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Abstract

In this paper we look for minimizers of the energy functional for isotropic com-

pressible elasticity taking into consideration the effect of a gravitational field in-

duced by the body itself. We consider the displacement problem in which the outer

boundary of the body is subjected to a Dirichlet type boundary condition. For a

spherically symmetric body occupying the unit ball B ∈ R
3, the minimization is

done within the class of radially symmetric deformations. We give conditions for

the existence of such minimizers, for satisfaction of the Euler–Lagrange equations,

and show that for large displacements the minimizer must develop a cavity at the

centre. A numerical scheme for approximating these minimizers is given together

with some simulations that show the dependence of the cavity radius and minimum

energy on the displacement and mass density of the body.
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1 Introduction

The study of the shape of self gravitating bodies is extensive and dates back to the time
of Newton itself. It is well known that depending on the density of a dying star, there
are several possibilities for the resulting object: white dwarf, neutron star, black hole,
etc. The case of a black hole forming is also referred to as gravitational collapse. The
literature on these phenomena is extensive and we refer to [6] and [7] for a historical
account.
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†masjs@bath.ac.uk
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In this paper we consider the problem of a self gravitating spherical body. Apart
from its apparent “simplicity”, this problem plays an important role on the study of the
more complex phenomena described above. The proposed variational model combines
both mechanical and gravitational responses, the mechanical part based on a model from
nonlinear elasticity which allows for the characterization of large deformations. Under
certain mathematically physical conditions, the extrema of the corresponding energy
functional, can be characterized via the Euler–Lagrange equations. This combined model
has been used by [5], [6] and [7] among others. In [5] the existence of solutions to
the Euler–Lagrange equations, with a zero dead load boundary condition on the outer
boundary of the body, is established via the implicit function theorem and is valid for
“small bodies” of arbitrary shape.

The work in [7] is for spherically symmetric deformations with a zero dead load
boundary on the outer boundary condition as well, and combines asymptotic analysis
with numerics to get results for varying densities and reference configuration body radius.
They used a stored energy function of the form

W (F) =
µ

2

(

‖F‖2 − 3− 2fα(detF)
)

+
β

2
(detF− 1)2 , (1)

where α ≥ 0, β and µ are positive constants, and fα(d) = ln(d) − αd−α(d − 1)4. This
material corresponds to a “soft” compressible material for α = 0 or small, and to a
“strong” compressible material otherwise. For constant reference configuration density
ρ0, the authors in [7] show numerically that for α small there exists a critical density
ρ∗0 such that if ρ0 ≤ ρ∗0, then the Euler–Lagrange equations (cf. (22)) can have multiple
solutions, most of them unstable, while if ρ0 > ρ∗0, then there are no solutions which
could be interpreted as gravitational collapse. Moreover for α large, there are solutions
for all densities ρ0, which appear to be unique.

By adapting the techniques in [1] for polyconvex stored energy functions, the au-
thors in [6] show the existence of minimizers for the resulting energy functional, now
for large deformations and arbitrary bodies, and for both, zero dead load and displace-
ment boundary conditions. The stored energy functions used in [6] could be classified as
corresponding to “strong” compressible materials (cf. eqns. (13) and (14) in [6]).

In this paper we look for minimizers of the energy functional for isotropic compressible
elasticity and taking into consideration the effect of a gravitational field induced by the
body itself. We consider the displacement problem in which the outer boundary of the
body is subjected to a Dirichlet type boundary condition. For a spherically symmetric
body occupying the unit ball B ∈ R

3 and with radially symmetric mass density, the
minimization is done within the class of radially symmetric deformations. Contrary to
previous works, the deformations we consider belong to W 1,p(B) with p < 3, and thus
may develop singularities. For the particular case of radially symmetric deformations,
we study the occurrence or initiation of a cavitation at the centre of the ball and its
dependence on the boundary displacement and gravitational related constants.

In Section 2 we introduce the basic model, with energy functional and admissible
function space, for radial deformations (cf. (7)) of a spherically symmetric body. These
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deformations are characterized by a function r : [0, 1] → [0,∞), the Dirichlet boundary
condition taking the form r(1) = λ. After this we show in Section 3 that under certain
growth conditions on the stored energy function (cf. (16) with H1–H3) and for any
reference configuration density function ρ0 that is bounded, nonnegative and bounded
away from zero, a minimizer of the energy functional (9)–(11) exists over the admissible
set (15). Under the additional constitutive assumption (21), these minimizers satisfy the
Euler–Lagrange equations (22) where either r(0) = 0 or r(0) > 0 (cavitation) with zero
Cauchy stress at the origin (cf. (24)). In Section 4 we show that for λ sufficiently large,
these minimizers must satisfy r(0) > 0. This result is an adaptation to the problem with
self gravity of a similar result in [10] for compressible inhomogeneous materials.

In Section 5 we collect several results for λ small where the minimizers must have the
centre intact. In addition we show in Theorem 5.3 that any minimizer which leaves the
centre intact must have strains at the origin less than the critical boundary displacement
corresponding to an isotropic material made of the material at the centre of the original
body. Once again this result is an adaptation to the problem with self gravity of a similar
result in [10] for compressible inhomogeneous materials.

Finally in Section 6 we present a numerical scheme for the computation of the min-
imizers of our energy functional. This method is based on a combination of a gradient
flow iteration which works as a predictor, together with a shooting method to solve the
EL-equations, that works as a corrector. For constant reference configuration densities we
present several simulations that show the dependence of the cavity radius and minimum
energy on the displacement λ and density ρ0.

2 Problem formulation

Consider a body which in its reference configuration occupies the region

B = {x ∈ R
3 | ‖x‖ < 1}, (2)

where ‖·‖ denotes the Euclidean norm. Let u : B → R
3 denote a deformation of the

body and let its deformation gradient be

∇u(x) =
du

dx
(x). (3)

For smooth deformations, the requirement that u(x) is locally invertible and preserves
orientation takes the form

det∇u(x) > 0, x ∈ B. (4)

Let W : M3×3
+ → R be the stored energy function of the material of the body where

M3×3
+ = {F ∈ M3×3 | detF > 0} and M3×3 denotes the space of real 3 by 3 matrices.

Since we are interested in modelling large deformations, we assume that the stored energy
function W satisfies that W → ∞ as either detF → 0+ or ‖F‖ → ∞.
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We consider the problem of determining the equilibrium configuration of the body
that satisfies (4) a.e., and satisfying the boundary condition:

u(x) = λx, x ∈ ∂B, (5)

where λ > 0 is given.
We assume that the stored energy function, in units of energy per unit volume, de-

scribing the mechanical response of the body is given by

W (x,F) = Φ(x, v1, v2, v3), F ∈M3×3
+ , x ∈ B, (6)

for some function Φ : B × R
3
+ → R+ symmetric in its last three arguments, and where

v1, v2, v3 are the eigenvalues of (FtF)1/2 known as the principal stretches. Note that
for any fixed x, the material response W (x, ·) corresponds to an isotropic and frame
indifferent material.

We now restrict attention to the special case in which the deformation u(·) is radially
symmetric, so that

u(x) = r(R)
x

R
, x ∈ B, (7)

for some scalar function r(·), where R = ‖x‖. In this case one can easily check that

v1 = r′(R), v2 = v3 =
r(R)

R
. (8)

Assuming that the dependence of Φ on x in (6) is only on R = ‖x‖, the total stored
energy functional, due to internal mechanical and gravitational forces (see [6]), is given
by (up to a multiplicative constant of 4π):

I(r) = Imec(r)− Ipot(r), (9)

where

Imec(r) =

∫ 1

0

Φ

(

R, r′(R),
r(R)

R
,
r(R)

R

)

R2 dR, (10)

Ipot(r) =

∫ 1

0

ρ0(R)
MR

r(R)
R2 dR, (11)

are the mechanical and potential energy functionals respectively. Here ρ0 is the mass
density of the body (mass per unit volume) in the reference configuration, and

MR = 4π

∫ R

0

ρ0(u)u
2 du,

is the mass of the ball in the reference configuration of radius R and centered at the
origin. We assume that

k0 ≤ ρ0(R) ≤ k1, 0 ≤ R ≤ 1, (12)
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for some positive constants k0 and k1.
In accord with (4) we have the inequalities

r′(R),
r(R)

R
> 0, 0 < R < 1, (13)

and (5) reduces to:
r(1) = λ. (14)

Our problem now is to minimize the functional I(·) over the set

Aλ =
{

r ∈ W 1,1(0, 1) | r(1) = λ, r′(R) > 0 a.e. for R ∈ (0, 1),

r(0) ≥ 0, Imec(r) <∞
}

. (15)

Note that Aλ 6= ∅ as rλ ∈ Aλ where rλ(R) = λR.

3 Existence of minimizers

In this section we show that the functional I(·) in (9) has a minimizer over the set Aλ in
(15). The proofs of the results in this section are adaptations of the corresponding ones
in [2] due to the presence of the potential energy functional (11). We do emphasize that
they are not direct consequence of those in [6] as these are for maps in Sobolev spaces
W 1,p with p > 3 and thus they represent continuous deformations.

Throughout this section and the rest of the paper we assume that the stored energy
function Φ in (10) satisfies that

Φ(R, v1, v2, v3) ≥ φ(v1) + φ(v2) + φ(v3) + h(v1v2v3), R ∈ [0, 1], (16)

where φ, h : (0,∞) → (0,∞) are strictly convex and such that

H1: φ(v) ≥ Cvγ for some positive constant C and 1 < γ < 3;

H2:
h(d)

d
→ ∞, as d→ ∞;

H3: h(d) ≥ Kd−s, d > 0, for some positive constant K and s ≥ γ∗ = γ
γ−1

.

If we let

δr(R) = r′(R)

(

r(R)

R

)2

,

then the specialization of [6, Eqn. (31)] to the radial map (7) together with (12) gives
that

∣

∣

∣

∣

∫ 1

0

ρ0(R)
MR

r(R)
R2 dR

∣

∣

∣

∣

≤ C

(
∫ 1

0

δr(R)
−sR2 dR

)

1

3s

, (17)

for some positive constant C independent of r ∈ Aλ. Using this we now have the
following:

5



Lemma 3.1. Under the growth assumption (16) with H3, the functional I(·) is bounded
below on Aλ.

Proof : Combining (12), (16) with H3, and (17) we get for some positive constants K1, K2

that

I(r) ≥ K1

∫ 1

0

δr(R)
−sR2 dR−K2

(
∫ 1

0

δr(R)
−sR2 dR

)

1

3s

,

for all r ∈ Aλ. Since the function g(x) = K1x −K2x
1

3s is bounded below for x ≥ 0, the
result follows.

Using this we can now establish the existence of minimizers for I over Aλ.

Theorem 3.2. Let the stored energy function Φ in (10) satisfy (16) with H1–H3. Then
there exists rλ ∈ Aλ such that

I(rλ) = inf
r∈Aλ

I(r).

Proof : Since Aλ 6= ∅, it follows from Lemma 3.1 that infr∈Aλ
I(r) ∈ R. Let (rj) with

rj ∈ Aλ for all j, be an infimizing sequence, i.e.,

inf
r∈Aλ

I(r) = lim
j→∞

I(rj).

Since (I(rj)) is bounded, it follows from the proof of Lemma 3.1 that the sequence

(

K1

∫ 1

0

δrj(R)
−sR2 dR −K2

(
∫ 1

0

δrj (R)
−sR2 dR

)

1

3s

)

, (18)

is bounded. Hence the sequence
(
∫ 1

0

δrj(R)
−sR2 dR

)

,

must be bounded as well, and thus from (17) that (Ipot(rj)) is bounded. From this and

the boundedness of (I(rj)), we get that (Imec(rj)) is bounded.
From the boundedness of (Imec(rj)) and (16), we get that

(
∫ 1

0

h(δrj (R))R
2 dR

)

,

is bounded. Let ρ = R3 and uj(ρ) = r3j (ρ
1/3). It follows now that

u̇j(ρ) =
duj
dρ

(ρ) = δrj (ρ
1/3),

and that the sequence
(
∫ 1

0

h(u̇j(ρ)) dρ

)

,
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is bounded. It follows now from H1 and De La Vallée–Poussin Criterion that for some
subsequence (u̇k) of (u̇j), we have u̇k ⇀ w in L1(0, 1) for some w ∈ L1(0, 1), and that
(u̇j) is equi–integrable. Using H3 is easy to show that w > 0 a.e. Letting

u(ρ) = λ3 −
∫ 1

ρ

w(s) ds,

we get from the equi–integrability of (u̇j) that uk → u in C[0, 1]. Thus rk → rλ in C[0, 1]
where rλ(R) = u(R3)1/3. From these we can conclude rk ⇀ rλ in W 1,1(ε, 1) and that
δrj ⇀ δrλ in L1(ε, 1) for any ε ∈ (0, 1). By the weak lower semi–continuity properties of
Imec(·) (cf. [3]), we get that

∫ 1

ε

Φ

[

R, r′λ(R),
rλ(R)

R
,
rλ(R)

R

]

R2 dR ≤ lim inf
k

∫ 1

ε

Φ

[

R, r′k(R),
rk(R)

R
,
rk(R)

R

]

R2 dR,

≤ lim inf
k

Imec(rk) <∞.

We get now from the Monotone Convergence Theorem and the arbitrariness of ε that

Imec(rλ) ≤ lim inf
k

Imec(rk). (19)

This together with the facts that rλ(0) ≥ 0, r′λ(R) ≥ 0 a.e., and rλ(1) = λ, show that
rλ ∈ Aλ.

To get that rλ is a minimizer of I over Aλ, we must still have to deal with the
potentials (Ipot(rk)). First note that

∣

∣

∣
Ipot(rk)− Ipot(rλ)

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

ρ0(R)MRR
2

rk(R)rλ(R)
(rλ(R)− rk(R)) dR

∣

∣

∣

∣

,

≤ ‖rλ − rk‖C[0,1]

[
∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR

]

1

2
[
∫ 1

0

ρ0(R)MRR
2

r2λ(R)
dR

]

1

2

, (20)

where in the last step we used a weighted Holder’s inequality with weight ρ0(R)MRR
2.

We now show that each of the two integrals on the right hand side of this inequality are
bounded. Upon recalling (12), we can take MR ≤ CR2 for some constant C. Hence

∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR ≤ (const)

∫ 1

0

R4

r2k(R)
dR = (const)

∫ 1

0

R2

δrk(R)
r′k(R)dR,

≤ (const)

[
∫ 1

0

R2

δrk(R)
γ∗
dR

]

1

γ∗
[
∫ 1

0

R2(r′k(R))
γdR

]

1

γ

.

However by the weighted Holder’s inequality (with weight R2),

[
∫ 1

0

R2

δrk(R)
γ∗
dR

]

1

γ∗

≤ (const)

[
∫ 1

0

R2

δrk(R)
s
dR

]

1

s

,
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with the sequence on the right hand side bounded. From (16) and H1 it follows that

∫ 1

0

R2(r′k(R))
γdR ≤

∫ 1

0

R2φ(r′k(R)) dR ≤ Imec(rk),

with the sequence on the right hand side bounded. Combining these results we can
conclude that the sequence

(
∫ 1

0

ρ0(R)MRR
2

r2k(R)
dR

)

,

is bounded. Combining this with (20) we get that

∣

∣

∣
Ipot(rk)− Ipot(rλ)

∣

∣

∣
≤ (const) ‖rλ − rk‖C[0,1] → 0,

as k → ∞, which together with (19) imply that

I(rλ) ≤ lim inf
k

I(rk) = inf
r∈Aλ

I(r),

i.e., that rλ is a minimizer.

For our next result we shall need the following assumption: there exist constants
M, ε0 ∈ (0,∞) such that (cf. [4])

∣

∣

∣

∣

∂Φ

∂vk
(R, α1v1, α2v2, α3v3)vk

∣

∣

∣

∣

≤M [Φ(R, v1, v2, v3) + 1] , (21)

for all R ∈ [0, 1], k = 1, 2, 3, and |αi − 1| < ε0 for i = 1, 2, 3. The techniques in [2] can
now be adapted to show the following result.

Theorem 3.3. Let r be any minimizer of I over Aλ. Assume that the function Φ satisfies
(21). Then r ∈ C1(0, 1], r′(R) > 0 for all R ∈ (0, 1], Rn−1Φ1(R, r(R)) is C

1(0, 1], and

d

dR

[

R2Φ,1(R, r(R))
]

= 2RΦ,2(R, r(R)) +R2 ρ0(R)MR

r2(R)
, 0 < R < 1, (22)

subject to (14) and r(0) ≥ 0, where:

Φ,i(R, r(R)) =
∂Φ

∂vi

(

R, r′(R),
r(R)

R
,
r(R)

R

)

, i = 1, 2. (23)

Moreover, if r(0) > 0, then

lim
R→0+

R2Φ,1(R, r(R)) = 0. (24)
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The radial component of the Cauchy stress is given by

T (R, r(R)) =
R2

r2(R)
Φ,1(R, r(R)). (25)

Using (22) we now get that

dT

dR
(R, r(R)) = 2

R2

r3(R)

[

r(R)

R
Φ,2(R, r(R))− r′(R)Φ,1(R, r(R))

]

+R2 ρ0(R)MR

r4(R)
. (26)

By the Baker–Ericksen inequality, the right hand side of this equation is positive whenever
r′(R) < r(R)

R
.

The material of the body B is homogeneous if ρ0(R) is constant, still denoted by ρ0,
and

Φ(R, v1, v2, v3) = Φ̃(v1, v2, v3). (27)

In this case (22) reduces to

d

dR

[

R2Φ̃,1(r(R))
]

= 2RΦ̃,2(r(R)) +
4π

3
ρ20

R5

r2(R)
, 0 < R < 1, (28)

where now

Φ̃,i(r(R)) =
∂Φ̃

∂vi

(

r′(R),
r(R)

R
,
r(R)

R

)

, i = 1, 2. (29)

The radial component of the Cauchy stress is now given by

T̃ (r(R)) =
R2

r2(R)
Φ̃,1(r(R)). (30)

and (26) reduces to

dT̃

dR
(r(R)) = 2

R2

r3(R)

[

r(R)

R
Φ̃,2(r(R))− r′(R)Φ̃,1(r(R))

]

+
4π

3
ρ20

R5

r4(R)
. (31)

4 Cavitation

In this section we show that when λ is sufficiently large, the minimizer r of I(·) over Aλ

has to have r(0) > 0. The proof given here of this fact is an adaptation (to the problem
with self gravity) of the technique used in [10] to establish a similar fact for compressible
inhomogeneous materials.

We assume for some positive constants c0 and c1,

c0Φ̃(v1, v2, v3) ≤ Φ(R, v1, v2, v3) ≤ c1Φ̃(v1, v2, v3), (32)

for all R ∈ [0, 1] and where Φ̃ corresponds to an isotropic and frame indifferent material
that satisfies (16) with H1–H3. We further assume that:

9



H4: For any η > 1,
v2

(v3 − 1)2
Φ̃

(

1

v2
, v, v

)

∈ L1(η,∞).

Theorem 4.1. Let r be a minimizer of the functional (9) over (15) and assume that
(32) holds where Φ̃ satisfies (16) with H1–H4. Then for λ sufficiently large we must have
that r(0) > 0.

Proof : We consider an incompressible deformation given by

rinc(R) =
3
√
R3 + λ3 − 1.

It follows that rinc ∈ Aλ. If rλ is any minimizer of I(·) over Aλ, then

∆I = I(rinc)− I(rλ)

≤ c1k1

∫ 1

0

Φ̃(rinc(R))R
2 dR − c0k0

∫ 1

0

Φ̃(rλ(R))R
2 dR

−
∫ 1

0

ρ0(R)
MR

rinc(R)
R2 dR +

∫ 1

0

ρ0(R)
MR

rλ(R)
R2 dR.

By [9, Pro. 4.10] we have that for λ1 ≤ λ2

rλ1
(R) ≤ rλ2

(R), 0 ≤ R ≤ 1.

Hence for λ0 fixed, we get that for λ ≥ λ0,
∫ 1

0

ρ0(R)
MR

rλ(R)
R2 dR ≤

∫ 1

0

ρ0(R)
MR

rλ0
(R)

R2 dR.

It follows now that

∆I ≤ c1k1

∫ 1

0

Φ̃(rinc(R))R
2 dR− c0k0

∫ 1

0

Φ̃(rλ(R))R
2 dR

+

∫ 1

0

ρ0(R)
MR

rλ0
(R)

R2 dR.

If rλ(0) = 0, it follows (cf. [2]) that
∫ 1

0

Φ̃(rλ(R))R
2 dR ≥

∫ 1

0

Φ̃(rhom(R))R
2 dR,

where rhom(R) = λR. Hence

∆I ≤ c1k1

∫ 1

0

Φ̃(rinc(R))R
2 dR− c0k0

∫ 1

0

Φ̃(rhom(R))R
2 dR

+

∫ 1

0

ρ0(R)
MR

rλ0
(R)

R2 dR.

Since the third integral on the right hand side of this inequality is fixed, the result now
follows as in [10] using H2 and H4.
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5 No cavitation results

In this section we give conditions under which the minimizer of I(·) over Aλ for λ suffi-
ciently small. must satisfy that r(0) = 0.

We first consider the case of a homogeneous material for which (27) holds. The
functional I is now given by

I(r) =

∫ 1

0

[

Φ̃

(

r′(R),
r(R)

R
,
r(R)

R

)

− ρ0(R)
MR

r(R)

]

R2 dR (33)

We denote by λhc the critical boundary displacement for the cavitation problem considered
in [2] with stored energy function Φ̃.

Theorem 5.1. Let r be a minimizer of (33) over Aλ. If λ < λhc , then r(0) = 0.

Proof : To argue by contradiction, assume that r(0) > 0. For λ̂ = (λ+ λhc )/2, we let

R0 = inf
{

R | r(R) = λ̂R
}

.

Since λ < λhc and r(R)
R

→ ∞ as R → 0+, we get that R0 is well defined and R0 > 0. We
define

r̂(R) =

{

λ̂R , R ≤ R0,
r(R) , R > R0.

If follows that r̂ ∈ Aλ. Now

∆I = I(r)− I(r̂) =

∫ R0

0

[

Φ̃

(

r′(R),
r(R)

R
,
r(R)

R

)

− Φ̃
(

λ̂, λ̂, λ̂
)

]

R2 dR

+

∫ R0

0

ρ0(R)MR

[

1

r̂(R)
− 1

r(R)

]

R2 dR,

≥
∫ R0

0

[

Φ̃

(

r′(R),
r(R)

R
,
r(R)

R

)

− Φ̃
(

λ̂, λ̂, λ̂
)

]

R2 dR,

as r̂(R) ≤ r(R) for R ≤ R0. Since λ̂ < λhc and r(0) > 0, the results in [2] imply that

∫ R0

0

Φ̃

(

r′(R),
r(R)

R
,
r(R)

R

)

R2 dR >

∫ R0

0

Φ̃
(

λ̂, λ̂, λ̂
)

R2 dR,

and thus that ∆I > 0 which contradicts the minimality of r.

For the next result we take β ≡ 0 and γ ≡ 1 in (34). We let d0 be the value of the
argument at which h assumes its global minimum value. Note that h′(d) < 0 for d < d0.

Theorem 5.2. Let r be a minimizer of (9) over Aλ corresponding to the stored energy
function (34). Assume that α′(R) ≤ 0 for all R and that φ′(t) ≥ 0 for all t. Then if
λ3 < d0 we must have that r(0) = 0.

11



Proof : As in the proof of Theorem 5.1, we argue by contradiction. Thus we assume that

r(0) > 0 and let λ̂ = (λ+ d
1

3

0 )/2. Define R0 and r̂ as in the proof of Theorem 5.1. Then

∆I = I(r)− I(r̂) =

∫ R0

0

[

Φ

(

R, r′(R),
r(R)

R
,
r(R)

R

)

− Φ
(

R, λ̂, λ̂, λ̂
)

]

R2 dR

+

∫ R0

0

ρ0(R)MR

[

1

r̂(R)
− 1

r(R)

]

R2 dR,

≥
∫ R0

0

[

Φ

(

R, r′(R),
r(R)

R
,
r(R)

R

)

− Φ
(

R, λ̂, λ̂, λ̂
)

]

R2 dR,

as r̂(R) ≤ r(R) for R ≤ R0. Using the convexity of φ, ψ, and h in (34), we have now
that (see [2, Page 589]):

[

Φ
(

R, r′(R), r(R)
R
, r(R)

R

)

− Φ
(

R, λ̂, λ̂, λ̂
)]

R2 ≥

α(R)φ′(λ̂)
(

R2r′(R) + 2Rr(R)− 3λ̂R2
)

+ h′(λ̂3)
(

r2(R)r′(R)− λ̂3R2
)

,

= α(R)φ′(λ̂)(r(R)R2 − λ̂R3)′ + 1
3
h′(λ̂3)(r3(R)− λ̂3R3)′.

It follows now, after integrating by parts, that

∫ R0

0

[

Φ

(

R, r′(R),
r(R)

R
,
r(R)

R

)

− Φ
(

R, λ̂, λ̂, λ̂
)

]

R2 dR ≥

−φ′(λ̂)

∫ R0

0

α′(R)(r(R)R2 − λ̂R3) dR− 1

3
h′(λ̂3)r3(0) ≥ −1

3
h′(λ̂3)r3(0) > 0.

Thus ∆I > 0 which contradicts the minimality of r.

Our next results is for inhomogeneous materials of the form

Φ(R, v1, v2, v3) = α(R)
∑

i

φ(vi) + β(R)
∑

i<j

ψ(vivj) + γ(R)h(v1v2v3), (34)

where α, β, and γ are smooth positive functions over [0, 1], φ and ψ are nonegative convex
functions and with h strictly convex. In this case it easy to see that for some constant
C > 0,

∣

∣

∣

∣

∂Φ

∂R
(R, v1, v2, v3)

∣

∣

∣

∣

≤ C Φ̃(v1, v2, v3), (35)

where
Φ̃(v1, v2, v3) =

∑

i

φ(vi) +
∑

i<j

ψ(vivj) + h(v1v2v3). (36)

We now denote by λhc the critical boundary displacement corresponding to the stored
energy function Φ(0, v1, v2, v3). Note that any deformation with finite Φ(0, v1, v2, v3)

12



energy, has finite Φ̃ energy as well. The following result is reminiscent to [10, Proposition
12]. It shows that any minimizer which leaves the centre intact must have strains at the
origin less than λhc .

Theorem 5.3. Let r ∈ Aλ satisfy r(0) = 0 and that ℓ ∈ (0,∞] where

lim
R→0+

r′(R) = ℓ.

If ℓ > λhc , then r can not be a minimizer of I(·) over Aλ.

Proof : The following proof is similar to the one of [10, Proposition 12] except for the
treatment of the gravitational potential and the specific dependence on R of the stored
energy function.

Fro ε ∈ (0, 1) we let

λ(ε) =
r(ε)

ε
.

From the given hypotheses, it follows that

λ(ε) → ℓ, as ε→ 0+.

Assume for the moment that ℓ is finite, and let rc be a cavitating extrema corresponding
to Φ(0, v1, v2, v3). We define

rε(R) =

{

αεrc

(

R
αε

)

, R ∈ [0, ε],

r(R) , R ∈ (ε, 1],
(37)

where αε is such that αεrc(ε/αε) = λ(ε)ε. That αε exists follows from the fact that
λ(ε) > λhc for ε sufficiently small. Now

∆I = I(rε)− I(r)

=

∫ ε

0

R2

[

Φ

(

R, r′c(R/αε),
αεrc(R/αε)

R
,
αεrc(R/αε)

R

)

−Φ

(

R, r′(R),
r(R)

R
,
r(R)

R

)]

dR

−
∫ ε

0

ρ0(R)
MR

αεrc(R/αε)
R2 dR +

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR

With the change of variables R = εU with U ∈ [0, 1], we can write the above as

∆I = ε3
∫ 1

0

U2

[

Φ

(

εU, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

−Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)]

dU

13



−
∫ ε

0

ρ0(R)
MR

αεrc(R/αε)
R2 dR +

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR

We first examine the gravitational integrals. For this we use that ρ0(·) is nonnegative
and bounded above, and that MR is bounded by a constant times R3. Since

rc(ε/αε)

ε/αε
= λ(ε) → ℓ as ε→ 0+,

we get that
ε

αε

→ µ,

where µ > 0 and rc(µ)/µ = ℓ. Upon recalling that rc(S)
S

is a decreasing function of S, we
have that:

∫ ε

0

ρ0(R)
MR

αεrc(R/αε)
R2 dR = ε3

∫ 1

0

ρ0(εU)
MεU

αεrc(εU/αε)
U2 dU

≤ K1ε
5

∫ 1

0

U4

αεrc(ε/αε)/ε
dU ≤ Kε5

5ℓ
.

As r(0) = 0 and ℓ > 0, the function r(R)/R is positive and continuous in [0, 1]. Thus if
v0 is its minimum value, we have that for some positive constant L:

∫ ε

0

ρ0(R)
MR

r(R)
R2 dR = ε3

∫ 1

0

ρ0(εU)
MεU

r(εU)
U2 dU ≤ Mε5

5v0
.

Thus both gravitational potential terms go to zero faster than ε3.
We now examine the mechanical potential terms in ∆I. For this we note that

∫ 1

0

U2

[

Φ

(

εU, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

−Φ
(

εU, r′(εU), r(εU)
εU

, r(εU)
εU

)

]

dU =

∫ 1

0

U2

{[

Φ

(

εU, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

−Φ

(

0, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)]

+

[

Φ

(

0, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

−Φ(0, λ(ε), λ(ε), λ(ε))

]

+

[

Φ(0, λ(ε), λ(ε), λ(ε))− Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)]}

dU (38)
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From (35) and Taylor’s Theorem, we have that
∫ 1

0

U2

[

Φ

(

εU, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

−Φ

(

0, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)]

dU

≤ C1ε

∫ 1

0

U3Φ̃

(

r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

dU ≤ C2ε,

where we used that rc has finite Φ̃ energy. Thus the first bracketed term in (38) goes to

zero with ε. For the third term, we note that the functions r′(S) and r(S)
S

are C[0, 1] and
positive. Hence for some M > 0,

∣

∣

∣

∣

Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)
∣

∣

∣

∣

≤M, ∀U,

and since

Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)

→ Φ(0, ℓ, ℓ, ℓ),

pointwise, we get by the Lebesgue dominated convergence theorem that
∫ 1

0

U2Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)

dU →
∫ 1

0

U2Φ(0, ℓ, ℓ, ℓ) dU,

as ε→ 0+. This together with λ(ε) → ℓ yields that
∫ 1

0

U2

[

Φ(0, λ(ε), λ(ε), λ(ε))− Φ

(

εU, r′(εU),
r(εU)

εU
,
r(εU)

εU

)]

dU → 0,

as ε→ 0+. Thus the third term in (38) goes to zero with ε as well.
For the second term in (38), note that with the change of variables Z = (ε/αε)U , we

get
∫ 1

0

U2Φ

(

0, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)

dU =

(αε

ε

)3
∫ ε/αε

0

Z2Φ

(

0, r′c(Z),
rc(Z)

Z
,
rc(Z)

Z

)

dZ

→ 1

µ3

∫ µ

0

Z2Φ

(

0, r′c(Z),
rc(Z)

Z
,
rc(Z)

Z

)

dZ

=

∫ 1

0

U2Φ

(

0, r′c(µU),
rc(µU)

µU
,
rc(µU)

µU

)

dU.

It follows now that
∫ 1

0

U2

[

Φ

(

0, r′c(εU/αε),
αεrc(εU/αε)

εU
,
αεrc(εU/αε)

εU

)
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−Φ(0, λ(ε), λ(ε), λ(ε))

]

dR →
∫ 1

0

U2

[

Φ

(

0, r′c(µU),
rc(µU)

µU
,
rc(µU)

µU

)

− Φ(0, ℓ, ℓ, ℓ)

]

dR < 0,

where the last inequality follows since ℓ > λhc and r̃(U) = µ−1rc(µU) is the minimizer
for the functional with stored energy Φ(0, v1, v2, v3) and boundary condition r̃(1) = ℓ.
Collecting all of the intermediate results so far, we get that ε−3∆I < 0 for ε sufficiently
small, which contradicts the minimality of r.

The case ℓ = ∞, can be handled in a similar fashion using a suitable incompressible
deformation on [0, ε] in (37). See [10, Proposition 12] for details.

6 Numerical results

In this section we present some numerical results that confirm some of the results of
previous sections. We employ two numerical schemes: a descent method for the mini-
mization of (9) based on a gradient flow iteration; and a shooting method that solves
directly the Euler-Lagrange boundary value problem (14), (22), and (24). The use of
adaptive ode solvers in the shooting method allows for a more precise computation of
the equilibrium states, especially near R = 0 where both strains in our problem tend to
develop boundary layers. After the equilibrium is computed via the shooting method, it
is compared to the results of the descent iteration in order to get some assurance of its
minimizing character.

A gradient flow iteration (cf. [8]) assumes that r depends on a flow parameter t, and
that r(R, t) satisfies

d2

dR2
(rt(R, t)) = − d

dR

[

R2Φ,1(R, r(R, t))
]

+ 2RΦ,2(R, r(R, t)) (39)

+R2 ρ0(R)MR

r2(R, t)
, 0 < R < 1, t > 0,

r(1, t) = λ, lim
R→0+

[

d

dR
(rt(R, t)) +R2Φ,1(R, r(R, t))

]

= 0, t ≥ 0. (40)

(Here rt =
∂r
∂t
.) The gradient flow equation leads to a descent method for the minimization

of (9) over (15). After discretization of the partial derivative with respect to “t”, one can
use a finite element method to solve the resulting flow equation. In particular, if we let
∆t > 0 be given, and set ti+1 = ti +∆t where t0 = 0, we can approximate rt(R, ti) with:

zi(R) =
ri+1(R)− ri(R)

∆t
,

where ri(R) = r(R, ti), etc. (We take r0(R) to be some initial deformation satisfying the
boundary condition at R = 1 , e.g., λR.) Inserting this approximation into the weak
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form of (39), (40), and evaluating the right hand side of (39) at r = ri, we arrive at the
following iterative formula:

∫ 1

0

z′i(R)v
′(R) dR +

∫ 1

0

[

R2Φ,1(R, ri(R))v
′(R)

+

(

2RΦ,2(R, ri(R)) +R2 ρ0(R)MR

r2i (R)

)

v(R)
]

dR = 0, (41)

for all functions v such that v(1) = 0 and sufficiently smooth so that the integrals above
are well defined. Given ri, one can solve the above equation for zi via some finite element
scheme, and then set ri+1 = ri + ∆t zi. This process is repeated for i = 0, 1, . . ., until
ri+1 − ri is “small” enough, or some maximum value of “t” is reached, declaring the last
ri as an approximate minimizer of (9) over (15).

In the shooting method technique, for given ν > 0, we solve the initial value problem

d

dR

[

R2Φ,1(R, r(R))
]

= 2RΦ,2(R, r(R)) +R2 ρ0(R)MR

r2(R)
, 0 < R < 1, (42a)

r(1) = λ, r′(1) = ν, (42b)

from R = 1 to R = 0. The value of ν is adjusted so that

lim
R→0+

R2Φ,1

(

R, ν,
r(R)

R
,
r(R)

R

)

= 0. (43)

In actual calculations we solve (42) from R = 1 to R = ε, where ε > 0 is small, and
replace (43) with

Φ,1

(

ε, ν,
r(ε)

ε
,
r(ε)

ε

)

= 0. (44)

This equation is solved for ν via a secant type iteration which requires repeated solutions
of the initial value problem (42) from R = 1 to R = ε. These intermediate initial value
problems are solved with the routine ode45 of the MATLAB™ ode suite.

Our first set of simulations are for the homogeneous case (33) and for which the stored
energy function Φ̃ is given by

Φ̃(v1, v2, v3) =
κ

p
(vp1 + vp2 + vp3) + h(v1v2v3),

for which
h(d) = C dγ +Dd−δ,

where p < 3, C ≥ 0, D ≥ 0 and γ, δ > 0. The reference configuration is mechanically
stress free provided:

D =
κ + Cγ

δ
.
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The mass density function ρ0 is taken to be a constant. For the simulations we used the
following values of the mechanical parameters in Φ̃:

p = 2, κ = 1, C = 1, γ = δ = 2,

with a value of ε = 0.001 in (44) and in the shooting method. The gradient flow iteration
was used as a predictor for the shooting method, with the integrals in (41) computed
over (ε, 1) as well.

In our first simulation we show the approximate cavity radius as a function of ρ0
and λ, for values of ρ0 ∈ [0.5, 1.5] and λ ∈ [0.9, 1.2]. The resulting surface is shown in
Figure 1. We note that for fixed values of ρ0, the cavity size is essentially zero up to
some certain value of λ (the critical boundary displacement corresponding to ρ0), after
which the graph becomes concave. This critical boundary displacement appears to be an
increasing function of ρ0. In Figure 2 we show the corresponding surface for the energies
of the approximate minimizers. For fixed values of λ, the energy is an increasing function
of ρ0, while for ρ0 constant the energy is non monotone with respect to λ with a convex
shape.

Our next simulations are for fixed values of λ and ρ0. In the first case λ = 1 and ρ0 = 1.
In Figure 3 we show the computed minimizer r compared to the affine deformation λR.
The value of r(0.001) is 7.7078 × 10−4 with an energy of 0.49074. Figure 4 shows plots

of the strains r′(R) and r(R)
R

, and the determinant r′(R)(r(R)/R)2 in this case. Also
in Figure 5 we show the graph of the corresponding Cauchy stress (30). We note the
boundary layer close to R = ε in these plots. This boundary layer is a numerical artefact
since the numerical scheme tries to make the Cauchy stress zero, while for this value of
λ the value of r(0) should be zero. Still in this case the numerical scheme converges to
the solution with r(0) = 0 as ε→ 0+ (cf. [9, Section 5]).

In the our last simulation we take λ = 1.15 and ρ0 = 1. In Figure 6 we show the
computed minimizer r which corresponds to a cavitating solution. The value of r(0.001) is

0.48346 with an energy of 0.91034. Figure 7 shows plots of the strains r′(R) and r(R)
R

, and
the determinant r′(R)(r(R)/R)2, and in Figure 8 we show the graph of the corresponding
Cauchy stress. The boundary layer in r(R)/R is now a “true” one associated with the
computed cavitating solution.

7 Final comments

The usual self gravitating problem is that in which the centre of the body remains intact
(r(0) = 0) and no condition is explicitly prescribed on the outer boundary. This is the
problem considered in [7] and is a special case of one of the problems treated in [6]. It is
straightforward to check that our results hold in this case as well where the admissible
set is now given by

A =
{

r ∈ W 1,1(0, 1) | r(0) = 0, r′(R) > 0 a.e. for R ∈ (0, 1), Imec(r) <∞
}

.
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In particular minimizers exist for all densities ρ0 and satisfy the Euler–Lagrange equation
(22) with natural boundary condition at R = 1 given by T (1, r(1)) = 0 (cf. (25)). In
reference to (1). the growth condition (16) with H3 places our stored energy function un-
der the “strong” compressibility category. Thus our result on the existence of minimizers
with the centre intact for all densities ρ0, is consistent with the results in [7] which in
turn suggest that there might be uniqueness of solutions of (22) in our problem as well.

A The gravitational potential

In this section we show how the potential term in the energy functional (9) is obtained
or follows from the corresponding three dimensional potential energy functional.

Let B be the unit ball with centre at the origin and ρ0 be the mass density (per
volume) in the reference configuration. We get an expression for the potential given in
[6] by1

V (u) =
1

2

∫

B

∫

B

ρ0(x)ρ0(y)

‖u(x)− u(y)‖ dydx,

when u is radial (cf. (7)) and ρ0 is radial as well. By symmetry, we can set the vertical
or z axis in the inner integral to be along the direction of u(x). Then by considering a
triangle with sides ‖u(x)‖ = r(R), ‖u(y)‖ = r(U), and ‖u(x)− u(y)‖, we get that

‖u(x)− u(y)‖ =
[

r(R)2 + r(U)2 − 2r(R)r(U) cosφ
]

1

2 ,

where R = ‖x‖, U = ‖y‖, and φ is the angle between the vertical direction (along u(x))
and u(y). Using these, and writing ρ0(‖x‖) for ρ0(x), we get that V (u) = V (r) where

2V (r) = 4π

∫ 1

0

ρ0(R)R
2

[

2π

∫ 1

0

∫ π

0

ρo(U) sinφU
2

[r(R)2 + r(U)2 − 2r(R)r(U) cosφ]
1

2

dφdU

]

dR,

= 4π

∫ 1

0

ρ0(R)R
2

[

2π

∫ 1

0

ρo(U)U
2

r(R)r(U)
(r(R) + r(U)− |r(R)− r(U)|) dU

]

dR,

= 4π

∫ 1

0

ρ0(R)R
2

[

2π

∫ R

0

ρo(U)U
2

r(R)r(U)
2r(U) dU + 2π

∫ 1

R

ρo(U)U
2

r(R)r(U)
2r(R) dU

]

dR,

= 4π

∫ 1

0

ρ0(R)R
2

[

MR

r(R)
+ 4π

∫ 1

R

ρo(U)U
2

r(U)
dU

]

dR.

Integrating by parts we get that
∫ 1

0

ρ0(R)R
2

[

4π

∫ 1

R

ρo(U)U
2

r(U)
dU

]

dR =

∫ 1

0

ρ0(R)MR

r(R)
R2 dR.

Hence

V (r) = 4π

∫ 1

0

ρ0(R)MR

r(R)
R2 dR.

1The gravitational constant G in this expression has been normalized to 1

2
.
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Figure 2: Energy surface.
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Figure 3: Radial displacement for λ = 1 and ρ0 = 1.
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Figure 4: Strains and determinant for λ = 1 and ρ0 = 1.
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Figure 5: Cauchy stress for λ = 1 and ρ0 = 1.
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Figure 6: Radial displacement for λ = 1.15 and ρ0 = 1.
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Figure 7: Strains and determinant for λ = 1.15 and ρ0 = 1.
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Figure 8: Cauchy stress for λ = 1.15 and ρ0 = 1.
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