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Abstract Two relativistic distributions which generalizes the Maxwell Boltzman (MB) distribu-
tion are analyzed: the relativistic MB and the Maxwell-Jüttner (MJ) distribution. For the two
distributions we derived in terms of special functions the constant of normalization, the average
value, the second moment about the origin, the variance, the mode, the asymptotic behavior, ap-
proximate expressions for the average value as function of the temperature and the connected
inverted expressions for the temperature as function of the average value. Two astrophysical appli-
cations to the synchrotron emission in presence of the magnetic field and the relativistic electrons
are presented.
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1 Introduction

The equivalent in special relativity (SR) of the Maxwell-Boltzmann (MB) distribution, see [1,2], is the so
called Maxwell-Jüttner distribution (MJ), see [3,4]. The MJ distribution has been recently revisited, we
select some approaches among others: a model for the anisotropic MJ distribution [6], an astrophysical
application of the MJ distribution to the energy distribution in radio jets [7], a new family of MJ
distributions characterized by the parameter η [5] and an application to counter-streaming beams of
charged particles [8]. The above approaches does not cover the determination of the statistical quantities
of the MJ distribution. In this paper the statistical parameters of the relativistic MB distribution are
derived in Section 2 and those of the MJ distribution are derived in Section 3. Section 4 derives the
spectral synchrotron emissivity in the framework of the two relativistic distributions here analyzed.

2 The relativistic MB distribution

The usual MB distribution, f(v;m, k, TMB), for an ideal gas is

f(v;m, k, TMB) =

√
2v2e

− 1
2

v2m
kTMB

√
π
(
kTMB
m

) 3
2

, (1)

where m is the mass of the gas molecules, k is the Boltzmann constant and TMB is the usual thermody-
namic temperature. In SR, the total energy of a particle is

E = mγc2 , (2)

where m is the rest mass, c is the light velocity, γ is the Lorentz factor 1√
1−β2

, β = v
c and v is the

velocity. The relativistic kinetic energy, Ek, is

Ek = mc2(γ − 1) , (3)

where the rest energy has been subtracted from the total energy, see formula (23.1) in [9]. A relativistic
MB distribution can be obtained from equation (1) replacing the classical kinetic energy 1

2mv
2 with the

ar
X

iv
:2

01
2.

05
79

7v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

0 
D

ec
 2

02
0



relativistic kinetic energy

fr(v;T ) =
v2e

1
T

1− 1√
1− v2

c2



∫ c
0
w2e

1
T

1− 1√
1−w2

c2


dw

, (4)

where the relativistic temperature, T , is expressed in mc2/k units; up to now the treatment is the same
of [10] at pag. 665. The above relativistic PDF
– has the velocity of the light as maximum velocity,
– becomes the usual MB distribution in the limit of low velocities,
– is not invariant for relativistic transformations.

2.1 Variable Lorentz factor

We now change the variable of integration

v =

√
γ2 − 1

γ
. (5)

The differential of the velocity, dv,

dv =
1√

γ2 − 1γ2
dγ , (6)

and therefore the relativistic MB distribution in the variable γ is

fr(γ;T ) =
32
√
γ2 − 1e

1−γ
T T 3

γ4eT−1G3,0
1,3

(
1

4T 2

∣∣∣ 1−1/2,−1,−3/2) , (7)

where G is the Mejier G-function [11,12,13]; Figure 1 reports the above PDF for three different temper-
atures.

Figure 1. The PDF of the relativistic MB as function of γ for different values of T.

The average value or mean, µ, is

µ(T ) =
2TG3,0

1,3

(
1

4T 2

∣∣∣ 1−1/2,−1/2,−1)
G3,0

1,3

(
1

4T 2

∣∣∣ 1−1/2,−1,−3/2) , (8)



the second moment about the origin is

µ(T )2 =
4T 2G3,0

1,3

(
1/4T−2

∣∣∣ 10,−1/2,−1/2)
G3,0

1,3

(
1/4T−2

∣∣∣ 1−1/2,−1,−3/2) , (9)

the variance, σ2 is

σ2(T ) =

4T 2

(
G3,0

1,3

(
1

4T 2

∣∣∣ 1−1/2,−1,−3/2)G3,0
1,3

(
1

4T 2

∣∣∣ 10,−1/2,−1/2)− (G3,0
1,3

(
1

4T 2

∣∣∣ 1−1/2,−1/2,−1))2)(
G3,0

1,3

(
1

4T 2

∣∣∣ 1−1/2,−1,−3/2))2 . (10)

The mode is the real solution of the following cubic equation in γ

γ3 + 3Tγ2 − γ − 4T = 0 , (11)

which has the real solution

mode =
1

6

3

√
324T − 216T 3 + 12

√
−1296T 4 + 621T 2 − 12

−6
−1/3− T 2

3
√

324T − 216T 3 + 12
√
−1296T 4 + 621T 2 − 12

− T . (12)

At the moment of writing a closed form for the distribution function (DF) which is

Fr(γ;T ) =

∫ y

1

fr(γ;T )dγ , (13)

does not exists and we therefore present a numerical integration, see Figure 2.

Figure 2. The numerical DF of the relativistic MB as function of γ for different values of T.

The asymptotic behavior of the PDF, fa, is

fa(γ;T ) =
1

G3,0
1,3

(
1/4T−2

∣∣∣ 1−1/2,−1,−3/2) 2048 γ21
T 3

(
65536 γ18 − 32768 γ16 − 8192 γ14

−4096 γ12 − 2560 γ10 − 1792 γ8 − 1344 γ6 − 1056 γ4 − 858 γ2 − 715

)
e−

γ
T . (14)



The integration of the above approximate PDF gives an approximate DF which has a maximum per-
centage error of 7% in the interval 1.1 < γ < 4 when T = 1. The random numbers belonging to the
relativistic MB can be generated through a numerical computation of the inverse function following the
algorithm outlined in Sec. 4.9.1 of [14]. The above PDF has only one parameter which can be derived
approximating the average value with a Pade approximant [2, 2]

µ(T ) ≈ −0.061723842 + 1.542917977T + 0.3269078746 (T − 1)
2

0.1069596119 + 0.8930403881T + 0.1511024609 (T − 1)
2 . (15)

The above approximation in the interval 0.1 ≤ T < 10 has a percent error less than 1%. The inverse
function allows to derive T as

T = −1

2

5.908× 109 x̄ − 8.89× 109 +
√

1.931× 1019 x̄ 2 − 5.528× 1019 x̄ + 4.437× 1019

1.511× 109 x̄ − 3.269× 109
. (16)

Here x̄ is the sample mean defined as

x̄ =
1

n

n∑
i=1

xi , (17)

formula which is useful to derive the variance of the sample

V ar =
1

n− 1

n∑
i=1

(xi − x̄)2 , (18)

where xi are the n-data, see[15]. An example of random generation of points is reported in Figure 3
where we imposed T = 1 and we found T = 1.0397 from the generated random sample.

Figure 3. The DF for 3000 random points generated according to the relativistic MB (blue steps diagram) and
the theoretical DF (red dashed line) see 3.

2.2 Variable velocity

We now return to the variable velocity, the PDF is

fr(v;T ) =
32
√
− v2

v2−1e

√
−v2+1−1√
−v2+1T

√
−v2 + 1T 3v

eT−1G3,0
1,3

(
1/4T−2

∣∣∣ 1−1/2,−1,−3/2) , (19)

where v is expressed in c = 1 units. The mode is a solution of a sextic equation, see [16], in v

− 4T 2v6 + 12T 2v4 − v4 − 12T 2v2 + 4T 2 = 0 , (20)



which has the following real solution

mode =
1

6

(
3

3
√

24
√

3
√

27T 2 − 1T 3 − 216T 4 + 36T 2 − 1

T 2

−3
24T 2 − 1

T 2 3
√

24
√

3
√

27T 2 − 1T 3 − 216T 4 + 36T 2 − 1
+ 3

12T 2 − 1

T 2

)1/2

. (21)

The position of the mode for the PDF in v is different from that one in γ, see Figure 4.

Figure 4. The position of the mode in the two PDFs: gamma variable (red full line) and v variable (dashed
green line).

At the moment of writing the other statistical parameters cannot be presented in a closed form.

3 The Maxwell Jüttner distribution

The PDF for the Maxwell Jüttner (MJ) distribution is

fMJ(γ;Θ) =
γ
√
γ2 − 1e−

γ
Θ

ΘK2

(
1
Θ

) , (22)

where Θ =
√

kTMB
mc2 , m is the mass of the gas molecules, k is the Boltzmann constant, TMB is the usual

thermodynamic temperature and K2(x) is the Bessel function of second kind, see [3,4,6,7]. Figure 5
reports the above PDF for three different values of Θ and Figure 6 displays the PDF as a 2-D contour.

The average value is

µ(Θ) =
−2Θ2G2,1

1,3

(
1

4Θ2

∣∣∣ 13/2,−1/2,−2)
K2

(
1
Θ

) (23)

and the variance is

σ2(Θ) =
1

Θ2
(
K2

(
1
Θ

))2
(
− 4Θ5

(
2K1

(
Θ−1

)
G2,1

1,3

(
1/4Θ−2

∣∣∣ 15/2,−1/2,−2)Θ
+
(
G2,1

1,3

(
1/4Θ−2

∣∣∣ 13/2,−1/2,2))2Θ +K0

(
Θ−1

)
G2,1

1,3

(
1/4Θ−2

∣∣∣ 15/2,−1/2,2))
)

. (24)



Figure 5. The PDF of the MJ as function of γ for different values of Θ.

Figure 6. A 2-D contour for the MJ PDF as function of γ and Θ.

The mode can be found by solving the following cubic equation

d

d γ
fMJ(γ;Θ) ∝ −γ3 + 2Θ γ2 + γ −Θ = 0 . (25)

The real solution is

mode =
1

6
3
√
−36Θ + 64Θ3 + 12

√
−96Θ4 − 39Θ2 − 12

×((
−36Θ + 64Θ3 + 12

√
−96Θ4 − 39Θ2 − 12

) 2
3

+4Θ
3

√
−36Θ + 64Θ3 + 12

√
−96Θ4 − 39Θ2 − 12 + 16Θ2 + 12

)
. (26)

The asymptotic expansion of order 10 for the PDF is

fMJ(γ;Θ) ∼ 1

ΘK2

(
1
Θ

) (128 γ8 − 64 γ6 − 16 γ4 − 8 γ2 − 5
)

e−
γ
Θ

128 γ6
. (27)

The DF is evaluated with the following integral

FMJ(γ;Θ) =

∫ γ

1

fMJ(γ;Θ) dγ , (28)

which cannot be expressed in terms of special functions.



We now present some approximations for the distribution function A first approximation is given by
a series expansion when, ad example , Θ = 1

FMJ(γ; 1) =
1

K2(1)

(
K2 (1) +

√
π

∞∑
m=0

(−1)
1+m

Γ (3− 2m, γ)

Γ (1 +m)Γ
(
3
2 −m

) ) , (29)

which has a percent error less < 0.6% in interval 1.1 < γ < 10 when T = 1. A second approximation is
given by an asymptotic expansion of order 50 for the PDF followed by the integration, see Figure 7. The

Figure 7. The numerical MJ DF as function of γ for different values of Θ.

parameter Θ can be derived from the experimental sample once the average value is modeled by a Pade
approximant [2, 2] and the inverse function is derived

Θ = 0.1661 x̄ − 0.3085 + 1.36051× 10−10
√

1.4908× 1018 x̄ 2 + 5.913× 1018 x̄ − 6.5835× 1018 . (30)

An analogous formula allows to derive Θ from the variance V ar of the sample

Θ =
1

4
×

1.818× 1010Var + 5.972× 1011 + 5
√

2.277× 1020Var2 + 7.814× 1023Var − 3.597× 1022

5.436× 108Var + 1.978× 1012
. (31)

An example of random generation of points is reported in Figure 8 where we imposed T = 10 and we
found T = 9.97 from formula (30) and T = 9.98 from formula (31).

3.1 Variable β

We now change the variable of integration γ in β = v
c , the PDF of the MJ is

fMJ(β;Θ) =

√
(1− β2)

−1 − 1e
− 1
Θ

1√
1−β2 β(

1− β2
)2
ΘK2

(
1
Θ

) , (32)

where 0 ≤ β ≤ 1, see Figure 9. We have only one analytical result, the mode, which is found solving the
following equation in β

− 3 (β − 1)
3

(β + 1)
3
(
Θ
(
β2 + 2/3

)√
−β2 + 1− 1/3β2

)
e
− 1√

−β2+1Θ β2 = 0 . (33)

As an example when Θ = 0.1 the mode is at β = 0.4866 and Figure 10 reports the mode as function of
Θ.



Figure 8. The PDF for 70000 random points generated according to the MJ (blue steps) and the theoretical
PDF (red dashed line), see formula (22).

Figure 9. The 3D surface of the MJ PDF as function of Θ and β.

Figure 10. The mode of the MJ distribution for different values of Θ.



Figure 11. The mean of the MJ distribution for different values of Θ.

Figure 12. The variance of the MJ distribution for different values of Θ.



The mean and the variance of the MJ distribution does not have an analytical expression and they
are reported in a numerical way, see Figures 11 and 12.

The DF of the MJ is given by the following integral

FMJ(β;Θ) =

∫ β

0

fMJ(β;Θ) dβ , (34)

with β in [0,1] which does not have an analytical expression. An approximation is given by the Riemann
sums, see [17], when Θ = 1

FMJ(β;Θ) =

β
∑9

i=0
β

10K2(1)

√(
− β2

100

(
i + 1

2

)2
+ 1
)−1
− 1e

− 1√
− β2

100 (i+1
2 )

2
+1
(
i + 1

2

) (
− β2

100

(
i + 1

2

)2
+ 1
)−2

10
, (35)

see Figure 13. The above DF has a maximum percentage error of ≈ 10% at β = 1.

Figure 13. The numerical DF of the MJ distribution (red circles) and the Riemann approximation (green line)
as function of β.

4 The astrophysical applications

This section reviews the synchrotron emissivity for a single relativistic electron, derives the spectral
synchrotron emissivity for the two relativistic distributions here analyzed and models the observed syn-
chrotron emission in some astrophysical sources.

4.1 Synchrotron emissivity

The synchrotron emissivity of a single electron is

√
3e3B sin(α)

8π2ε0cme
F (x) , (36)

where, according to eqn.(8.58) in [18], e is the electron charge, B is the magnetic field, α is the pitch
angle, ε0 is the permittivity of free space, c is the light velocity, me is the electron mass, x = is the ratio
of the angular frequency (ω) to the critical angular frequency (ωc) and

F (x) = x

∫ ∞
x

K5/3(z)dz (37)



where K5/3(z) is the modified Bessel function of second kind with order 5/3 [19,13]. The modified Bessel
function is also known as Basset function, modified Bessel function of the third kind or Macdonald
function see pag. 527 in [20]. The above function has the following analytical expression

F (x) = − 9
√

3 3
√

2π

320Γ (2/3)
x

11
3 1F2(

4

3
;

7

3
,

8

3
;
x2

4
)− x

√
3π

3
+ 3
√
x2

2
3Γ

(
2

3

)
1F2(−1

3
; −2

3
,

2

3
;
x2

4
) , (38)

where 2F1(a, b; c; v) is a regularized hypergeometric function [19,21,22,13]. Figure 14 displays F (x) as
function of x.

Figure 14. F(x) as function of x with logarithmic axes.

4.2 The synchrotron relativistic MB distribution

We start from the PDF for the relativistic MB distribution as represented by equation (7) and we perform
the following first change of variable

γ =
E

mec2
, (39)

where E is the relativistic energy. The resulting PDF in relativistic energy is

fr(E;T ) =
32
√

E2

me2c4
− 1e

1
T

(
1− E

mec2

)
T 3me

3c6

E4eT−1G3,0
1,3

(
1

4T 2

∣∣∣ 1− 1
2 ,−1,−

3
2

) . (40)

A second change of variable is

E =

√
ν

νg
mec

2 , (41)

produces

fr(ν;T, νg) =
16
√

ν
νg
− 1e

1
T

(
1−
√

ν
νg

)
T 3νg

ν2eT−1G3,0
1,3

(
1

4T 2

∣∣∣ 1− 1
2 ,−1,−

3
2

)√
ν
νg

, (42)

where

νg =
eB

2πme
. (43)

We know that νg = 2.799249 1012B where B is the magnetic field expressed in gauss and therefore the
above PDF in frequency becomes

fr(ν;T,B) =
7.49345× 1019

√
3.57238× 10−13 ν

B − 1e
1
T (1−5.97694×10−7

√
ν
B )T 3B

ν2eT−1G3,0
1,3

(
1

4T 2

∣∣∣ 1− 1
2 ,−1,−

3
2

)√
ν
B

. (44)



4.3 The synchrotron Maxwell Jüttner distribution

We start from the PDF for the Maxwell Jüttner distribution as given by equation (22) and we perform
two changes in variable as in the previous section. The resulting PDF in relativistic energy is

fMJ(E;Θ) =
E
√

E2

me2c4
− 1e

− E
mec2Θ

me
2c4ΘK2

(
1
Θ

) . (45)

The second PDF in ν is

fMJ(ν;Θ, νg) =

√
ν
νg
− 1e

− 1
Θ

√
ν
νg

2ΘK2

(
1
Θ

)
νg

. (46)

The astrophysical PDF in frequency for the Maxwell Jüttner distribution is

fMJ(ν;Θ,B) =
1.78619× 10−13

√
3.57238× 10−13 ν

B − 1e−5.97694×10
−7 1

Θ

√
ν
B

ΘK2

(
1
Θ

)
B

. (47)

The mismatch between measured flux in Jy and theoretical flux, Stheo, can be obtained introducing a
multiplicative constant C

Stheo = C × fMJ(ν;Θ,B) . (48)

4.4 The spectrum of the radio-sources

As a first example we analyze the spectrum of an extended region around M87, see as example Figure 1 in
[23] where the flux in Jy as function of the frequency is reported in the range 9×109Hz < ν < 2×1018Hz.
Figure 15 reports the measured and theoretical flux in the range 9× 109Hz < ν < 2× 1012Hz for the
quiet core of M87.

Figure 15. Measured flux in Jy (green stars) of the quiet core of M87 and the theoretical flux (red line) for the
Maxwell Jüttner distribution as given by equation (48). The numerical parameters are B = 10−5 gauss, Θ = 30
and C = 1012 Jy.

A second example is given by the radio sources with ultra steep spectra (USS) which are characterized
by a spectral index, α, lower than -1.30 when the radio flux, S, is proportional to Sα, see [24]. As
a practical example we select the cluster Abell 1914 where the measured total flux densities at 150
MHz and 1.4 GHz are S150 = 4.68 Jy and S1.4 = 34.8 mJy which means α = −2.17. We now evaluate
the theoretical spectral index of synchrotron emission for the relativistic MB distribution between 150
MHz and 1.4 GHz when B is fixed and T variable, see Figure 16 and Figure 17 when T and B are both
variables. The two Figures above show that the theoretical spectral index is always smaller than -2 which
can be considered as an asymptotic limit for high values of relativistic temperature. As an example when
B = 1.0× 10−5gauss the spectral index is -2.17 when T = 10.



Figure 16. The spectral index of the relativistic MB as function of T when B = 1.0 × 10−6.

Figure 17. The spectral index of the relativistic MB as function of T and B in gauss.



5 Conclusions

The relativistic MB distribution has been derived in [10] without any particular statistics: here we
derived, when the main variable is the Lorentz factor γ, the constant of normalization, the average value,
the second moment about the origin, the variance, the mode, the asymptotic behavior, an approximate
expression for the average value as function of the temperature and an inverted expression for the
temperature as function of average value.

We derived the following statistical parameters of the MJ distribution when γ is the main variable:
average value, variance, mode, asymptotic expansion, two approximate expressions for the distribution
function, a first evaluation of Θ from the average value and a second evaluation of Θ from the variance.

Following the usual argument which suggests a power law behavior for the spectral distribution of
the synchrotron emission in presence of a power law distribution for the energy of the electrons we
derived the spectral distribution for the relativistic MB and MJ distributions which are now function of
the selected generalized temperature and the magnetic field. Two astrophysical applications are given:
the spectral distribution of emission in the core of M87 in the framework of the synchrotron emissivity
and an explanation for the steep spectra sources in the framework of the synchrotron emissivity for the
relativistic MJ distribution.
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6. Livadiotis G 2016 Modeling anisotropic maxwell-jüttner distributions: derivation and properties in Annales

Geophysicae (Copernicus GmbH) vol 34 p 1145
7. Tsouros A and Kylafis N D 2017 The energy distribution of electrons in radio jets A&A 603 L4 (Preprint

1706.05227)
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24. De Breuck C, van Breugel W, Röttgering H J A and Miley G 2000 A sample of 669 ultra steep spectrum

radio sources to find high redshift radio galaxies A&AS 143, 303 (Preprint astro-ph/0002297)

1508.02302
astro-ph/0002297

	 New probability distributions in astrophysics: IV. The relativistic Maxwell-Boltzmann distribution 

