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Quantum embedding approaches involve the self-consistent optimization of a local fragment of a
strongly correlated system, entangled with the wider environment. The ‘energy-weighted’ density
matrix embedding theory (EwDMET) was established recently as a way to systematically control
the resolution of the fragment–environment coupling, and allow for true quantum fluctuations over
this boundary to be self-consistently optimized within a fully static framework. In this work, we
reformulate the algorithm to ensure that EwDMET can be considered equivalent to an optimal
and rigorous truncation of the self-consistent dynamics of dynamical mean-field theory (DMFT).
A practical limitation of these quantum embedding approaches is often a numerical fitting of a
self-consistent object defining the quantum effects. However, we show here that in this formulation,
all numerical fitting steps can be entirely circumvented, via an effective Dyson equation in the
space of truncated dynamics. This provides a robust and analytic self-consistency for the method,
and an ability to systematically and rigorously converge to DMFT from a static, wave function
perspective. We demonstrate that this improved approach can solve the correlated dynamics and
phase transitions of the Bethe lattice Hubbard model in infinite dimensions, as well as one- and two-
dimensional Hubbard models where we clearly show the benefits of this rapidly convergent basis for
correlation-driven fluctuations. This systematically truncated description of the effective dynamics
of the problem also allows access to quantities such as Fermi liquid parameters and renormalized
dynamics, and demonstrates a numerically efficient, systematic convergence to the zero-temperature
dynamical mean-field theory limit.

I. INTRODUCTION

The competition between strong electronic interac-
tions within local, atomic energy levels with the hy-
bridization to a wider extended bandstructure gives rise
to some of the most remarkable emergent properties of
quantum matter. These include a variety of quantum
phase transitions [1], colossal responses to external stim-
uli [2], electronically-driven superconductivity [3], and
many other novel states of matter [4]. Much of this
physics can be qualitatively described via the paradig-
matic Hubbard model [5, 6]. However, in recent years
the merging of the Hubbard interactions with an ab ini-
tio derived bandstructure has led to approaches such as
LDA+U and LDA+DMFT, which have become the dom-
inant approach to a qualitatively correct treatment of
strongly correlated materials [7–9]. While these methods
differ in their treatment of the local interaction term,
they both nevertheless explicitly and self-consistently
consider the effects of this local correlated physics em-
bedded in the mean-field-derived bandstructure.

In this work, we update and improve upon an emerging
and alternative quantum embedding framework, which
we term ‘Energy-weighted density matrix embedding the-
ory’ (EwDMET), which allows for these local interactions
and wider bandstructure to be consistently coupled. The
method now exhibits a number of appealing features, in-
cluding an improved robust and analytic self-consistency
formulation, and a rigorous interpolation between the
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most widely used quantum embedding theories in the
community. We initially review these other methods in
a general and combined way, to provide the context to
best understand the EwDMET approach through their
successes and limitations.

Dynamical mean-field theory (DMFT) relies on a self-
consistent optimization of the local (‘fragment’) elec-
tronic propagator (Green’s function), matching it be-
tween the extended lattice picture and a local auxil-
iary (‘impurity’) model with explicit interactions [10–
13]. However, the computational overheads which arise
when working with propagators and their associated
continuous energy or time variables (especially at low
or zero temperature), prompted the development of al-
ternatives, where the self-consistent optimization was
performed with respect to a different quantum vari-
able [14]. Density matrix embedding theory (DMET)
is instead formulated as a self-consistent optimization of
the static, fragment-local, one-particle reduced density
matrix (RDM) [15, 16], in a similar spirit to some other
self-consistent, static embedding methods [17–19]. This
results in significant simplifications compared to DMFT,
allowing for larger local fragments to be treated, as well
as an algebraic construction of the local auxiliary Hamil-
tonian. This efficient formulation has been shown to cap-
ture much of the strongly correlated, local physics for
both Hubbard and ab initio models, resulting in accu-
rate energetics and other quantities [20–27].

However, these simplifications of the DMET formula-
tion result in a loss in ability to describe some qualita-
tively important physics compared to the fully frequency-
dependent DMFT approach, as well as the loss of an ex-
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act self-consistency condition [28, 29]. Since the lattice
description must at all times be represented by a sin-
gle Slater determinant in order to obtain single-particle
bath orbitals, true correlated quantum fluctuations are
not able to be represented on the lattice (such as those
captured by the frequency-dependence of a self-energy).
Instead, the method relies on the optimization of a static,
local ‘correlation’ potential on the lattice in an attempt
to match the mean-field lattice RDM description to the
correlated RDM over the fragment. This is not always
strictly possible to do, and can lead to difficulties in the
numerical robustness of the method [28–30]. Further-
more, the bath construction for the auxiliary ‘cluster’
model relies on projecting to the minimal bath space
which exactly reproduces the static RDM over the frag-
ment at the (static) mean-field level. However, this
does not take into account the specifics of the energy-
dependence of the lattice bandstructure in the coupling of
the fragment to its environment in this auxiliary model,
which is formally included within DMFT.

These approximations are important for the efficiency
of the method, but nevertheless have physical rami-
fications. For instance, for a single, translationally-
symmetric fragment/impurity orbital no self-consistency
is possible at all, with the correlated physics found from
the interacting auxiliary model unable to modify the
description of the lattice. This contrasts with DMFT,
where self-consistency in the explicitly dynamical self-
energy can induce e.g. Kondo physics or metal to Mott
insulator transitions, even at this most restrictive of
fragment sizes. For larger fragment clusters, the self-
consistency in DMET still primarily relies on charge
self-consistency rather than true quantum fluctuations,
which are only described in the cluster, rather than
the lattice description. For instance, correlation-induced
phase transitions are only able to be mimicked via static
symmetry-breaking via the self-consistent correlation po-
tential. This is often a good approximation where the
fragment space is large enough and static symmetry-
breaking describes the physics of the phase, but can limit
accuracy in other cases.

In order to overcome these limitations and rigorously
reconnect to DMFT, an extension to the method was pro-
posed, called energy-weighted density matrix embedding
theory (EwDMET)[31, 32]. This can be motivated by
considering the fragment RDM as the zeroth (hole) spec-
tral moment of the fragment Green’s function, and for-
mulating a systematic expansion by including increasing
orders of these spectral moments to be self-consistently
optimized (in both hole and particle sectors). In this way,
the method can build increasing (implicit) resolution of
the frequency-dependence of the self-consistent fragment
propagator, whilst still remaining in a formally static and
zero-temperature formulation. These effective, coarse-
grained energetic details both describe the coupling of
the fragment space to its environment (an expansion of
the hybridization), as well as include a finer resolution of
the different timescales of fragment quantum fluctuations

induced by the local, correlated physics (an expansion of
effective self-energy and propagators).

This moment expansion spans any orthogonal poly-
nomial representation of these dynamic quantities on the
real-frequency axis to the same order (such as Chebyshev
representations)[33]. These compact representations are
widely used in Green’s function methods in various do-
mains [34, 35] and have been used previously for approxi-
mate impurity solvers for the Green’s function in DMFT
[36–39]. However, in EwDMET there is never the need
to reconstruct an explicit dynamical description at any
point in the algorithm. All aspects of the self-consistency
and bath space construction are similarly truncated at
this order of dynamical character, and represented as
static quantum variables. In this way, EwDMET can
be considered a rigorous and optimal (in an orthogo-
nal polynomial sense) truncation of the self-consistent
dynamics of DMFT, rather than simply a truncation of
these dynamics in the impurity solver. While no explic-
itly dynamic quantities are built, fully dynamical objects
can be reconstructed from the converged spectral mo-
ments, directly on the real-frequency axis and without
the need for analytic continuation. These can then be
used to probe the correlated spectral functions, as well
as derived quantities including total energies, Fermi liq-
uid parameters and other one-particle properties, with
qualitative physics such as e.g. Mott gaps emerging even
at the lowest moment truncation [31].

Furthermore, many of the efficiency and numerical ad-
vantages of DMET are retained. These primarily arise
from the manifestly finite and algebraic projection to the
minimal bath space of the correlated cluster model re-
quired for the chosen expansion order of the effective dy-
namics. This is achieved via quantum information ar-
guments, avoiding any numerical fit of bath states [40],
which can often be problematic for DMFT with larger
clusters [40–45]. Furthermore, in keeping with DMET,
the solution of this model still only requires numerically
efficient ground-state, static quantities to construct the
self-consistency. The price for inclusion of higher mo-
ment expansions for a finer implicit dynamical descrip-
tion, is an increase in the bath space size of the clus-
ter model, which increases linearly with both the num-
ber of fragment orbitals, and the number of moments
of the hole/particle fragment spectrum that are self-
consistently optimized. This returns to the DMET bath
space construction if only the zeroth and first spectral
moments are desired for self-consistency, while converg-
ing to a formally infinite bath space for all moments, in
common with DMFT, where the infinite resolution of the
frequency dynamics of the propagator are included.

To ensure that these local quantum fluctuations can
be self-consistently described on the original lattice, it
is necessary to move beyond the DMET correlation po-
tential [15, 30]. In order to retain a formally static ap-
proach, this is achieved in EwDMET via the introduc-
tion of a non-interacting auxiliary space which couples
to the physical lattice. This auxiliary space can cou-



3

ple locally to the physical lattice in order to modify its
band structure in response to the local fragment correla-
tions. Each auxiliary state acts as an individual pole of
an implicit self-energy, with their couplings to the physi-
cal space defining their weight. Once this auxiliary space
is traced out, the physical space can exhibit arbitrary
modifications of the fragment propagator, to reflect the
correlation-driven changes to its spectral moments. This
can induce e.g. non-idempotent lattice density matri-
ces and opening of true Mott gaps, which are impossible
with the local potential of DMET, and ensure the ability
to rigorously match the desired fragment spectral mo-
ments of the lattice to those from the correlated auxiliary
model.

In previous EwDMET work, the number of auxiliary
states, defining the number of effective self-energy poles,
was considered an arbitrary input parameter. A prac-
tical limitation of EwDMET then rapidly became the
cumbersome numerical optimization of these auxiliary
energies and couplings for larger impurity sizes, despite
the fact that they were only ever optimized for a non-
interacting model. This is similar to the numerical diffi-
culty and ill-conditioning in the optimization of the corre-
lation potential in DMET, where alleviating this cost has
spawned alternative numerical strategies [27–30]. How-
ever in contrast, for DMFT this ‘inverse problem’ of find-
ing a self-energy which reflects the desired modifications
in the fragment propagator is solved for analytically, via
the Dyson equation. Inspired by this observation, the
key development in this work is to entirely remove the
cumbersome and ill-conditioned numerical optimization
of these auxiliary states and correlation potential, and in-
stead directly solve for these states via an effective Dyson
equation for static auxiliary states, directly within the
spectral moment representation of all quantities. This
drastically improves the robustness of the algorithm, and
results in an overall algorithm in which no numerical
fitting steps are required either for the optimization of
the modification to the lattice structure (as required for
DMET) or in the construction of the bath space of the
auxiliary model (as required for DMFT in a Hamilto-
nian formulation). Furthermore, this construction rigor-
ously defines the number of auxiliary states required for
a faithful self-consistency up to a given moment order,
thereby removing this technical convergence parameter
from consideration in the overall method. This refor-
mulation also ensures that the method now rapidly and
rigorously converges to the dynamical mean-field theory
limit, by ensuring an implicit moment expansion also of
the true hybridization function.

We structure the paper as follows. In section II A, we
describe the spectral moment expansion, with Sec. II B
detailing the improved self-consistent EwDMET algo-
rithm. The key step is the avoidance of numerical op-
timization of the auxiliary space considered in Sec. II C.
We also describe the construction of the interacting clus-
ter model via projection of the appropriate bath space, as
well as bounds on the number of auxiliary states required

for the self-consistency. We demonstrate how this refor-
mulated bath space spans a rigorous expansion of the hy-
bridization function, as long as the removal of local corre-
lation is performed before the cluster projection, ensuring
a rigorous and consistent truncation of the DMFT dy-
namics at all stages. Furthermore, connections to other
methodology in the literature will be highlighted, both
in the construction of an approximate environment, as
well as the particularly relevant work of Lu et al., where
a real-frequency DMFT scheme was proposed [38, 39].
Section III will present results for a number of different
lattice models, focusing on the convergence with moment
order for both static and dynamic quantities. We show
how the optimized auxiliary space can provide the mech-
anism for correlation-driven quantum phase transitions,
and how information such as quasiparticle weights can
be directly obtained from the optimized auxiliary space.
Finally, in Sec. IV we provide a summary of the approach
and prospects for the future.

II. THE ENERGY-WEIGHTED DMET
METHOD

A. Moment expansion

The central self-consistent quantum variables of the
EwDMET method are the spectral moments of the frag-
ment propagator. These moments are separately opti-
mized at each order n and hole/particle type, denoted as

T(h)[n] and T(p)[n], respectively, and defined as

T
(h)
αβ [n] = 〈Ψ|ĉ†β [ĉα, Ĥ]{n}|Ψ〉, (1)

T
(p)
αβ [n] = 〈Ψ|[ĉα, Ĥ]{n} ĉ

†
β |Ψ〉, (2)

where [ĉα, Ĥ]{n} = [. . . [[cα, Ĥ], Ĥ], . . . Ĥ] with n to-

tal commutators and [ĉα, Ĥ]{0} = ĉα, and ĉ
(†)
α/β de-

note fermionic operators acting over the considered
space. These quantities are also equivalent to energy-
weighted one-particle reduced density matrices [32].
More saliently, they are directly related to the local frag-
ment propagator, as

T
(h)
αβ [n] =

∫ µ

−∞
Aαβ(ω)ωn dω, (3)

T
(p)
αβ [n] =

∫ ∞
µ

Aαβ(ω)ωn dω, (4)

where A(ω) = − 1
π Im [GR(ω)] is the (matrix-valued)

spectral function derived from the retarded Green’s func-
tion and µ the chemical potential. Representing the
hole and particle spectral moments individually allows
the low-energy dynamical structure to be resolved, while
ensuring that the high-energy expansion of the central
moments of the spectral distribution (corresponding to
the 1

(iω)n Laurent expansion of the Matsubara propaga-

tor high-frequency tail) are resolved exactly to at least
order 2n+ 1 [32].
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As the number of moments increases, these moments
increasingly resolve the dynamical structure of the frag-
ment spectrum, which via the Kramers–Kronig relation
also uniquely specifies the entire fragment propagator.
These spectral moments defined in Eqs. 1–2 are also
equivalent to the Taylor expansion coefficients of the
imaginary-time Green’s function expanded around the
discontinuities at times τ = 0− and τ = 0+, as de-
tailed in Ref. 32. Finally, it should be noted that by
independently including the spectral moments up to a
maximum order nmom, the space of (all) polynomials of
degree nmom is spanned for each particle/hole sector, re-
gardless of their specific form. As an example, the flexi-
bility afforded by working with these moments allows for
a reproduction of the dynamic Green’s function defined
by the basis of two Chebyshev polynomial expansions to
the same degree, over the spectral range of the separate
particle and hole states [36]. In this sense of an orthogo-
nal polynomial expansion of the real-frequency dynamics
of the propagator, the optimization of these moments
in EwDMET can therefore be thought of as an optimal
truncation of the dynamical information in DMFT.

B. An improved EwDMET formulation

We seek a self-consistent procedure for the optimiza-
tion of the spectral moments over a arbitrary desired
fragment space, up to a desired truncation, nmom, which
avoids all numerical optimization procedures of poten-
tials, hybridization functions, or effective self-energies.
Many of these steps are common to the previous algo-
rithm given in Refs. 31 and 32, where more details on
some steps can be found. In Section II D, we highlight
the main changes from the previous algorithm. In the
EwDMET method, there are a number of model sys-
tems which need to be defined, where the fragment is
coupled to the rest of the system, bath, and/or auxil-
iary states. The distinction between bath and auxiliary
states is primarily one of their physical effect on the spec-
tral moments of the fragment space. Both objects rep-
resent locally fragment-coupled, non-interacting degrees
of freedom, with those termed ‘bath’ states defining the
(finite-order) effect of hybridization with the rest of the
system on the fragment moments, while auxiliary states
are used to induce the changes of the fragment moments
due to the correlated local physics (effective self-energy
changes).

As with all quantum cluster methods, we require the
coupled solution for these fragment moments from two
models. We start with the extended ‘lattice’ Hamiltonian
H, which defines the full system of interest and can be
divided into an interacting (HU ) and single-particle part
(Ht). In this work, we will be exclusively consider the

single-band Hubbard model,

H = −t
∑

<ij>,σ

ĉ†iσcjσ︸ ︷︷ ︸
Ht

+U
∑
i

ni↑ni↓︸ ︷︷ ︸
HU

, (5)

where the lattice can be split into disjoint clusters of nf
sites, where one such set of sites represents the fragment
or ‘impurity’ sites F , while the remaining ns translation-
ally equivalent clusters of sites are denoted by the set
{S}, with nf (ns + 1) giving the total number of sites in
the lattice, N .

This lattice model is only ever solved at a (static)
mean-field level of theory. Therefore, to include the ef-
fects of the interaction-induced correlations on the frag-
ment moments, naux non-interacting ‘auxiliary’ states
are added to the lattice Hamiltonian, representing spe-
cific poles of a local self-energy on all symmetrically-
equivalent fragment clusters. We use these to define the
‘Weiss’ Hamiltonian Hw. In this, replicated sets of auxil-
iary states couple to each of these translationally equiv-
alent fragments in {S}, with couplings λiα and energies
εα, resulting in

Hw = Ht − µlat

nf∑
i∈F,σ

ĉ†iσ ĉiσ +

ns∑
s∈{S}

nf∑
i,j∈s,σ

vij ĉ
†
iσ ĉjσ (6)

+

ns∑
s∈{S}

naux∑
α∈s,σ

[( nf∑
i∈s

λiαĉ
†
iσ ĉασ + h.c.

)
+ εαĉ

†
ασ ĉασ

]
︸ ︷︷ ︸

coupling to auxiliary system

.

The static potential matrix v with elements vij , repli-
cated over the translationally equivalent clusters, repre-
sents the static part of the self-energy and is equivalent
to the ‘correlation potential’ of DMET. Note that the
auxiliary states defined by the coupling matrix λ and en-
ergies ε in Hw do not couple to the fragment F , which
is instead augmented only by a chemical potential, µlat,
to ensure the correct filling of electrons in the fragment
space. We denote the total number of degrees of freedom
in the Weiss model as Nw = N + nsnaux.

This HamiltonianHw has no explicit interaction terms,
and can therefore be solved via diagonalization in the

single-particle basis, leading to Hw =
∑Nw

i |Ci〉Ei〈Ci|.
A set of nb bath states can then be defined, which are
orbitals defined across the entire support of the sites
spanned by {S} and the auxiliary states in Eq. 6. The
defining feature of these bath states, |b〉, is that once Hw
is projected into the space of the fragment ⊕ bath (defin-
ing the ‘cluster’ model), the resulting non-interacting
spectral moments over the fragment space up to order
nmom are identical to the equivalent moments result-
ing from the Weiss Hamiltonian model. From a DMFT
perspective, these bath orbitals define the effective hy-
bridization of the fragment to the full system for an
exact reproduction of the first nmom fragment spectral
moments. More details on this formal equivalence can
be found in Appendix A. Furthermore, this algebraic
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projection to the cluster model results in a manifestly
finite number of bath orbitals, with an upper limit of
nb ≤ (nf × nmom) (assuming nmom is odd, as used in
this work). These bath orbitals can be constructed by
orthonormalizing the set of orbitals given by

|b(h)α,m〉 =

Nw−nf∑
κ/∈F

∑
Ei<µ

Emi CαiC
∗
κi|κ〉 (7)

|b(p)α,m〉 =

Nw−nf∑
κ/∈F

∑
Ei>µ

Emi CαiC
∗
κi|κ〉, (8)

where m ranges from 0 to (nmom − 1)/2, α denotes frag-
ment orbitals, κ denotes degrees of freedom of the Weiss
Hamiltonian external to the fragment space, and µ de-
notes the chemical potential in the Weiss Hamiltonian
required for the physical number of electrons to be cor-
rect. At least nf of these bath orbitals are linearly de-
pendent and can be removed. The m = 0 bath orbitals
are identical to those of the DMET construction (in the
absence of an auxiliary space in Eq. 6). By choosing
a bath representation via successive Gram-Schmidt or-
thogonalization of higher-order m bath orbitals against
lower-order ones, an interesting structure arises in the
resulting cluster Hamiltonian, as visualised in Fig. 1. Al-
ternatively, the bath orbitals giving rise to this structure
can be directly generated by repeated singular value de-
composition (SVD) of off-diagonal blocks of the Weiss
Hamiltonian. For example, by performing a SVD on the
upper block of Hw which couples the occupied nmom = 3
bath orbitals to the environment external to the current
cluster, the right singular vectors corresponding to non-
zero singular values define the occupied nmom = 5 bath
orbitals and the remaining vectors span the orthogonal
complement in the environment space. This bath struc-
ture is identical to the ‘natural’ bath orbital basis of
Refs. 38, 39, and 46 which had previously been high-
lighted as an effective bath parameterization in DMFT,
though their algorithmic construction is different. Bath
states of this form have also recently been highlighted as
resulting in a low-entanglement solution for general im-
purity models, with important ramifications in their use
with matrix product state methods [47]. Furthermore,
these bath orbitals have been generalized to capture ex-
pectation values other than spectral moments in Ref. [40].

We can then define the projectors to the bath, frag-
ment, and cluster spaces respectively as Pb =

∑nb

b |b〉〈b|,
Pf =

∑nf

i∈F |i〉〈i| and Pc = Pf + Pb. These are used
to define an interacting cluster model of dimensionality
nc = nf +nb, by including the interactions over the frag-
ment space, as

Hcl = PcHwPc + PfHUPf − µcl
nb∑

b/∈F,σ

ĉ†bσ ĉbσ, (9)

where we define the single-particle part of the cluster

model as H(0)
cl = PcHwPc. The cluster model is then

fragment

nmom=1

nmom=3 nmom=5 nmom=7

nmom=3 nmom=5 nmom=7

FIG. 1. Schematic structure of the non-interacting part of

the cluster Hamiltonian (H(0)
cl ) and bath orbital couplings in

EwDMET after systematic orthogonalization. Bath orbitals
are denoted by circles, with their fillings representative of the
electron number when the mean-field solution of Hw is pro-
jected into the cluster space. Each circle represents another
set of bath orbitals, whose maximum dimension is the number
of orbitals in the fragment (nf ). Lines denote terms coupling
the orbitals in the cluster Hamiltonian of Eq. 9. Truncating
the moment expansion naturally truncates the chain of bath
orbitals at a given nmom.

solved for its ground state (in this work, exclusively via
exact diagonalization), with the chemical potential µcl
optimized over the bath space in order to ensure the de-
sired number of fragment electrons, as this can change
in the cluster model in the presence of interactions. The
interacting spectral moments of Eqs. 1-2 can then be di-
rectly evaluated from this ground state, over all degrees
of freedom in the cluster.

These resulting correlated moments can then be used
to algebraically construct a new fictitious non-interacting
model Hamiltonian, haux. This Hamiltonian consists of
the current cluster space coupled to a set of auxiliary de-
grees of freedom, where the spectral moments up to order
nmom over the cluster space are exactly the same as those
of the interacting model of Hcl by construction. These
additional auxiliary states are in a specific representation
chosen such that they only couple to the cluster orbitals
and not between themselves. This construction of haux
is detailed in Sec. II C. Similar to the construction of
the bath space, the maximum dimensionality of the ad-
ditional auxiliary space is naux = nc×nmom. These non-
interacting auxiliary states induce changes to the spectral
moments of the cluster to exactly mimic the effect of the
fragment interactions.

By taking the entire cluster space, rather than just
the fragment space, it is trivial to perform an effective
Dyson equation on these moments, avoiding the poten-
tial for non-causal (non-hermitian) auxiliary states which
can result if solely the fragment space was considered
within a limited dynamics framework [38]. The required
fragment-local auxiliary couplings and energies, as well
as the static correlation potential, can be found by pro-
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jecting the resulting auxiliary states into the fragment
space, as

v = PfH(0)
cl Pf − PfhauxPf , (10)

λ = Pfhaux(1− Pc), (11)

ε = (1− Pc)haux(1− Pc). (12)

As the number of moments increases, this inversion
in the entire cluster space, followed by projection into
the fragment space becomes equivalent to an effective
Dysons equation just within the fragment space, where
the hybridization-induced components of the auxiliary
states would exactly cancel bath poles and give a causal
self-energy. Performing the Dyson equation in the full
cluster (fragment and bath) space has previously also
been employed within DMFT when working on the real-
frequency axis in order to enforce causality of the re-
sulting self-energy [48]. These auxiliaries represent the
manifestly causal and finite number of poles of an effec-
tive fragment self-energy required to induce the corre-
lated changes in the cluster moments, as

Σ(z) = v +

naux∑
α

λiα
1

z − εα
λ∗jα, (13)

for an arbitrary complex frequency z.

To complete the self-consistency, the coupling of these
auxiliary states to the fragment can be used to return
to the Weiss model of Eq. 6, including these local auxil-
iary states on all symmetrically equivalent copies of the
fragment, in order to update the resulting effective Weiss
field. Small updates to the chemical potential µlat as well
as a constant shift in the auxiliary energies may be re-
quired to ensure the correct number of electrons in the
fragment and physical lattice spaces. The algorithm can
then be iterated to convergence of the auxiliary states.
Expressions for local expectation values and total ener-
gies can be simply obtained from the converged fragment
spectral moments of Hcl (or equivalently haux) via a rep-
resentation of the Migdal–Galitskii formula in this spec-
tral representation, as detailed in Ref. 32. Furthermore,
explicitly frequency dependent quantities on the lattice
can be reconstructed, directly from inclusion of the self-
energy on all equivalent fragments, as

G(z) = [zI−Ht + µI− PfΣ(z)Pf −
ns∑

s∈{S}

PsΣ(z)Ps]
−1,

(14)
where Ps is a projector onto the space of the transla-
tionally equivalent fragment indexed by s. Equivalently,
correlated lattice properties can be found via solution to
the original Weiss hamiltonian (Hw) with auxiliary states
and correlation potential also included over the fragment

space, as

Hl = Ht +

ns+1∑
s∈{S}∪F

[
naux∑
α∈s,σ

( nf∑
i∈s

λiαĉ
†
iσ ĉασ + h.c.

)

+ εαĉ
†
ασ ĉασ − µ

nf∑
i∈s,σ

ĉ†iσ ĉiσ

 , (15)

which will have a spectrum equivalent to that of Eq. 14.
The overall workflow and representations of the various
Hamiltonians are schematically shown in Fig. 2 for a two-
site fragment in a one-dimensional lattice chain.

Hl (Eq. 15)
<latexit sha1_base64="2V6CuFox2/HJgrdLV8PYk52uYZA=">AAACDnicbVDLSgNBEJyNrxhfUY9eBkMgXsJuVPQYFCHHCOYBSQi9s7PJkNlHZmaFsKw/4MVf8eJBEa+evfk3TjY5aGJBQ1HVTXeXHXImlWl+G5mV1bX1jexmbmt7Z3cvv3/QlEEkCG2QgAeibYOknPm0oZjitB0KCp7NacseXU/91j0VkgX+nZqEtOfBwGcuI6C01M8Xux6oIQEe15I+x91xBA5ONeHFpZtx+cE6P0n6+YJZNlPgZWLNSQHNUe/nv7pOQCKP+opwkLJjmaHqxSAUI5wmuW4kaQhkBAPa0dQHj8penL6T4KJWHOwGQpevcKr+nojBk3Li2bpzeqhc9Kbif14nUu5lL2Z+GCnqk9kiN+JYBXiaDXaYoETxiSZABNO3YjIEAUTpBHM6BGvx5WXSrJSt03Ll9qxQvZrHkUVH6BiVkIUuUBXVUB01EEGP6Bm9ojfjyXgx3o2PWWvGmM8coj8wPn8AVAGbnw==</latexit>

Hw (Eq. 6)
<latexit sha1_base64="t9O/cN701hDtCJkWFQvqAqK4z1I=">AAACDXicbVDLSsNAFJ34rPUVdelmsAp1E5Iq6rIoQpcV7APaEiaTSTt0MklnJkoJ9QPc+CtuXCji1r07/8Zp2oW2HrhwOOde7r3HixmVyra/jYXFpeWV1dxafn1jc2vb3NmtyygRmNRwxCLR9JAkjHJSU1Qx0owFQaHHSMPrX439xh0Rkkb8Vg1j0glRl9OAYqS05JqH7RCpHkYsrYzce9geJMiHmSbCtHg9sB7OjkeuWbAtOwOcJ86UFMAUVdf8avsRTkLCFWZIypZjx6qTIqEoZmSUbyeSxAj3UZe0NOUoJLKTZt+M4JFWfBhEQhdXMFN/T6QolHIYerpzfKec9cbif14rUcFFJ6U8ThTheLIoSBhUERxHA30qCFZsqAnCgupbIe4hgbDSAeZ1CM7sy/OkXrKcE6t0c1ooX07jyIF9cACKwAHnoAwqoApqAINH8AxewZvxZLwY78bHpHXBmM7sgT8wPn8A6o+bcA==</latexit>

Hcl (Eq. 9 and Fig. 1)
<latexit sha1_base64="v14sl1YOlhMkZvqvckd8PIzF2jA=">AAACG3icbVBNS8NAEN34WetX1aOXxSLoJSRVUG+iKD1WsB/QlDLZbOviZhN3N0IJ6e/w4l/x4kERT4IH/43btAetPhh4vDfDzDw/5kxpx/myZmbn5hcWC0vF5ZXVtfXSxmZDRYkktE4iHsmWD4pyJmhdM81pK5YUQp/Tpn97PvKb91QqFolrPYhpJ4S+YD1GQBupW6p4IegbAjytZt2U8Ax7dwkEOJdlmO5d3NnDkyGIYHjJ+vbQ3c+6pbJjOznwX+JOSBlNUOuWPrwgIklIhSYclGq7Tqw7KUjNCKdZ0UsUjYHcQp+2DRUQUtVJ898yvGuUAPciaUponKs/J1IIlRqEvukcnaymvZH4n9dOdO+4kzIRJ5oKMl7USzjWER4FhQMmKdF8YAgQycytmNyABKJNnEUTgjv98l/SqNjugV25Oiyfnk3iKKBttIP2kIuO0CmqohqqI4Ie0BN6Qa/Wo/VsvVnv49YZazKzhX7B+vwGI6+hcQ==</latexit>

haux (Sec. IIC)
<latexit sha1_base64="5UIbVNWSDLb/qfvdriaQ/gZbDAs=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJXKUiUFCcaKLnQrgj6kJoocx22t2kmwHUQVlR9g4VdYGECIlZmNv8FtM0DLka50dM69uvceP2ZUKsv6NpaWV1bX1nMb+c2t7Z1dc2+/JaNEYNLEEYtEx0eSMBqSpqKKkU4sCOI+I21/WJv47TsiJI3CGzWKictRP6Q9ipHSkmcWB17qCA5Rcj+Gzm2CAuhwpAaCp6VrgssP9XrteOyZBatsTQEXiZ2RAsjQ8MwvJ4hwwkmoMENSdm0rVm6KhKKYkXHeSSSJER6iPulqGiJOpJtO3xnDolYC2IuErlDBqfp7IkVcyhH3defkVDnvTcT/vG6ieuduSsM4USTEs0W9hEEVwUk2MKCCYMVGmiAsqL4V4gESCCudYF6HYM+/vEhalbJ9Uq5cnRaqF1kcOXAIjkAJ2OAMVMElaIAmwOARPINX8GY8GS/Gu/Exa10yspkD8AfG5w9JOpua</latexit>

FIG. 2. Schematic of the various Hamiltonians defined in
EwDMET, for a two-site fragment (red rectangle) embedded
in a one-dimensional chain of sites. Sites are denoted by cir-
cles, auxiliary states by stars, and the bath space by a dia-
mond (where its structure and coupling to the fragment space
is pictorially described in more detail in Fig. 1). The Hamil-
tonians shown schematically represent the ‘lattice’, ‘Weiss’,
‘cluster’ and ‘auxiliary’ Hamiltonians from top to bottom.
All Hamiltonians are non-interacting, apart from Hcl, which
features additional interactions over the fragment. At each
iteration, haux is defined to have the same spectral moments
as Hcl.

C. Construction of the auxiliary Hamiltonian

In this section we consider the problem of algebraically
constructing a non-interacting Hamiltonian, where aux-
iliary states couple to a cluster space, and modify the mo-
ments of this cluster space such that they exactly match
those found from the interacting cluster Hamiltonian of
Eq. 9. In this form, an effective Dyson equation can be
formulated in the space of spectral moments, as demon-
strated in Sec. II B, and the coupling of the resulting aux-
iliary states to the bath orbitals in the cluster removed
(Eqs. 10-12) in order to complete the self-consistency.
This construction is inspired by the work of Lu et al. in
Ref. 38 where a discrete pole, single-fragment DMFT ap-
proach was formulated, but here is generalized to work
with an arbitrary dimension cluster space and rigorously
truncated expansion order.
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The input to this step are therefore the hole and par-
ticle moments of Eqs. 1–2 over the entire cluster space of
nc orbitals, which are obtained from the solution of the
interacting cluster Hamiltonian of Eq. 9. The first step is
to split the problem into the hole and particle sectors and
find two non-interacting block-tridiagonal Hamiltonians,
such that the moments of these Hamiltonians return the
desired moments within each sector [49]. This is achieved
with a modification of the block Lanczos recursion, where
a series of nc × nc sized diagonal and off-diagonal blocks
of a Hamiltonian are iteratively created, resulting in the
form

htri =


A0 B1 0 0 . . .

B†1 A1 B2 0 . . .

0 B†2 A2 B3 . . .

0 0 B†3 A3 . . .
...

...
...

...
. . .

 . (16)

This is equivalent to ensuring that the Green’s function
of the generated Hamiltonian is in a truncated contin-
ued fraction representation and has the same spectral
moments once projected onto the cluster space (corre-
sponding to the first block) [38]. The algorithm to find
haux proceeds for each hole and particle set of moments
(where the hole/particle labels have been dropped for
brevity unless required) as follows:

1. Orthonormalize the cluster space moments un-
der the metric of the zeroth moment for each
hole/particle sector, with

Sn = T[0]−
1
2 T[n]T[0]−

1
2 , (17)

for n ≤ nmom, or 0 otherwise.

2. Build up diagonal and off-diagonal blocks of htri
for each sector recursively. With C0

0 = I, A0 = S1,
B0 = 0, and Cn

j = 0 for j < 0, j > n, or n < 0,
these blocks can be constructed by starting at n = 0
and iterating the following equations (in order):

B2
n+1 =

n+1∑
j=0

n∑
l=0

Cn†
l Sj+l+1C

n
j−1 −A2

n −B2†
n , (18)

Cn+1
j =

[
Cn
j−1 −Cn

j An −Cn−1
j B†n

]
B−1n+1, (19)

An+1 =

n+1∑
j=0

n+1∑
l=0

C
(n+1)†
l Sj+l+1 Cn+1

j . (20)

3. The number of blocks in this expansion naturally
truncates, since there are only nmom moments.
This gives a maximum number of A blocks of
(nmom+1)/2, corresponding to a hard truncation of
the continued fraction representation of the Green’s
function of the cluster. It is also possible, especially
in more weakly correlated situations, that the num-
ber of generated blocks is less than this upper limit,

which is evidenced when the B2
i block becomes sin-

gular. If this happens, the final Ai block can still
be computed by ensuring that only the non-null
space of Bi is inverted in Eq. 19, before using this
to find the final Ai. A Hamiltonian representation
of the moments of the particle and hole space can
then be found in the tridiagonal form of Eq. 16.

4. The particle and hole block-tridiagonal Hamiltoni-
ans then need to be combined into a single Hamil-
tonian, with their combined energy spectrum and
eigenvector weights in the cluster space unchanged.
The individual particle and hole Hamiltonians are
diagonalized as

h
(h)
tri = UhEhU

†
h, (21)

h
(p)
tri = UpEpU

†
p , (22)

leading to L and M eigenvalues and eigenvectors
for the hole and particle sector, respectively. These
are combined into a new (L + M) × (L + M) uni-
tary matrix U , ensuring that the projection into the
original cluster space for each state is maintained.
The resulting system is then defined as

hcomb = U

[
Eh 0
0 Ep

]
U†. (23)

5. The construction of U can be achieved by ensur-
ing that the first nc components of all vectors are
maintained in the combined system. We define a
nc× (L+M) matrix, V , where the first L columns

are computed as 1√
2
T(h)[0]

1
2U

′

h and the remaining

M columns as 1√
2
T(p)[0]

1
2U

′

p, where U
′

h (U
′

p) is a

nc×L (nc×M) submatrix of Uh (Up), defining the
projection into the first nc rows representing the
weight of the eigenstates in the cluster degrees of
freedom. The remaining L+M −nc vectors to en-
sure that U is full-rank can be constructed from any
complete, orthogonal basis which leaves the origi-
nal nc vectors unchanged. We compute these as the
eigenvectors corresponding to the non-zero eigen-
values of I(L+M) − V †V . These eigenvectors are
added to rows of V , to give U .

6. The final non-interacting Hamiltonian, which en-
sures that the spectral moments projected into the
first nc degrees of freedom exactly match the de-
sired ones, is found via explicit evaluation of Eq. 23.

7. The states in the ‘non-physical’ space of hcomb [i.e.,
the part external to the nc cluster orbitals, defined
by the projector Pe = (1 − Pc)] can be decoupled
from each other via a diagonalization of PehcombPe
in order to rotate to a diagonal representation of the
Hamiltonian in this auxiliary space. This decouples
these auxiliary states which induce the correlation-
driven changes to the cluster spectral moments and
we term this final Hamiltonian haux.
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Writing λ = PchauxPe and diag(ε) = PehauxPe, the
resulting cluster Green’s function corresponding to haux
is

Gc(z) =

(
zI− PchauxPc − λ

1

zI− ελ
†
)−1

. (24)

This form is then amenable to perform Dyson equation
analytically, and extract a correlation potential and aux-
iliary states defined by Eqs. 10-12, with an effective self-
energy to reproduce the cluster moments as given in
Eq. 13.

D. Differences to previous algorithm and
comparison to DMFT and DMET

A key advantage over the previous EwDMET algo-
rithm [31, 32] is the formulation of an analytic approach
to obtain the auxiliary states each iteration. This avoids
the cumbersome non-convex numerical optimization of
the previous work which rapidly became intractable for
larger numbers of fragment sites. Furthermore, this work
now places strict bounds on the maximum dimension of
these auxiliary states, rather than considering it another
technical parameter requiring convergence.

The other substantive difference in the algorithm
is that construction of the bath spaces is formulated
from the Weiss Hamiltonian of Eq. 6, rather than the
fragment-correlated lattice Hamiltonian of Eq. 15. These
resulting bath spaces are different in the presence of aux-
iliary states on the lattice. While the previous approach
did not double count correlations, since it was the Hw
Hamiltonian of Eq. 6 which was projected into the bath
space, it nevertheless did not represent a faithful ex-
pansion of the true hybridization in terms of the trun-
cated moment expansion. The non-commutativity of the
operations for constructing bath orbitals, and removal
of effective interactions over the fragment space (corre-
lation potential and auxiliary states) is a subtle issue.
Whether the correlation potential should be removed be-
fore or after bath space construction is also formally a
consideration for DMET, where bath spaces are instead
constructed in the presence of the fragment correlation
potential, as was previously done for EwDMET. How-
ever, we have numerically found this not to be a signif-
icant difference for DMET in the absence of auxiliary
states. It is nevertheless found to be more important
for the EwDMET method, in order to ensure a rigorous
and consistent truncation of the dynamics and fragment
quantum fluctuations at every step. However, this does
result in an inexact matching of the moments of Eq. 15
and Eq. 9 at convergence for low nmom truncation, as is
true for DMFT in the limit of an inexact bath space when
comparing the cluster and lattice Green’s function. More
details on how this updated bath construction reflects a
rigorous expansion of the dynamics of the hybridization
as well as the Weiss Green’s function can be found in
Appendix A.

Comparing to DMFT, the EwDMET algorithm repre-
sents an entirely faithful reproduction of (cluster) DMFT
in the limit of large nmom, as is expected for a rigorous
truncation of the DMFT dynamics at all steps. This for-
mulation is however cast in an entirely zero-temperature,
Hamiltonian based, and (explicitly) frequency-free for-
mulation for all models and quantities of interest. This
can enable more efficient implementations with (poten-
tially approximate) Hamiltonian-based solvers of the cor-
related cluster model, as has previously been done for
the full frequency dependence of DMFT [36, 43, 50–
54], while avoiding the ill-conditioned analytic continua-
tion of non-Hamiltonian formulations of DMFT. Further-
more, within the EwDMET truncation, the bath space
of the cluster model is found via a projection of the full
space, and is rigorously finite, with a maximum dimen-
sion which increases (linearly) with nmom. This also al-
lows us to obtain a rigorous, finite pole representation of
the self-energy required for this level of description of the
effective dynamics, with a number of poles which scales
again linearly with both the overall cluster and fragment
size. Some of the steps in EwDMET are influenced by the
innovative work of Lu et al., where the DMFT equations
were formulated directly in a discrete pole representation
of all quantities, coupled with an approximate solver [38].
However, the present work avoids many of the numerical
difficulties associated with the large number of poles, by
systematically restricting all dynamics to this moment
expansion rather than the full dynamical Green’s func-
tion.

It is worth also comparing this algorithm with that of
DMET. The bath space construction (and size) of DMET
is identical to that of EwDMET for nmom = 1. We also
note that in DMET, two different algorithms have been
used to construct the cluster Hamiltonian – the so-called
‘interacting’ or ‘non-interacting’ bath formulations, de-
pending on whether the two-body terms of the lattice
are projected into the bath space or not [15, 16, 27]. The
EwDMET builds on the non-interacting bath formulation
(similar to DMFT), since the bath space has a degree of
auxiliary character. The expansion beyond the DMET
bath space of nmom = 1 admits increasing resolution of
the beyond-mean-field induced quantum fluctuations in
the fragment, at the cost of a larger bath space to span
the increased lengthscale of these fluctuations into the
environment. Critically, the self-consistency also requires
the addition of local non-interacting auxiliary states to
the lattice model, rather than just a static correlation po-
tential over the fragment space. These ensure an exact
matching criteria of the desired fragment spectral mo-
ments is possible, which in this work we show can be
achieved in a rigorous algebraic self-consistency, rather
than a numerically ill-conditioned fit [29, 30]. Finally, we
reiterate that under the reasonable assumption that the
dominant computational cost of DMET comes from the
solution to the interacting cluster Hamiltonian, the cost
of EwDMET at nmom = 1 is entirely equivalent to that
of DMET. In addition, the EwDMET method proposed



9

here also provides an analytic and exact self-consistency.
This self-consistency for nmom = 1 goes beyond just the
information contained in the one-body density matrix,
and also includes matching of the n = 1 one-body energy-
weighted density matrix (i.e. the Fock matrix projected
into the fragment space).

III. RESULTS AND DISCUSSION

A. Bethe Hubbard lattice

We first apply this updated EwDMET methodology to
the half-filled Bethe Hubbard lattice. This represents an
infinitely coordinated set of correlated sites in a quasi-
periodic fashion. It is particularly noteworthy as a test-
ing ground for quantum embedding methodology, as it
was shown that the self-energy is entirely site-local, and
therefore DMFT can converge to the exact correlated
spectral properties for this system with a single fragment
site [55–57]. Nevertheless, the physics of the model in the
paramagnetic phase is highly non-trivial, with correla-
tions driving a phase transition from the metallic phase to
a Mott insulator characterized purely by the dynamical
character of the self-energy. In EwDMET, this physics
needs to be captured by the specifics of the self-consistent
auxiliary states in order to drive this transition. We also
compare to an implementation of fully dynamical, exact
diagonalization (ED) DMFT, where seven bath orbitals
are numerically fitted to the Matsubara hybridization
[40, 45]. The numerical fitting of a limited number of
bath orbitals represents the only approximation in these
DMFT results to which we compare [42].

The non-interacting density of states of the Bethe lat-
tice is semi-circular [56], with a form given by

A(ω) =
1

2π

√
4− ω2, (25)

for |ω| < 2t. This was discretized by a set of 200 degrees
of freedom, in order to construct the self-consistent EwD-
MET procedure in a computationally tractable quasi-
lattice [42, 58]. We take the odd-moment values of the
maximum spectral moment, up to nmom = 7 (even val-
ues have the same bath size, but are self-consistent to
lower-order moments than necessary, so are not consid-
ered). All cluster Hamiltonians are solved with exact
diagonalization code of PySCF v1.6 [59, 60], modified to
efficiently compute arbitrary orders of the spectral mo-
ments of Eqs. 1–2 via successive and direct applications
of the cluster Hamiltonian after the ground state is found.
Since there is only a single fragment site, the number of
bath orbitals for each cluster Hamiltonian is equal to the
nmom value for the calculation.

An important metric to identify and analyze the na-
ture of any transition from metal to insulator is the quasi-
particle weight of each site, which characterizes the ex-
tent to which the Fermi liquid states are renormalized
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FIG. 3. Energy density (E/t), Doublon density (D) and quasi-
particle weight (Z) for the Bethe Hubbard lattice, as the inter-
action strength is increased. Single fragment site EwDMET
results are presented with nmom = 1, 3, 5, and 7, and com-
pared to ED-DMFT results with seven bath orbitals.

by the many-body interactions. This quantity is propor-
tional to the inverse of the effective mass of the excita-
tions, and is defined as

Zi =

(
1− ∂Σ(ω)ii

∂ω

∣∣∣∣∣
ω=0

)−1
(26)

=

(
1 +

naux∑
α

|λiα|2
ε2α

)−1
. (27)

This quantity is therefore directly accessible within
EwDMET as an explicit function of the self-consistently
optimized auxiliary states. Furthermore, static expec-
tation values such as total energy density and the dou-
blon density, defined as 〈ni↑ni↓〉, are also directly defined
from the ground-state solution to the cluster Hamilto-
nian. Robust convergence of the EwDMET scheme was
found with the auxiliary states, and these static expec-
tation values are shown in Fig. 3 and compared to finite-
bath ED-DMFT results as a function of on-site interac-
tion strength, U/t.

The energy density shows a rapid convergence with
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respect to nmom, with all values of nmom ≥ 3 indistin-
guishable on the scale of the plot. The doublon density
shows a similarly rapid convergence, albeit with a small
but noticable difference between nmom = 3 and 5 around
the phase transition region. This phase transition is eas-
ily identified by the vanishing of the quasi-particle weight
of the fragment site. As this weight decreases from one, it
characterizes the increasing effective mass of the renor-
malized quasiparticles, with the charge becoming effec-
tively localized in a Mott insulating state at the quan-
tum phase transition, as Z reaches zero and the effective
mass diverges. For nmom = 1, the quasi-particle weight
never quite reaches zero, characterizing an increasingly
‘bad’ metallic state but indicating that it is unable to
effectively reach the quantum critical point. However,
despite the lack of a phase transition, the general trend
of “good to bad” metal is obtained, with a single bath or-
bital and at an equivalent cost to DMET (which cannot
describe any self-consistent dependence with U/t).

A phase transition is however possible for nmom = 3,
where a slow convergence to this point is reached around
Uc ≈ 8t. As nmom is increased further, the point of
the phase transition moves to lower interaction strengths
down to Uc ≈ 6.3t at nmom = 7 and the sharp discontinu-
ous nature of this point is resolved. This Mott transition
is a little above the finite bath ED-DMFT results, which
place the transition at U ≈ 6t, where increasing the size
of the bath has previously been found to lower this point
[42]. Literature values of DMFT with a fine resolution
of the hybridization function and a numerical renormal-
ization group solver place the metal to Mott insulator
transition point at Uc = 5.88t [57].

We can also consider the change in the density of states
resulting from the EwDMET self-consistency to different
orders in the spectral moments. The density of states for
different interactions are computed from the Hamiltonian
of Eq. 15 without requiring any analytic continuation and
are shown in Fig. 4. These show a small quasi-particle
peak remaining at nmom = 1, with its weight decreas-
ing with U/t, but never entirely disappearing, in keeping
with the description of the quasi-particle weights. How-
ever, even though there is no finite-U phase transition
observed at this low value of nmom, it nevertheless allows
for the emergence of Hubbard bands in the spectrum,
with these moving to higher energy as the interaction
increases. The opening of a spectral gap at finite U/t
is seen for nmom ≥ 3, with additional substructure re-
solved in the Hubbard bands, as well as substructures
in the main metallic quasiparticle peak in the Fermi-
liquid phase. This structure also compares remarkably
favourably, even at higher energies, with the fully dy-
namical DMFT with 7 bath orbitals, where in this lat-
ter approach, the full dynamics of the fragment Green’s
function and self-energy are explicitly and exactly solved
within each iteration.

We can also probe the nature of the converged auxil-
iary space itself, in order to understand how these states
induce the phase transition, as well as describing the

U=
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nmom=1 nmom=3 nmom=5 nmom=7 DMFT(nb = 7)

U=
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U=
3t

5 0 5
/t

U=
0t

5 0 5
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5 0 5
/t

5 0 5
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5 0 5
/t

FIG. 4. Density of states of the Bethe Hubbard model for
different values of the interaction strength U/t, as nmom is
varied in EwDMET. Also included are comparison results
from ED-DMFT with seven numerically fitted bath orbitals,
which compare very favourably with the EwDMET results
at nmom = 7. All spectra include an artificial broadening of
0.05t.

wider effects of the correlated physics on the implicit dy-
namics. Figure 5 shows the optimized auxiliary energies
(ε) and absolute values of the fragment-auxiliary cou-
plings (|λ|), as the interaction strength increases. Only
auxiliary states with a coupling greater than 10−4 are
shown. These energies represent the individual poles of
an effective self-energy, with the couplings denoting the
square root of the spectral weight of these poles. The
auxiliary states always come in pairs with energies ±ε
and with equal couplings, reflecting the particle–hole
symmetric nature of the model. The Mott transition is
triggered by an auxiliary state energy tending to zero
(the chemical potential of the system), with a coupling
remaining finite, as also seen as the point at which the
quasi-particle weight (Z) tends to zero in Eq. 27. The
gap is further widened as this zero-energy auxiliary cou-
ples to the physical site with increasing strength, which
is found to scale linearly with interaction strength, as
shown in Fig. 5.

Another point of note is how the number of auxiliary
states changes with nmom. The formal maximum num-
ber of auxiliary states is nc × nmom, which represents a
quadratic scaling with nmom. However, this scaling is un-
physically high due to the fact that this includes the de-
scription of correlated changes to the spectrum through-
out the whole cluster (fragment and bath) space, before
this is projected into just the fragment subspace after-
wards. Therefore we expect this scaling to be reduced
from this, especially for larger nmom, as we are only in-
terested in the fragment correlations. This is indeed ob-
served in Fig. 5, with the number of auxiliaries tending to
a more realistic linear scaling with respect to nmom. This
reduction is not imposed, but rather emerges naturally
due to redundancies found in the auxiliary Hamiltonian
construction detailed in Sec. II C, where coupling ampli-
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FIG. 5. The energies and couplings to the fragment space
resulting from the optimization of the auxiliary states for dif-
ferent orders of self-consistency in the spectral moments, as
the interaction strength U/t is varied for the Bethe Hubbard
model. Only auxiliary states with a coupling magnitude larger
than 10−4 is shown. Results for nmom = 7 show a larger num-
ber of optimized auxiliary states, and is omitted for clarity.
Each auxiliary state corresponds to a single pole in the ef-
fective self-energy, with Mott transitions characterized by an
auxiliary state energy tending to zero, while the increase in
coupling to these states resulting in an opening of the Mott
gap. Auxiliary states come in particle-hole symmetric pairs
(denoted by dashed and solid lines of the same color), with
equal magnitude couplings for both states in the pair. Cou-
pling and energies of the same auxiliary states are denoted by
the same color.

tudes tend to zero, and the auxiliary states can therefore
be removed without approximation. Furthermore, we can
directly observe the auxiliary system convergence with
nmom, by considering the effective Matsubara self-energy
that these auxiliary states represent via Eq. 13, as shown
in Fig. 6. While convergence is rapid for the Fermi-liquid
phase, it is slower around the phase transition and in the
Mott insulating regime, where the absolute value of the
self-energy is far larger.

Finally, it is worth noting the difference between these
results, and those presented in the initial incarnation of
the EwDMET method in Ref. 31, where application to
the Bethe Hubbard lattice is also reported. Section II D
details the key differences to the current approach, specif-
ically the ability to algebraically construct the appro-
priate auxiliary space at each iteration, as well as the
bath orbitals defined to match the moments of the Weiss
Hamiltonian. These changes are found to have qualita-
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FIG. 6. The imaginary part of the effective self-energy on the
Matsubara axis represented by the self-consistent auxiliary
system for different orders of spectral moments for the Bethe
lattice at U/t = 1, 3, 6, 9.

tive repercussions in the results. Previously, a gap was
able to be opened at nmom = 1, however this was due
to the fact that the number of auxiliary states was se-
lected to be only one, which by particle-hole symmetry
was constrained to be at the chemical potential, there-
fore forcing the opening of the gap. At higher nmom, gaps
were previously sometimes opened, but a clear systematic
improvability of results with increasing nmom was harder
to observe than with the current results. A finite inter-
action metal-to-insulator transition point was only found
at nmom = 4. This is likely due to the difficulties in nu-
merical optimization of the auxiliary states, as well as the
previously unknown number required, where significant
fit errors remained and a large number of possible aux-
iliary system solutions could be found. This numerical
difficulty also precluded the extension to high moment
orders with larger numbers of auxiliaries which are now
possible. Overall, we find that the improved EwDMET
method is able to well converge the real-frequency dy-
namics of the Bethe lattice system as nmom is increased,
without any numerical fitting or analytic continuation,
and without directly ever explicitly resolving any corre-
lated dynamical quantity.

B. One-dimensional Hubbard model

Having considered the expansion of the effective dy-
namics as nmom is increased towards an exact limit in
the Bethe lattice, we now consider the half-filled one-
dimensional Hubbard model. For a single fragment site,
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this model does not result in an exact description as nmom

is increased towards the complete dynamical mean-field
theory, and therefore also requires an expansion in term
of number of sites in the fragment (nf ). This is required
in order to converge to a qualitatively correct description
by explicitly capturing the non-local antiferromagnetic
order. As the model is integrable, exact analytic results
are possible in the thermodynamic limit for many quan-
tities of interest, including the spectral gap and energy
density [61, 62]. These indicate a non-zero gap opening
for all values of U/t > 0. Furthermore, numerically ex-
act results are possible in large lattices with the density
matrix renormalization group (DMRG), which we obtain
via the BLOCK v1.5.0 code [63, 64] in order to provide
an unbiased point of comparison for static quantities.
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FIG. 7. Comparison of the energy per site and double occu-
pancy for the 1D Hubbard chain with different numbers of
fragment sites (nf ) and number of self-consistent moments
(nmom). Also included is a comparison to DMRG values.

These comparisons are shown in Fig. 7, where expan-
sions both in terms of the moment order and the frag-
ment size are considered for a 144 site system with anti-
periodic boundary conditions. For this system, it is found
that the convergence of the effective dynamics in these
quantities is very rapid. However, it is also clear that it
is far more important to converge in terms of fragment
size in order to get good agreement with DMRG values.
The total size of the correlated cluster problem is given
as nc = nf (nmom +1), meaning that (nf = 1, nmom = 7),
(nf = 2, nmom = 3) and (nf = 4, nmom = 1) calcu-
lations all have cluster Hamiltonians of the same size
(eight degrees of freedom). It is clear that better results
come from putting computational effort into increasing
fragment size and therefore non-local correlated physics,
rather than going to higher order in the effective dynam-
ics and fine resolution of the longer-ranged couplings be-
tween the fragment and environment.

We can also observe the effect of fragment size and
moment order on the density of states for this system,
shown in Fig. 8. Here, the single-fragment site results
are shown to be poor, with spectral gaps opening only
at very high values of U/t, and not at all for nmom = 1
(not shown). This is due to the neglect of spin sym-
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FIG. 8. Density of states of the 1D Hubbard chain for a
selection of interaction strengths (U/t), fragment sizes (nf )
and moment expansions (nmom). An artificial broadening of
0.05t in included for presentation purposes. Also shown as red
bars are the Bethe ansatz results for the exact charge gap in
the thermodynamic limit, showing improving agreement with
the EwDMET results for nf = 4.

metry breaking in the paramagnetic phase and the ne-
cessity of larger fragments for explicit antiferromagnetic
order to emerge in the fragment. This mirrors DMFT
results in the literature, which are similarly poor in sin-
gle site approximations, even in this fully dynamical limit
[65]. For larger fragment clusters, the charge spectral gap
is found to be quantitatively accurate compared to the
Bethe ansatze results, as shown in Fig. 8. Once again,
increasing nmom further shows only modest changes in
the spectrum, with the gap and low energy physics well
converged at nmom = 1. This relative unimportance of
the details of the propagator dynamics in this model has
been observed previously [31, 42, 65].

C. Two-dimensional square Hubbard model

The 2D square Hubbard model is a particularly chal-
lenging model of significant interest due to its anticipated
mapping from a number of strongly correlated materials
of interest, including the parent compounds of cuprate
superconductors [66]. Explicit correlations within a 2×2
plaquette of sites are crucial to consider, as these define
the minimal unit cell of many of the ordered states ex-
pected to dominate the physics of the system (although
many are also much larger [23]). This places severe re-
strictions on the ability to solve the cluster model with
reasonable bath sizes. In the paramagnetic phase con-
sidered here, the lack of ability for the environment to
generate static long-range magnetic order ensures that
the model has a finite-U Mott transition driven by the
fragment correlations, which is expected to be represen-
tative of many paramagnetic Mott-insulator transitions
in correlated materials [9, 67, 68].

Figure 9 shows the energy per site for the half-filled
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48×24 site lattice, via EwDMET and DMFT with a 2×2 frag-
ment plaquette. Results are distinguished by the phase of the
converged solution found (metallic or insulating). EwDMET
results are converged for nmom = 1, with four bath orbitals.
Comparison DMFT results are found via exact diagonaliza-
tion and a numerical fit of the Matsubara hybridization at
each iteration to eight bath orbitals.

2D Hubbard model on a 48 × 24 site lattice, a 2 × 2
fragment plaquette, and nmom = 1 (four bath orbitals).
The results show the transition from a metallic phase at
lower interacting strengths, to a paramagnetic Mott in-
sulating phase. For comparison, we also include DMFT
results with eight numerically fit bath orbitals. The first-
order transition point is found to be at Uc ≈ 7.5t, while
the ED-DMFT transition is lower, at Uc ≈ 5.5t. It is
anticipated that enlarging the bath size of DMFT fur-
ther will push the transition point to higher interaction
strengths (towards EwDMET), since using only six bath
orbitals gives a lower DMFT transition of Uc ≈ 5.0t,
while the ω-DMFT approach, where the DMFT bath
space is dynamically adapted for each frequency point,
gives a higher transition point of Uc ≈ 6.25t [42]. Es-
timates for this transition point and plaquette size can
also be found from extrapolation of finite-temperature
DMFT with QMC solvers to zero temperature, yielding
Uc ≈ 5.8t [68]. This suggests that increasing the dy-
namical character of EwDMET would indeed lower the
transition point, but not as much as the DMFT results
of Fig. 9 might suggest. In contrast, the DMET results
in Fig. 5 of Ref. 15 suggest a paramagnetic metal to in-
sulator crossover point at a higher interaction strength
compared to all methods, with Uc ≈ 9.5t. Furthermore,
the DMET also predict an insulating metastable solu-
tion at lower interactions than Uc, which is not found for
either EwDMET or DMFT results.

Finally, we note that the convergence of the algorithm

for all interaction strengths is found to be robust, with
the majority of points reliably converging in ∼ 10 itera-
tions. However, close to the phase transition, where there
are competing low-energy solutions, we note that the
number of iterations substantially increases, to a max-
imum of 130 iterations overall (a similar pattern was also
observed for the nmom = 7 Bethe lattice results). We
anticipate that convergence acceleration schemes such as
DIIS[69], or even simple damped updates to the auxiliary
parameters would improve this convergence speed, as we
are currently using a simple undamped forward iteration
algorithm. These will be investigated in the future, as
ways to accelerate convergence. It should also be noted
that similar to DMET and DMFT, the optimization pa-
rameters (in this case, the auxiliary energies, couplings
and correlation potential), can also be initialized from
prior converged values at ‘nearby’ interaction strengths.
This can improve convergence speed, but more impor-
tantly allow for the following of metastable solutions, as
shown for the metallic state of Fig. 9.

IV. CONCLUSION

In this work we have presented a reformulation of the
energy-weighted density matrix embedding theory (EwD-
MET). This method is now cast rigorously as both a way
to systematically improve the DMET method via a self-
consistent capturing of increasingly long-range quantum
fluctuations out of the fragment space, or as a way to
systematically and rigorously truncate the explicit dy-
namics of dynamical mean-field theory. The approach is
formulated as a ground state, zero-temperature method,
and avoids any necessity for numerically challenging fit-
ting of bath orbitals, a correlation potential, or auxiliary
states, as found in Hamiltonian formulations of DMFT,
DMET, and the original presentation of the EwDMET
method, respectively. The approach therefore combines
many of the strengths of these parent methods, with a
rigorous and algebraic self-consistency which can be ful-
filled exactly.

We extensively benchmark this new EwDMET formu-
lation against a number of Hubbard models in different
physical domains. For the infinitely coordinated Bethe
lattice we show how longer ranged quantum fluctuations
/ implicit higher-order dynamics of the fragment prop-
agator are essential in order to obtain a phase transi-
tion, and observe the ability to converge even the higher-
energy dynamics of the spectrum to excellent agreement
with the exact limit as given by dynamical mean-field
theory. Quantities such as quasiparticle renormalization
and other Fermi liquid parameters can be analytically
extracted from the converged auxiliary space directly at
zero temperature and without fitting or analytic continu-
ation. In the one-dimensional model, the effect of increas-
ing the dynamical resolution is small, allowing EwDMFT
to focus efforts on enlarging the fragment size. This is
achieved for fragments including up to four sites, while
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truncating the dynamics to only nmom = 1 and ensur-
ing a bath space which is rigorously the same size as the
fragment space. These results give excellent agreement
for both the statics compared to DMRG results, and the
charge gap compared to analytic values in the thermo-
dynamic limit. Finally, a 2 × 2 site fragment plaquette
is used for the square 2D Hubbard lattice to find a para-
magnetic metal to Mott-insulator transition. The found
transition point is between the fully dynamical DMFT
result estimated with a finite bath fitting or finite tem-
perature extrapolation and previously reported DMET
results, indicating that increasing the self-consistent dy-
namical resolution will likely lower the transition point.
Nevertheless, even with limited dynamical content, the
results in this challenging case are in good agreement and
benefit from the compact and analytic bath construction
and self-consistency.

The ability to remove all fitting steps or analytic
continuation from this quantum embedding, whilst still
working in a zero-temperature formalism, suggests that
it is an ideal candidate for use with significantly larger
fragment sizes, where fitting difficulties become more se-
rious with alternative approaches. Future work will aim
to move the approach beyond benchmarking, into larger
systems and fragment sizes with a range of Hamiltonian-
based solvers, symmetry-broken phases, doping, and cou-
pling to long-range interacting effects, thereby extending
the scope of this approach beyond the particle–hole sym-
metric, local Hamiltonians considered here.
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Appendix A: The EwDMET bath space as a formal
hybridization expansion

In the earlier work of Refs. 31, 32 the Hamiltonian
of Eq. (15), which includes auxiliary states representing
the effect of the local self-energy on the fragment itself,
was used to construct the bath orbitals, rather than the
Hamiltonian of Eq. (6) used in this work. Previously,
these local auxiliary degrees of freedom were then pro-

jected out of the bath orbitals after their construction
(rather than before, which gives the Weiss Hamiltonian),
in order to avoid a double counting of the local correlation
effects. While this “diagonalize–then–project” scheme
ensures reproduction of the moments of the correlated
lattice, rather that Weiss Hamiltonian, it also leads to
non-normalized bath orbitals, as weight on the bath or-
bitals remains on uncoupled degrees of freedom.

In this work an alternative “project–then–diagonalize”
approach is taken, which is now consistent with the ap-
proach of DMFT. In this, the local auxiliary states are
never added to the Weiss Hamiltonian over the fragment
space, and this is the self-consistent lattice Hamiltonian
from which bath orbitals are constructed. In contrast to
the previous method, the resulting bath orbitals are nor-
malized and result in a systematic matching of moments
of the Green’s function and hybridization. This is shown
in Fig. 10 for the example of the one-dimensional Hub-
bard model, where two auxiliaries at energies ±10−6t and
with coupling strength 0.1t were added for each fragment
consisting of two lattice sites. In addition to guarantee-
ing the exact matching of nmom moments of the Weiss
Green’s function and nmom−2 moments of the hybridiza-
tion, the bath orbitals of the “project–then–diagonalize”
approach also result in lower errors for the higher mo-
ments in an hybridization expansion.
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bridization comparing the “diagonalize–then–project” (d →
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d → p approach does not lead to an exact matching of hy-
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are zero for the half-filled one-dimensional Hubbard-model.



15

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.
70, 1039 (1998).

[2] J. P. Sun, Y. Y. Jiao, C. J. Yi, S. E. Dissanayake, M. Mat-
suda, Y. Uwatoko, Y. G. Shi, Y. Q. Li, Z. Fang, and J.-G.
Cheng, Phys. Rev. Lett. 123, 047201 (2019).

[3] S. Robaszkiewicz and B. R. Bu lka, Phys. Rev. B 59, 6430
(1999).

[4] G. Wang, M. O. Goerbig, C. Miniatura, and
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[18] N. Lanatà, T.-H. Lee, Y.-X. Yao, and V. Dobrosavljević,
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