to Floquet theory,
the solutions ψn(t) of the time-dependent Schrödinger equa-
tion idψn/dt = Hψn can be taken to satisfy the condition

ψn(T ) = e−iεnTψn(0), (A1)

where e−iεnT is the n-th Floquet eigenvalue and ψn(0) is the
corresponding Floquet eigenstate. The quantity εn is called
the quasienergy. Since changing ε → ε + jω, where ω =
2π/T and j can be any integer, does not change the value of
e−iεT , we can take εn to lie in the range [−ω/2, ω/2]. Next,
we can write ψn(t) in the form

ψn(t) = e−iεnt
∞∑

m=−∞
e−imωtφn,m. (A2)

Similarly, the time-periodic Hamiltonian can be written as

H =

∞∑
p=−∞

e−ipωtHp, (A3)

Substituting the above expressions in the Schrödinger equa-
tion, we obtain an infinite set of equations65

∞∑
p=−∞

Hp φn,m−p = (εn + mω) φn,m, (A4)

where m can take any integer value. This matrix eigenvalue
equation can be written as

. . .
H0 + ω H−1 H−2

H1 H0 H−1

H2 H1 H0 − ω
. . .





...
φn,−1

φn,0
φn,1

...



= εn



...
φn,−1

φn,0
φn,1

...

 . (A5)

We can truncate this infinite dimensional matrix to a suit-
ably large size solve the equation numerically to obtain the
quasienergies εn and Floquet states φn,m.

There is another approach to solving a Floquet problem.
Instead of doing a Fourier expansion of H , we define a Flo-
quet time-evolution operator UT = τ exp(−i

∫ T
0
H(t)dt),

where τ denotes time-ordering. To compute UT numeri-
cally, we divide the interval 0 to T into N steps of size ∆t
each, with N∆t = T , and define tj = (j − 1/2)∆t, where
j = 1, 2, · · · , N . Then we define

UT = e−i∆tH(tN ) · · · e−i∆tH(t2) e−i∆tH(t1), (A6)

where we eventually have to take the limit ∆t → 0 and
N → ∞ keeping N∆t = T fixed. Since UT is a unitary
operator, its eigenvalues must be of the form eiθn , where the
θn’s are real. Since ψn(T ) = UTψn(0), we see from Eq. (A1)
that eiθn is equal to the Floquet eigenvalue e−iεnT . Thus the
Floquet eigenvalues and eigenstates can be found by diago-
nalizing UT .

The Floquet eigenvalues have the property that they do
not change if the time is shifted by an arbitrary amount
t0, i.e., if we define the generalized time-evolution opera-
tor U(t2, t1) = τ exp(−i

∫ t2
t1
H(t)dt), then UT = U(T, 0)

and U(T + t0, t0) have the same eigenvalues. This is be-
cause the periodicity of the Hamiltonian, H(t + T ) = H(t),
implies that U(T, 0) and U(T + t0, t0) are related to each
other by a unitary transformation. Namely, U(T + t0, t0) =
U(T + t0, T )U(T, 0)U(0, t0) = [U(0, t0)]−1U(T, 0)U(0, t0)
since U(T + t0, T ) = U(t0, 0) = [U(0, t0)]−1. Note that the
eigenstates of U(T, 0) and U(T + t0, t0) differ by a unitary
transformation given by U(t0, 0).
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Appendix B: Floquet-Magnus expansion

In this Appendix, we will use the Floquet-Magnus expan-
sion in the high-frequency limit ω → ∞ to find the effective
Hamiltonian Heff for some of our models. Given the form
of the time-periodic Hamiltonian in Eq. (A3), the effective
Hamiltonian is given, up to order 1/ω, by55,56

Heff = H0 +
∑
p 6=0

1

2pω
[H−p, Hp] +

∑
p 6=0

1

pω
[Hp, H0].

(B1)
We now evaluate the expression in Eq. (B1) for the Hamil-

tonian given in Eq. (4) for a semi-infinite chain in which the
site label goes from n = 0 to ∞; we do this to study the
structure of the effective Hamiltonian near the left end of the
system assuming that the right end is infinitely far away. We
use the identity66

e
ia
ω sin(ωt) =

∞∑
p=−∞

Jp

( a
ω

)
eipωt. (B2)

Using the Bessel function identities J−p(z) = Jp(−z) =
(−1)pJp(z) for all integers p, we find from Eqs. (4), (A3)
and (B2) that

Hp = − g (−1)pJp

( a
ω

) ∞∑
n=0

(c†ncn+1 + (−1)pc†n+1cn).

(B3)
It then follows that

H0 = − g J0

( a
ω

) ∞∑
n=0

(c†ncn+1 + c†n+1cn), (B4)

[Hp, H0] = − 2g2 J0

( a
ω

)
Jp

( a
ω

)
c†0c0 if p is odd,

= 0 if p is even, (B5)

and [Hp, H−p] = 0. Equation (B1) therefore gives

Heff = − g J0

( a
ω

) ∞∑
n=0

(c†ncn+1 + c†n+1cn)

− 4g2

ω
J0

( a
ω

)( ∑
p=1,3,5,···

Jp
(
a
ω

)
p

)
c†0c0,

(B6)

up to order 1/ω. This is a tight-binding model in which the
nearest-neighbor hopping amplitude is−gJ0(a/ω) (instead of
the original value of−g) and there is a potential at the leftmost
site n = 0. We note here that for a chain which is infinitely
long in both directions, the effective Hamiltonian is simply
given by

Heff = − g J0

( a
ω

) ∞∑
n=−∞

(c†ncn+1 + c†n+1cn) (B7)

to all orders in 1/ω. (The energy-momentum dispersion is
therefore Ek = −2gJ0(a/ω) cos k). The potential at n = 0
in Eq. (B6) appears only because the chain ends at that site.

We emphasize that the expression given in Eq. (B6) is only
valid in the high-frequency limit, and is therefore not directly
applicable to the numerical results reported in the earlier sec-
tions where ω is of the same order as the other parameters of
the system such as g and v. However, Eq. (B6) demonstrates
an interesting qualitative effect that arises when a system ends
at one site, namely, the driving gives rise to a potential at that
site. It would therefore be interesting to study the effect of
such a potential in a time-independent system to gain some
understanding of the conditions under which such a potential
can host an edge state.

Appendix C: Edge states for a static system with an edge
potential

Motivated by the results in Appendix B, we will now study
whether a semi-infinite chain with a time-independent Hamil-
tonian with a potential at the leftmost site can host an edge
state localized near that site. We will then look at the effect
that the addition of a staggered potential can have. These are
interesting problems in themselves, quite apart from the fact
that they can give us some understanding of why edge states
can appear in a periodically driven system.

We will now study two time-independent models on a semi-
infinite system in which the site labels go from n = 0 to∞. In
each case, we will study if there are eigenstates of the Hamil-
tonian which are localized near n = 0.
(i) A non-interacting tight-binding model with a potential at
the leftmost site and a staggered on-site potential. The Hamil-
tonian is

H = − g
∞∑
n=0

(c†ncn+1 + c†n+1cn) + v

∞∑
n=0

(−1)n c†ncn

+ A c†0c0, (C1)

and we will look for a single-particle eigenstate localized near
n = 0.
(ii) A tight-binding Bose-Hubbard model with a potential at
the leftmost site and an on-site interaction. The Hamiltonian
is

H = − g
∞∑
n=0

(b†nbn+1 + b†n+1bn) +
u

2

∞∑
n=0

ρn(ρn − 1)

+ A b†0b0, (C2)

with ρn = b†nbn, and we will look for a two-particle bound
state localized near n = 0.

In the models described by Eqs. (C1) and (C2) respec-
tively, we will numerically find the regions of parameter
space (v,A) and (u,A) where single-particle and two-particle
bound states exist near n = 0. For the non-interacting model,
we will provide an analytical derivation of the results using
the Lippmann-Schwinger method.
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1. Non-interacting model with a staggered potential

To numerically find edge states as a function of the parame-
ters (v,A), we consider a 100-site system and look at the two
states with the largest values of the IPR. The probabilities of
the two states at the leftmost site, |ψ(0)|2, are plotted versus
(v,A) in Figs. 21 (a) and (b). A large value of the probability
corresponds to an edge state localized near n = 0. We find
that this model can have zero, one, or two edge states as we
vary (v,A). One edge state exists for a large range of values
of (v,A) as we see in Fig. 21 (a) while a second edge state ex-
ists for a smaller range of (v,A) as shown in Fig. 21 (b). The
two figures have the symmetry that they look the same under
the inversion (v,A)→ (−v,−A). This is because the Hamil-
tonian in Eq. (C1) changes sign if we flip the signs of v and A
and transform cn → (−1)ncn. Thus if there is a bound state
with energy E and wave function ψ(n) for parameters (v,A),
there will be a bound state with energy−E and wave function
(−1)nψ(n) for parameters (−v,−A); the probability |ψ(0)|2
remains the same under this transformation.

We will now show that the regions of bound states (light
regions) in Figs. 21 (a) and (b) can be analytically under-
stood using the Lippmann-Schwinger method. The analy-
sis proceeds as follows. We consider the Hamiltonian H in
Eq. (C1) for a semi-infinite system. This can be written as a
sum H = H0 + V , where

H0 = − g
∞∑
n=0

(c†ncn+1 + c†n+1cn) + v

∞∑
n=0

(−1)n c†ncn,

V = A c†0c0. (C3)

We now write the equation H|ψ〉 = (H0 + V )|ψ〉 in the form

|ψ〉 =
1

E I − H0
V |ψ〉. (C4)

Working in the basis of states |n〉, where n = 0, 1, 2, · · · , we
can use the resolution of identity, I =

∑∞
n=0 |n〉〈n|, to write

V |ψ〉 =

∞∑
n=0

|n〉〈n|ψ〉

= A|0〉〈0|ψ〉. (C5)

Combining Eqs. (C4-C5), we obtain

〈0|ψ〉 = A 〈0| 1

E I − H0
|0〉〈0|ψ〉. (C6)

Assuming that we are looking for a state for which ψ(0) =
〈0|ψ〉 is non-zero, Eq. (C6) implies that

1

A
= 〈0| 1

E I − H0
|0〉. (C7)
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FIG. 21: Probabilities |ψ(0)|2 of the states with the largest
two IPR values at the left edge of a 100-site system versus
(v,A). The probability is larger in the lighter colored regions.
Plot (a) shows that one edge state exists for a large range of
parameters values, while plot (b) shows that a second edge
state exists in some smaller regions of parameters. We have
set g = 1.

We will now evaluate the right-hand side of Eq. (C7) by
using the resolution of identity written in terms of the basis
of eigenstates of H0. Since H0 has a staggered potential, its
unit cell has two sites which we will call (a, b). The sites
which were earlier labeled as n = 0, 1, 2, · · · will now denote
(a, n/2) if n is even and (b, (n − 1)/2) if n is odd. We can
then write

H0 =

∞∑
m=0

[(a†mbm + b†mam + b†mam+1 + a†m+1bm)

+ v (a†mam − b†mbm)]. (C8)

We can find the eigenvalues and eigenstates of this Hamilto-
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nian as follows. If the sum over m went from −∞ to ∞,
we could use translation invariance and find that the energy
eigenvalues are given by

Ek,± = ±
√

4g2 cos2 k + v2, (C9)

where ± denote the positive and negative energy bands re-
spectively, the eigenstates have the plane wave form

ψ(a,m, k,±) = αk,± e
ikm,

ψ(b,m, k,±) = βk,± e
ikm, (C10)

where

αk,± = − 2g cos k√
(Ek,± − v)2 + 4g2 cos2 k

,

βk,± =
Ek,± − v√

(Ek,± − v)2 + 4g2 cos2 k
, (C11)

and the momentum k lies in the range [−π/2, π/2] since the
unit cell spacing is equal to 2 in terms of the original lattice
spacing. Now, since our system ends on the left at the site
(a, 0), we can find its eigenstates by appropriately superpos-
ing the momentum eigenstates corresponding to ±k in such
a way that the wave function vanishes at the ‘phantom’ sites
given by (a,m = −1) and (b,m = −1). Noting that the ex-
pressions in Eqs. (C11) are even functions of k, we then find
that the eigenstates of the semi-infinite chain are given by

ψ(a,m, k,±) =
√

2 αk,± sin(k(m+ 1)),

ψ(b,m, k,±) =
√

2 βk,± sin(k(m+ 1)), (C12)

where the
√

2 has been put in to ensure orthonormality, and k
now lies in the range [0, π/2]. The wave function for the state
|k,±〉 at the leftmost site, (a,m = 0), is therefore given by√

2αk,± sin k.

We can now use the above eigenstates |k,±〉 to write the
resolution of identity:∫ π/2

0

dk

π/2
(|k,+〉〈k,+| + |k,−〉〈k,−|) = I. (C13)

Using this in Eq. (C7), we obtain

1

A
=

∫ π/2

0

dk

π/2
[〈0| 1

E I − H0
|k,+〉〈k,+|0〉

+ 〈0| 1

E I − H0
|k,−〉〈k,−|0〉]

=

∫ π/2

0

dk

π/2
2 sin2 k

[
|αk,+|2

E − Ek,+
+

|αk,−|2

E − Ek,−

]
.

(C14)

(The above equation is only valid for E lying outside the en-
ergy bands Ek,±, otherwise the denominators can vanish and
we would have to evaluate the integral more carefully). Sub-
stituting the expression for αk,± in Eq. (C11) in Eq. (C14),

we obtain

1

A
=

∫ π/2

0

dk

π
16g2 sin2 k cos2 k

× [
1

(E − Ek,+) [(Ek,+ − v)2 + 4g2 cos2 k]

+
1

(E − Ek,−) [(Ek,− − v)2 + 4g2 cos2 k]
].

(C15)

Now, if an edge state exists, its energy E must lie either
above the upper band (E >

√
4g2 + v2), or below the lower

band (E < −
√

4g2 + v2), or in the gap between the two
bands (−v < E < v). In the first two cases, the integral
in Eq. (C15) gives the result

A =
E2 − v2 +

√
(E2 − v2)(E2 − 4g2 − v2)

2(E + v)
.

(C16)
In the third case, Eq. (C15) gives

A = −
v2 − E2 +

√
(v2 − E2)(4g2 + v2 − E2)

2(v + E)
.

(C17)
Equations (C16) and (C17) implicitly give the energy E of
an edge state in terms of g, v, and A. We find that these give
certain conditions on the allowed values ofA for a given value
of (g, v).

(i) E < −
√

4g2 + v2 implies that we must have A < A1,
where

A1 =
2g2

v −
√
v2 + 4g2

. (C18)

(ii) E >
√

4g2 + v2 implies that A > A2, where

A2 =
2g2

v +
√
v2 + 4g2

. (C19)

(iii) −v < E < v implies that if v > 0, we must have A < 0,
while if v < 0, we must have A > 0. Namely, we must have

Av < 0. (C20)

The regions described by Eqs. (C18-C20) are shown in
Fig. 22. We see that these agree well with the regions of bound
states (light regions) shown in Figs. 21 (a) and (b). In particu-
lar, they correctly tell us that there are two bound states in the
regions shown in Fig. 21 (b).
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FIG. 22: Three colors showing regions of A as a function of v
where edge states exist. The regions where two colors overlap
have two edge states. We have taken g = 1.

As a special case of the above results, it is interesting to
consider what happens if we set v = 0; this will also be useful
for the next section. Namely, we only have a potentialA at the
site n = 0. Equations (C18-C19) then imply that there will
be a bound state if either A < −g or A > g. The bound state
energy and wave function can be derived easily. For A < −g,
we find that the wave function and energy are given by

ψ(n) = e−κn, where n ≥ 0,

E = −2g coshκ, and eκ = − A

g
, (C21)

where κ > 0. For A > g, we have

ψ(n) = (−1)n e−κn,

E = 2g coshκ, and eκ =
A

g
. (C22)

For v = 0, we have seen above that the condition |A| > |g|
is required in order to have an edge state. We can now under-
stand why there are no edge states in the periodically driven
system if ω is very large. Equation (B6) shows that the effec-
tive hopping is−gJ0(a/ω), and the effective edge potential is
given by −(4g2/ω)J0(a/ω)

∑
p=1,3,5,··· Jp(a/ω)/p. Clearly,

when ω becomes sufficiently large, the effective edge poten-
tial will become smaller in magnitude than the effective hop-
ping, and there will not be any edge states.

2. Bose-Hubbard model

For the Bose-Hubbard model with an edge potential as de-
scribed in Eq. (C2), we consider a 25-site system with two
bosons and numerically find the probability of the two parti-
cles to be at the edge, |ψ(0, 0)|2, as a function of the parame-
ters (u,A). The results are shown in Figs. 23 (a) and (b) for

the states with the largest two IPR values. Just as in Fig. 21,
there can be zero, one or two two-particle bound states which
are localized near the leftmost site of the system.
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FIG. 23: Probabilities |ψ(0, 0)|2 of the two highest IPR states
at the left edge of a 25-site system plotted versus (u,A). The
probability is higher in the lighter colored regions. Plot (a)
shows that one edge state exists for a large range of parameter
values, while plot (b) shows that a second edge state exists in
some smaller regions of parameters. We have set g = 1.

We can understand the existence of a two-particle bound
state localized near n = 0 using a perturbative argument in
the limit |u| � |g|, |A|. To see this, we write the Hamiltonian
in Eq. (C2) in the form H = H0 + V , where

H0 =
u

2

∞∑
n=0

ρn(ρn − 1) + A b†0b0,

V = − g
∞∑
n=0

(b†nbn+1 + b†n+1bn). (C23)

We now consider a system with two particles. The eigenstates
of H0 are of the following kinds. States where there is no
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particle at n = 0 and no site has more than one particle (all
these states have zero energy), there is one particle at n = 0
and the other particle is at some other site (these states have
energy A), the two particles are at the same site which is not
at n = 0 (these have energy u), and both the particles are at
n = 0 (this state has energy u + 2A). We will now work
within the space of states where the two particles are at the
same site (which may or may not by n = 0) and derive an
effective Hamiltonian within this space to second order in g
(i.e., the perturbation V in Eq. (C23)).

Starting with an initial state |n, n〉 (where n = 0, 1, 2, · · · ),
the hopping can take us to a final state |n + 1, n + 1〉 (or
|n − 1, n − 1〉) through the intermediate state |n, n + 1〉 (or
|n − 1, n〉 respectively). The matrix element connecting the
initial or final state to the intermediate state is −g

√
2. The

energy denominator, given by the difference of the initial and
intermediate state energies, is given by u (if n = 0, the energy
denominator is u+2A, but we can approximate this by u since
we are assuming that |u| � |A|). The hopping can also take
us from a state |n, n〉 back to the same state |n, n〉 in two ways
(through the intermediate states (|n, n + 1〉 and |n − 1, n〉)
if n ≥ 1 but in only one way (through the intermediate state
|0, 1〉) if n = 0. Putting all this together and using the notation
|n〉 to denote the state in which both particles are at site n and
dn and d†n as the annihilation and creation operator for two
particles at site n, we see that the effective Hamiltonian in this
space is given by

Heff =
2g2

u

∞∑
n=0

(d†ndn+1 + d†n+1dn)

+(u+ 2A+
2g2

u
) d†0d0 + (u+

4g2

u
)

∞∑
n=1

d†ndn.

(C24)

We see that this Hamiltonian has a single particle (which is

actually a pair of bosons) hopping amplitude given by 2g2/u,
a chemical potential u + 4g2/u at all sites, and a potential
2A − 2g2/u at the site n = 0. We now see that if u > 0,
the result for a single particle with an edge potential discussed
at the end of the previous section implies that there will be
a bound state localized near n = 0 if either 2A − 2g2/u <
−2g2/u or 2A− 2g2/u > 2g2/u, i.e., if

either A < 0 or A >
2g2

u
. (C25)

If u < 0, these conditions change to 2A− 2g2/u < 2g2/u or
2A− 2g2/u > −2g2/u, i.e.,

either A <
2g2

u
or A > 0. (C26)

We see that Eqs. (C25) and (C26)) correctly describe the re-
gions of bound states in Fig. 23 (a) for u > 0 and u < 0
respectively, when |A| � |u|.

When |u|, |A| � |g|, but |u| and |A| are of the same order,
the perturbation theory described above breaks down. How-
ever, we can understand why there are no two-particle bound
states localized near n = 0 close to the line u+ A = 0 as we
see in Fig. 23 (a). Ignoring the hopping g entirely, we know
that the state where both particles are at n = 0 has energy
u + 2A while all the states where one particle is at n = 0
and the other particle is at any other state have energy A. If
these two states have the same energy, and a small hopping g
is turned on, the state with two particles at n = 0 will mix with
the states where one particle remains at n = 0 and the other
particle escapes far away from there. Hence we no longer
have a two-particle bound state localized near n = 0 as an
eigenstate of the Hamiltonian.

The above arguments do not explain the existence of a sec-
ond bound state that we see in Fig. 23 (b) in some small re-
gions in the parameter space.
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