
Antichiral Ferromagnetism

Filipp N. Rybakov∗1, Anastasiia Pervishko2, Olle Eriksson3, and Egor Babaev1

1Department of Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
2Skolkovo Institute of Science and Technology, Moscow 121205, Russia

3Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

Here by combining a symmetry-based analysis with numerical computations we predict a new kind of
magnetic ordering – antichiral ferromagnetism. The relationship between chiral and antichiral magnetic
order is conceptually similar to the relationship between ferromagnetic and antiferromagnetic order. With-
out loss of generality, we focus our investigation on crystals with full tetrahedral symmetry where chiral
interaction terms – Lifshitz invariants – are forbidden by symmetry. However, we demonstrate that lead-
ing chirality-related term leads to nontrivial smooth magnetic textures in the form of helix-like segments
of alternating opposite chiralities. The unconventional order manifests itself beyond the ground state by
stabilizing excitations such as domains and skyrmions in an antichiral form.

Chirality and chiral textures is a cornerstone con-
cept in many fields of physics ranging from cosmol-
ogy to nuclear and elementary particle physics [1]. In
many materials, chiral crystal structure results in a
chiral ferromagnetic ordering [2, 3]. The chiral tex-
tures in magnetism attracted renewed interest in re-
cent decades thanks to their potential relevance to
technological applications, including alternative logic
devices and racetrack memory where the information
is encoded by virtue of magnetic textures [4–7]. In-
terestingly, some of the concepts developed so far
are intended for the use of materials that have fer-
romagnetic ordering at the atomistic level, while at
the mesoscale the direction of magnetization m(r) is
modulated. The corresponding basic types of modu-
lations are one-dimensional and conventionally called
spirals, helices, cycloids, screws, to name a few [8].

The emergence of modulated ferromagnetic order-
ing may appear due to competing symmetric interac-
tions between atoms in a lattice [9, 10]. The multi-
spin exchange interactions, in particular four-spin in-
teractions, also provide a possible mechanism for the
modulated texture stabilization beyond pairwise sce-
nario [11]. Most naturally, multi-spin exchange inter-
actions can emerge in the form of two-site biquadratic
or four-site spin interaction [12, 13]. The delicate in-
terplay between competing pairs and/or accounting
for multi-spin interactions, leading to the stabilization
of different magnetic textures, has been investigated
both theoretically and experimentally in Refs. [14–19].
By virtue of symmetry of the above mentioned and
other symmetric interactions, the reflection of modu-
lated magnetic texture is defined by degenerate energy
states with opposite chirality (handedness), where a
certain chirality is a consequence of spontaneous sym-
metry breaking.

An alternative mechanism of nucleation and
stability of modulated ferromagnetic textures may
be attributed to the presence of the pairwise

Dzyaloshinskii-Moriya interaction (DMI), which is re-
sponsible for an asymmetric nearest-neighbor spin ex-
change, often discussed in magnetic systems where
inversion symmetry is absent. Along with the mag-
netic ultrathin films and multilayers where the inver-
sion symmetry is broken by natural means [5], the ef-
fect of DMI is pronounced in cubic crystals with chiral
point group symmetry T , such as B20-type FeGe and
MnSi, in which a certain chirality of a magnetic he-
lix is dictated by one of two possible enantiomorphic
forms of the compound [20]. In this case, the corre-
sponding magnetic Hamiltonian includes the Lifshitz
invariants [2, 21], and the chirality depends on the
sign of their common factor.

In this paper, we predict a ferromagnetic ordering
that is fundamentally different from those discussed
above which we refer to as antichiral ferromagnetism.
This term aims to reflect that spontaneous modula-
tion of the magnetization direction appears in a way
that both types of chirality exist simultaneously, and
alternate in space. Our analysis reveal that this mag-
netic ordering naturally appears in a bulk ferromagnet
with the point group symmetry Td owing to achiral
crystal symmetry. This is a class of crystals in which
many minerals are formed naturally [22, 23].

The macroscopic robustness of a magnetic config-
uration is purely determined by its stability with re-
spect to perturbations that violate spatial uniformity.
If, for instance, inversion symmetry is broken the spin
alignment might gain a certain chirality due to spin-
orbit driven antisymmetric DMI that contributes to
the total energy with the terms linear with respect
to the first spatial derivatives of magnetization. In
general, the derivative linear contribution to the free
energy of a ferromagnet can be casted in the form

H∇ =

∫
dr
∑
αβ

Ωαβ(m)∇αmβ , (1)

with the tensor Ωαβ(−m) = −Ωαβ(m) being odd
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under magnetization inversion [24], while α, β cor-
respond to the spatial indexes. By expanding

Ωαβ(m) =
∑
γ Ω

(1)
αβγmγ +

∑
γδε Ω

(3)
αβγδεmγmδmε in

powers of m and restricting to linear and cubic con-
tribution only one arrives at

H∇ =
1

2

∫
dr
∑
αβγ

(
DSαβγ∇α(mβmγ) +DAαβγL

(α)
γβ

)
+

∫
dr
∑
αβγδ

Ω
(3)
αβγδεmγmδmε∇αmβ , (2)

where for convenience we have separated the terms
arising due to Ω(1) into two parts, namely are symmet-
ric terms, ∇α(mβmγ), and terms given in the form of

Lifshitz invariants, L(α)
βγ = mβ∇αmγ−mγ∇αmβ [25].

Note that as the symmetric contribution can be ex-
pressed in terms of surface integrals via Stokes’ theo-
rem [24] its impact on the magnetic ordering in bulk
crystals can be discarded.

To proceed, we analyze (2) based on symmetry
grounds (see the Appendices). The solution for Td

point group symmetry is trivial with respect to Lif-
shitz invariants, DAαβγ = 0, whereas in the case of

Ω(3) one can identify four independent components
with the corresponding invariants given by∑

′
∇α(m3

βmγ +mβm
3
γ),

∑
′
∇α(m2

αmβmγ), (3a)∑
′
mαmβ∇γ(m2), (3b)

mxmymz∇ ·m, (3c)

where
∑
′ denote the sum over (α, β, γ) ∈

{(x, y, z), (y, z, x), (z, x, y)}. The invariant (3c) was
first reported by I. Ado et al. [26, 27], whereas we de-
rive the complete set (3a)-(3c). After integrating by
parts both terms (3a) can be discarded for the same
reasons as the terms ∇α(mβmγ) in the above anal-
ysis. Note that within the micromagnetic approach
magnetization is described in terms of a unit vector
|m(r)| = 1 and thus the invariant (3b) vanishes as
well. Therefore we end up with (3c) as the only rel-
evant term for Eq. (1).

We base our subsequent analysis on the minimal
model of a tetrahedral ferromagnet that contains ex-
change interaction and Ado interaction (3c):

H =

∫
dr
(
A|∇m|2 + Bmxmymz∇ ·m

)
, (4)

where A is the exchange stiffness. It worth noting
that in a somewhat more general case, the energy
density in (4) may be equipped with a magnetic-
field-induced Zeeman term, cubic anisotropy ∝(
m2
xm

2
y +m2

xm
2
z +m2

ym
2
z

)
, and extensions in the case

of exchange anisotropy. Without loss of generality, we
assume B > 0, since the sign of this constant depends
on the choice of the coordinates, see Fig. 1. To iden-
tify the lowest energy state, as well as stable excited
configurations, we perform a numerical minimization
of the energy (see the Appendices).

x

𝓍

𝓎

𝓏

+ℬmxmymzdiv(m)

−ℬm𝓍m𝓎m𝓏div(m)

Td crystal
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z

Figure 1: A sketch of bulk crystal with achiral
point group symmetry Td. By virtue of rotore-
flection S4 invariants under the crystallographic point
group Td, the sign of the phenomenological constant
B alternates at 90◦ rotations of the coordinate frame.

In Figs. 2(b)-(d) we provide relevant energy mini-
mum configurations that emerge from an initial guess
with randomly oriented spins, as depicted in Fig. 2(a).
We observe that the numerical solutions to (4) can be
roughly classified into three different groups, namely
are multi-domain textures shown in Fig. 2(b), mod-
ulated states with small inclusions such as edge dis-
locations illustrated in Fig. 2(c), and defect-free pe-
riodic modulations unveiled in Fig. 2(d). Interest-
ingly, the magnetic structure in Fig. 2(d) was found
to be the energetically most favorable. Reducing the
spatial dimension to two, while increasing the size of
the modeling area, we also obtained that the type of
modulations depicted in Fig. 2(d) is the most energet-
ically favourable configuration. A closer inspection of
the magnetic ordering in the structure is visualized
in Fig. 2(e). It can be clearly seen that locally in
space the magnetic spiral has a spontaneous distinct
chirality. However the sign of the chirality varies in
space, resulting in a bichiral configuration that be-
ing averaged over a modulation period produces zero.
It is therefore not surprising that the relationship be-
tween the local chirality as depicted in Fig. 2(e) is in a
way similar to the relationship between ferromagnetic
and antiferromagnetic ordering of individual atomic
moments. Here, alternating local moments are effec-
tively replaced with alternating local chiralities. On
this account we label this state as antichiral. The
polarity demonstrated in Fig. 2(e) is twofold degener-
ate. The spatial orientation of the texture is sixfold
degenerate, and the resulting twelvefold degeneracy
should be spontaneously broken in this model. In a
finite sample, we expect that the significant net mag-
netization and stray fields will favor the split into the
domains.

Having established the ground state of the sys-
tem we proceed with the discussion on the possibil-
ity of stable excited configurations, apart from those
found by numerical energy minimization from the ran-
dom state. Notably, several classes of magnets al-
low particle-like topological excitations, such as mag-
netic skyrmions [5, 7, 25]. In order to resolve numer-
ically whether the present system has similar type
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Figure 2: Results of numerical simulations obtained by energy minimization. a, Initial guess with
chaotically oriented magnetization for the cube under periodic boundary conditions. b – d, Typical solutions
corresponding to an energy minimum: multi-domain structure, magnetization modulations with edge disloca-
tions, and perfect helix-like modulations, respectively. e, Antichiral magnetic texture that corresponds to the
global energy minimum. The optimal period, L is found to be ≈ 75.72A/B, while the net magnetization is
|〈m(r)〉| ≈ 0.854. The figure captures two periods, while the inserts at the bottom – one period. f – h, Stable
antichiral excitations, including f, antiskyrmion, g, skyrmion, and h, a cluster composed by a pair of skyrmion
and antiskyrmion. The approximate energy values of these states are 12.02, 12.02, 23.58, respectively. The
energy is calculated relative to the global minimum in units of 2At, where t is the thickness in the direction
perpendicular to the picture plane. i, Enlarged area of the skyrmion core.

excitations we use the vortex-like ansatz [25] as an
initial guess, superimposing modulation mimicking
the ground state discussed above. Our findings sug-
gest that the model possesses stable states in shape
of skyrmions that form over antichiral background.
Some of the solutions with distinct topology that have
been discovered as a result of numerical energy min-
imization are shown in Fig. 2(f)-(h). Interestingly,
contrasting to their counterparts in chiral magnets,
skyrmions that we obtain in this model do not have a
predefined chirality.

We demonstrated that the magnetic ordering in
crystals with Td (tetrahedral class) point group can
be of a novel type, that we refer to as antichiral ferro-
magnetism. Among the methods that may be used to
probe the predicted antichiral ordering one can high-
light small-angle neutron scattering, spin-polarized
scanning probe microscopy [28] as well as the electron
magnetic circular dichroism technique [29].

Our numerical findings reveal that antichiral
ground state has a set of stable topologically non-
trivial excitations in the form of edge dislocations
and skyrmions. These excitations are antichiral in
contrast to their chiral counterparts in systems with
Dzyaloshinskii-Moriya interaction. We strongly be-
lieve their properties pose an intriguing question for
follow-up studies and will trigger experimental activ-
ity in this field.

s3

[010]

[100]

[001]
s4

s2

s1

h3

Figure 3: A possible structural building block,
satisfying full tetrahedral symmetry. Magnetic
spins (arrows), and relevant magnetic interaction
paths (see explanation in the text) of the magnetic
unit cell.

Another interesting aspect of our numerical find-
ings quests for the microscopic origin of the term (3c).
Due to anisotropy of the crystal, shown in Fig. 1, the
microscopic Hamiltonian for classical spins si must be
equipped with direction vectors. The possible term
that corresponds to such a contribution to the micro-
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magnetic energy may be cast in the form

H = β

(
4∑
i=1

si · hi

)
4∑
i=1

(si · hi)3, (5)

where unit vectors hi are aligned with the bonds con-
necting the center of a tetrahedron and the corre-
sponding vertex, see Fig. 3, while β represents the
strength of the interaction. Note that multi-spin in-
teractions whose Hamiltonian contains direction vec-
tors were recently discovered in B20-type cubic chi-
ral magnets [30]. Moreover, we expect that a certain
insight on the nature of pairwise and multi-spin in-
teractions [31, 32] can be gained on the basis of first-
principles calculations that could clarify the micro-
scopic origin of the magnetic interactions leading to
antichiral ferromagnetism in Td crystals and beyond.

Note added. Antichiral magnetic ordering pre-
sented here should not be confused with the “helix”
reported earlier in [27]. Right after the first version
of this manuscript [33], I. A. Ado et al. reported an
approximation of the ground state solution of Hamil-
tonian (4) [34]. This approximation is close to our
solution and captures antichirality. Based on our nu-
merical solution, we suggest a simple and very accu-
rate analytical approximation for the ground state,

m[110] ≈ 0.54 sin(k r[110]), m[001] ≈ 0.5 cos(k r[110]),

m[1̄10] =
√

1−m2
[110] −m

2
[001],

k ≡ 2π

L
, r[110] ≡

x+ y√
2
, L ≈ 76

A

B
.

This expression gives average energy density
〈ρH〉 ≈ −1.8676 · 10−3B2/A, while our original nu-
merical result predicts

〈ρH〉 = −1.8696582776 · 10−3B2/A,

L = 75.725021 A/B,
|〈m(r)〉| = 0.853861965,

where all digits are expected to be accurate.
The authors of [34] also proposed an alternative

to the version of the microscopic Hamiltonian used
here (5).

Appendices

A1. Symmetry analysis method

Given a point group symmetry with generators R(µ),
a tensorial structure is dictated by the symmetry re-
lations

Ω(n)
α1α2...αn

= R(µ)
α1β1
R(µ)
α2β2

. . .R(µ)
αnβn

Ω
(n)
β1β2...βn

, (8)

where R(µ)
αβ are orthogonal matrices of three-

dimensional irreducible representations for each ele-
ment µ of the group. The corresponding matrices for
the tetrahedral point group Td can be found, e.g., in
Refs. [35–37]. Reduction of the linear system (8) iden-
tifies zero and non-zero components of the tensor Ω.

A2. Numerical energy minimization

The continuous model as yielded by Eq. (4) was
discretized using a rectangular grid under periodic
boundary conditions. We implemented a discretiza-
tion scheme giving eighth-order of accuracy by gener-
alizing the approach of Donahue and McMichael [38].
The typical number of grid points in each dimension
ranged from 140 to 160. For minimization we used a
GPU-parallelized nonlinear conjugate gradient algo-
rithm [39], while the constraint |m| = 1 was satisfied
by means of the special use of stereographic projec-
tions (see e.g. Supplemental Material in Ref. [40]).
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