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In systems of diffusing particles, we investigate large deviations of a time-averaged measure of
clustering around one particle. We focus on biased ensembles of trajectories, which realise large-
deviation events. The bias acts on a single particle, but elicits a response that spans the whole
system. We analyse this effect through the lens of Macroscopic Fluctuation Theory, focussing on
the coupling of the bias to hydrodynamic modes. This explains that the dynamical free energy has
non-trivial scaling relationships with the system size, in 1 and 2 spatial dimensions. We show that
the long-ranged response to a bias on one particle also has consequences when biasing two particles.

I. INTRODUCTION

Simple systems of interacting particles with diffusive
dynamics exhibit a wealth of dynamical fluctuation be-
haviour [1–10]. Of particular interest are large devia-
tions, which involve long-lived fluctuations [11–13], and
are often associated with collective behaviour [5, 7–9, 14–
18]. Large deviations play an important role in statistical
physics, as a way to analyse the thermodynamic limit in
equilibrium systems [11], and the convergence of time
averages (ergodicity) [11–13]

In the dynamical context, an important role is played
by biased ensembles of trajectories, which reveal the
mechanism by which large deviations occur. One intro-
duces a conjugate field for the time-averaged quantity of
interest, and studies the response to this field. Singular
responses can be interpreted as dynamical phase transi-
tions, which can be associated with spontaneous symme-
try breaking [5, 7, 14, 19] and/or long-ranged correla-
tions [9, 17, 20]. An important class of biased ensembles
applies to systems with diffusive dynamics, which can be
analysed by macroscopic fluctuation theory (MFT) [3].
In these systems, the response is controlled by hydrody-
namic modes, which can result in universal predictions
that depend only on the diffusivity and mobility, inde-
pendent of model details [1–3, 17, 21, 22].

Biased ensembles have also been analysed for large de-
viations of the dynamical activity, which is particularly
relevant in glassy systems [23–27] as well as in diffusive
systems [9, 17, 21]. In the glassy context, a bias to low
activity is associated with phase transitions into dynam-
ically arrested states; in diffusive systems one more of-
ten observes transitions into inhomogeneous (or phase-
separated) states [17, 22]. These previous works have
considered the total dynamical activity in large systems,
obtained by summing over all particles (or all sites on a
lattice). In this work we consider large deviations of an
activity-like quantity that involves just one or two tagged
particles, in a large system. (Specifically, we consider a
measure of local clustering in place of a single-particle ac-
tivity, the relation between these quantities is explained
below.) In the associated biased ensembles, the field only

couples to the tagged particle(s), leading to a localized
bias. We find that the response to this local bias is long-
ranged, and spans the whole system.

This result may be unexpected, particularly if one
invokes the analogy between thermodynamic ensembles
and ensembles of dynamical trajectories [11, 25, 28, 29],
where one may expect a localized response to local bi-
asing fields. This work explains that the reason for this
counterintuitive result is the coupling of the bias to hy-
drodynamic modes. We analyse this coupling using MFT
arguments, which we compare with numerical results ob-
tained by transition path sampling (TPS) [23, 30]. Over-
all, these results further emphasise earlier insights that
systems with hydrodynamic modes have characteristic
responses in biased ensembles [3, 12], that may not be
predicted based on analogies with thermodynamic en-
sembles [13]. These effects are particularly strong in low-
dimensional systems, including d = 1 and d = 2. As a
particular example, we show here that applying a weak
bias to two tagged particles (in d = 1) can cause them to
localise near each other, even in a very large system.

To place our results in context, we recall some pre-
vious work on large-deviations of single-particle quan-
tities [8, 31–34]. In one dimension, exact results are
available for large displacements of single tracer parti-
cles, which cannot overtake their neighbours because of
the hard-core interaction [8, 31, 32], and for how locally
induced current affects a system[35]. Hence a large dis-
placement of one particle necessarily involves a large dis-
placement of its neighbours, leading to a long-ranged cou-
pling. By contrast, the fluctuations considered here do
not require a large displacement of the tagged particle,
only that its local environment should be non-typical.
We expand further on this distinction in later sections.
Results for active systems [33, 34] indicate that large de-
viations for single particles are correlated with the be-
haviour of nearby particles, but the issue of long-ranged
correlations has not been discussed in detail. We show
here that such correlations play an important role in the
large-deviation behavior.

The article is organized as follows. In section II we in-
troduce the different models of Brownian particles, and
we define our measures of clustering and the associated
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biased ensembles. In section III we discuss the one-
dimensional version of the model, including the variance
of the clustering and its large deviations; we also com-
pare the results with predictions from MFT. In section
IV we investigate the effects of biasing two particles at
once. Section V discusses clustering around one particle
in two dimensions. Finally in section VI we discuss the
implications and conclude.

II. DEFINITIONS

A. Model

We consider models of interacting particles in d spatial
dimensions, specifically d = 1 and d = 2. The number of
particles is N and the position vector of the ith particle
is xi, which lies within a periodic box of volume Ld. The
mean density is

ρ0 =
N

Ld
. (1)

The overdamped Langevin equation governing the move-
ment of particle i is

ẋi = −βD0∇iU +
√

2D0ηi , (2)

where ηi is a Brownian white noise, D0 is the (bare)
diffusion constant of these particles, β the inverse tem-
perature, and U the interaction energy, which is of the
form

U =
∑

1≤j<k≤N

v(|xj − xk|) . (3)

Here v(r) is a short-ranged interaction potential.
For d = 1 we take a hard-core interaction such that

the particles have size l0:

v(x) =

{
0, x > l0 ,

∞, x < l0 .
(4)

The consistency of this potential with (2) is ensured by
using a Monte Carlo (MC) dynamics to approximate the
Langevin dynamics [36], as in [17]. The maximal step
size for the trial MC moves is a. We take a < l0 so
particles cannot pass each other, and it is consistent to
order their positions such that x1 < x2 < . . . , modulo
periodic boundaries. It is also useful to define a reduced
system size

Lr = L−Nl0 (5)

and a corresponding set of positions x̃j = xj − jl0 such
that x̃1 < x̃2 < . . . and every x̃j ∈ [0, Lr). The relation
between the reduced system and the original one is dis-
cussed in [17], a useful feature of the reduced system is
that the Boltzmann distribution for its equilibrium state

has particles distributed as an ideal gas (as long as the
labels j are ignored).

For d = 2 we consider a Weeks-Chandler-Andersen
(WCA) potential [37] of strength ε and range l0:

v(r) =

{
4ε
[
(l0/r)

12 − (l0/r)
6
]

+ ε , r < 21/6l0 ,

0 , r > 21/6l0 .
(6)

In this case we integrate the equation of motion (2) using
the Euler-Maruyama method [38]. For both cases, the
natural time unit is the Brownian time

τB =
l20

2D0
. (7)

We explain below (Sec. III A) that the behaviour dis-
cussed here depends weakly on the specific shape of
the potential, and similar results would be expected for
any system with sufficiently strong short-ranged repul-
sive forces. For numerical work we set the unit of length
by taking l0 = 1, but for theoretical analysis we retain
this quantity as an explicit parameter. Likewise we set
β = 1 in numerical work.

B. Time-averaged clustering around a tagged
particle

As anticipated above, we focus on rare events where
a single tagged particle behaves in a non-typical way.
Specifically, we define measurements of clustering, which
depend on the local environment of the tagged particle,
and are sensitive to whether the local density is higher
or lower than the average. Supposing that the tagged
particle has index i, we denote the local clustering at
time t by ci(t). Specific expressions are given in (10,14)
below.

Now define the observation time tobs, and the time-
averaged measure of clustering as

c[x] =
1

tobs

∫ tobs

0

ci(t)dt (8)

where the notation [x] indicates that this quantity de-
pends on the trajectory followed by the stochastic dy-
namics, over the time period [0, tobs]. As tobs → ∞,
this (random) quantity obeys a large deviation principle
(LDP) which means its probability density scales as

p(c|tobs, L) ∼ e−tobsIL(c), (9)

where IL(c) is the rate function. (Note, the limit tobs →
∞ is being taken at fixed system size L.)

The rate function determines the probability of rare
events where c[x] is non-typical, which means that the
tagged particle is in a region where the density deviates
significantly from its average, over a long time period.
Previous work has considered large deviations of the dy-
namical activity [9, 17, 39, 40], which are closely related
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to large deviations of c[x]. In particular, trajectories with
high clustering have low dynamical activity.

However, we emphasise that the clustering considered
here is a single-particle quantity, in contrast to previous
work on the total activity of the system [9, 17, 39].

1. Clustering in one dimension

The clustering for the 1d model is measured over a
length scale a that is of the same order as the particle
size l0. In numerical work we take (a/l0) = 0.1. The
clustering is defined as

ci(t) = 1− rai (10)

where we note that a is a label (not an exponent), and

rai =
1

2a

[
min(a, |xi − xi+1| − l0)

+ min(a, |xi − xi−1| − l0)

]
(11)

is the fraction of free (unoccupied) space in a region of
size 2a, centred on the tagged particle. (The parameter
a is the same as the maximal MC step, so that rai coin-
cides with the probability that a trial move for particle i
is accepted, this allows a connection between clustering
and dynamical activity, see [17]. The activity of particle
i considered in that work corresponds to 1−ci in the cur-
rent notation.) Following [17], the equilibrium average of
ci is

ceq(ρ) =
ρa− 1 + e−ρa

ρa
. (12)

At low density ρa � 1, the clustering ceq ≈ ρa/2 � 1.
For high density (ρ → ∞) then ceq → 1, which is the
maximal possible value.

2. Clustering in two dimensions

To measure clustering in 2d, we first define a measure
of proximity between particles i and j as

Qi,j =


1
2 , |xi − xj | ≤ l0

2

|xi − xj |/l0, l0
2 < |xi − xj | ≤ l0

0, |xi − xj | > l0 .

(13)

Considering the particles as discs with diameter l0, this
measures the extent to which two particles overlap each
other, with a cutoff value of 1

2 when they get very close.
Then the clustering for particle i is

ci =
∑
j(6=i)

Qi,j (14)

(The sum runs over all particles j except j = i.)

C. Biased ensembles

We investigate the rare (large-deviation) events as-
sociated with the distribution (9) using biased ensem-
bles of trajectories, defined according to standard meth-
ods [12, 29, 41]. For the natural (unbiased) dynamics of
the system, the average of an observable quantity O is
denoted by

〈O〉0 =

∫
Dx O[x]e−S0[x] (15)

which is a path integral over all possible trajectories of
the system, whose probabilities are given by the action
S0[x] which is defined as

S0[x] =
∑
i

∫ tobs

0

(ẋi + βD0∇iU)2

4D0
dt . (16)

Now consider an ensemble in which the probability of
trajectory x is biased according to its clustering. The
probability density for this trajectory is

Ps[x] =
1

Zs
P0[x]estobsc[x], (17)

where P0 is the unbiased probability and the normalisa-
tion constant is

Zs =
〈

estobsc[x]
〉

0
(18)

Note that the biased ensemble (17) is defined so that
s > 0 corresponds to larger clustering. Since clustering is
anti-correlated with dynamical activity, this means that
s > 0 corresponds to reduced activity, similar to [9, 17,
23, 25, 39, 40].

By analogy with (15), averages in the biased ensemble
are given by

〈O〉s =
1

Zs

∫
Dx O[x]e−S0[x]+stobsc[x] . (19)

Investigating such biased ensembles provides insight
into the rare fluctuations of the unbiased ensemble. One
can invoke an analogy between these biased ensem-
bles and canonical ensembles in statistical mechanics,
see [11, 42] for a discussion. This motivates us to de-
fine the dynamical free energy,

ψL(s) = lim
tobs→∞

1

tobs
lnZs . (20)

The rate function of (9) can be obtained from the free
energy by Legendre transform IL(c) = sups[sc − ψL(s)].
The dynamical analogue of the thermodynamic (average)
energy density is

〈c〉s = lim
tobs→∞

1

Zs

∫
Dx c[x]e−S0[x]+stobsc[x] (21)
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which satisfies 〈c〉s = ψ′L(s). The average is over trajec-
tories of fixed length tobs so this quantity depends im-
plicitly on tobs, as well as the parameters of the model.
The dynamical analogue of the specific heat capacity is
the asymptotic variance of the clustering

χL(s) = lim
tobs→∞

tobs

(
〈c2〉s − 〈c〉2s

)
(22)

which satisfies χL(s) = ψ′′L(s). For future reference it is
useful to define the finite-time analogue of this quantity

χL(s, tobs) = tobs

(
〈c2〉s − 〈c〉2s

)
. (23)

D. Biased ensembles in the thermodynamic limit:
long-ranged correlations and hydrodynamics

The LDP (9) describes the probabilities of rare events
in the limit tobs → ∞. The rate function for this LDP
depends on the system size L. Our focus will be on the
nature of these rare events for large systems, that is L→
∞ with a fixed (overall) density ρ0.

Recall that the clustering ci in (8) only depends on a
single particle and its local environment. In this case,
one might expect that the fluctuations of this particle
are independent of the system size, in which case there
would be a non-trivial limiting rate function I∞(c) =
limL→∞ IL(c).

This paper shows that this (very natural) expectation
is wrong for the systems under consideration, and we ar-
gue that this feature is rather general. Instead, the large-
deviation events associated with (9) depend significantly
on the system size and involve correlations of the tagged
particle with all the other particles in the system. In
terms of the rate function, we find for d = 1 and L→∞

IL(c) ≈ 1

L
I(c) (24)

with I(c) = O(1), so large-deviation events are less rare
in larger systems. (The approximate equality is accurate
when L is large.) The corresponding result for the dy-
namical free energy is obtained by Legendre transform,

ψL(s) ≈ 1

L
Ψ(sL) , (25)

valid for sL = O(1) as L→∞.
Physically, these scaling forms appear because large-

wavelength density fluctuations in the system are as-
sociated with very long (hydrodynamic) time scales,
which couple strongly to time-averaged quantities like
(8). Since the hydrodynamic modes involve long-ranged
correlations of the density, this means that biased en-
sembles such as (17) are characterised by system-wide
responses to the bias, even though c[x] is a single-particle
quantity.

To see how hydrodynamic time scales affect the large
deviations, note from (25) that χL(0) = ψ′′L(0) = O(L).

Hence by (22), the asymptotic variance of the clustering
diverges in large systems. Using (8) with (22) one sees
that

χL(s) =

∫ ∞
−∞

[
〈ci(t)ci(0)〉s − 〈c〉2s

]
dt . (26)

The integrand is a correlation function that is always less
than unity, so the divergence of χL(0) as L → ∞ must
be due to slowly decaying correlations, which originate
in hydrodynamic modes, as we shall see below.

III. BIASING ONE PARTICLE IN ONE
DIMENSION

We consider the system in d = 1. On large scales,
the hydrodynamic behavior is that of a diffusing density
field. There is a corresponding hydrodynamic time scale

τL =
L2
r

2D0
, (27)

which diverges with the system size. When considering
biased ensembles of trajectories, it is useful to define a
dimensionless observation time

γobs =
tobs

τL
. (28)

In numerical work, we compare different system sizes at
fixed γobs (as well as fixed density ρ0). This requires
very large observation times tobs when considering large
systems, but is essential for a meaningful finite-size scal-
ing analysis. For the large-deviation limits of (9,20), the
parameter γobs should also be large. Anticipating the
scaling form (25), it is useful to define a rescaled (and
dimensionless) biasing field

µ =
sLra

D0
. (29)

We present numerical results obtained by transition
path sampling (TPS), as implemented in [17]. This en-
ables sampling of representative trajectories from (17),
for ensembles with prescribed L, tobs. Fig. 1 shows rep-
resentative trajectories for different values of µ, corre-
sponding to clustering that is larger or smaller than av-
erage. It is clear that biasing the tagged particle leads to
a response that spans the whole system – the particle is
either embedded in a macroscopic cluster of particles, or
in a macroscopic void with very few particles.

A. Hydrodynamic theory

To understand the behavior shown in Fig. 1, we outline
a fluctuating hydrodynamic theory for this system [1, 9,
17]. This establishes the scaling of (25), and clarifies its
relationship with long-ranged density fluctuations.
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Figure 1. Typical trajectories from biased ensembles in one dimension. (a) µ = −48, biased to low clustering; (b) µ = 0,
unbiased dynamics; (c) µ = 48, biased to high clustering. The ensembles are biased by properties of a single tagged particle
(shown in red), which elicits a system-wide response. Systems have N = 28 particles at density ρ0 = 7/3. This same density
is used for all numerical results in one-dimensional systems. The time is in units of τB and x is in units of l0.

The hydrodynamic theory is expressed in terms of a
coarse-grained density field which is defined by averaging
over a mesoscopic spatial region of size Ω:

ρ(x, t) =
1

Ω

∫ x+Ω/2

x−Ω/2

∑
i

δ(y − x̃i(t))dy (30)

Note we use co-ordinates in the reduced representation,
so x ∈ [0, Lr). The dynamics of ρ obeys a continuity
equation

∂ρ

∂t
= −∇ · j . (31)

Given the diffusive dynamics of the system, it it is con-
sistent to assume that

j = −D(ρ)∇ρ+
√

2σ(ρ) η (32)

where D(ρ) and σ(ρ) are a diffusivity and a mobility,
and η is a space-time white noise with mean zero and
〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′). These equations
can be derived by considering the empirical density and
current and taking the hydrodynamic limit, [43].

In general, we note this hydrodynamic framework
(which comes from MFT) is a robust and general the-
ory for diffusive systems. The functions D,σ depend on
microscopic details of the system (for example, the inter-
action potential between particles), but in many cases,
the dependence of these functions on ρ cannot be derived
from first principles. However, one may still derive and
exploit generic predictions for hydrodynamic behaviour,
so that many different aspects of the system behaviour
can all be expressed in terms of these two functions.

When considering the density field, the particles are in-
distinguishable. As discussed in [17], this means (for the
specific system considered here) that trajectories in this
reduced representation are in one-to-one correspondence
with an ideal gas of diffusing particles, and hence

D(ρ) = D0, σ(ρ) = ρD0 , (33)

100 103

tobs

10−3

10−2

10−1

χ
L
(0

)

(b)

N=21

N=28

N=35

N=42

N=49

N=56

10−2 101

tobs/L
2
r

10−4

10−3

10−2

χ
L
(0

)/
L
r

(a)

N=21

N=28

N=35

N=42

N=49

N=56

Figure 2. Scaled variances of c[x] in unbiased dynamics, as
defined in (23), for increasing system sizes. Panels (a) and (b)
illustrate the slow and fast scaling regimes of (37) respectively.
The average density is ρ0 = 7/3.

Since this theory is valid on hydrodynamic time scales,
it is also convenient to define rescaled coordinates

x̂ =
x

Lr
, t̂ =

t

τL
, (34)

and a rescaled current ̂ = jτL/Lr. (Note however that
the density is not rescaled.)

B. Hydrodynamic scaling for typical fluctuations

To connect this theory with fluctuations of c[x], it is
useful to decompose ci(t) into slow (hydrodynamic) and
fast contributions as

ci(t) = cslow
i (t) + cfast

i (t) (35)
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where cslow
i = ceq(ρ(xi)) is the average clustering in a

system whose density is ρ(xi) [recall (12)], while cfast is
the remainder. Writing ρ(xi) = ρ0 + δρ(xi), the typical
size of the fluctuations is δρ = O(L−1/2). (We assume
the mesoscopic length Ω = O(L) as we take the hydrody-
namic limit.) Then cslow

i ≈ ceq(ρ0) + δρ(xi)c
′
eq(ρ0). For

a simple analysis, assume that cfast and cslow are statis-
tically independent; then (23) becomes

χL(0, tobs) =
c′eq(ρ0)2

tobs
Var

[∫ tobs

0

δρ(xi(t))dt

]
+

1

tobs
Var

[∫ tobs

0

cfast(t)dt

]
. (36)

The object in the second line is a fast contribution which
is independent of L, it increases as a function of tobs and
saturates to a limiting value χfast. Such a contribution is
present in all systems and intuitively would be the only
one present in a simple system without slow hydrody-
namic modes. By contrast, the first line is specific to
systems with hydrodynamic modes: the typical size of
the density fluctuation is O(L−1/2) so this contribution
is O(1/L) for short and moderate tobs, hence negligible
with respect to the fast term. However, the slow (dif-
fusive) relaxation of ρ means that the variance in the
first line is a scaling function of tobs/τL, so for tobs →∞
it scales as τL × O(1/L) = O(L). This separation of
timescales is related to the onset of local equilibrium in
fluids first remarked upon by Bogoliubov [44, 45]. On
time scales where the average distance diffused by a par-
ticle is smaller than the interparticle separation, local
equilibrium is not established yet and the variance fol-
lows cfast. When the average distance diffused becomes
larger than the interparticle separation, local equilibrium
is established. The particle then is affected by the entire
system and the clustering scales as cslow. Hence indeed
χL(0) = O(L), consistent with (20,22).

To summarise, the fast term dominates for tobs = O(1)
while the slow term dominates at large times:

χL(0, tobs) =

{
ffast(tobs), tobs = O(1),

Lrfslow(tobs/τL), tobs = O(L2
r ) .

(37)

where ffast, fslow are scaling functions. Fig. 2 illustrates
these two scaling regimes.

The conclusion of this section is that understanding
typical fluctuations of c[x] already requires an analy-
sis of hydrodynamic modes. We have shown that the
asymptotic variance of this single-particle quantity di-
verges with system size. The consequences of hydrody-
namic modes for large deviations will be discussed next.

C. Hydrodynamic theory of large deviations

We formulate a path integral for the density and cur-
rent. Since the system also includes a tagged particle,

−50 0 50 100 150

µ

0.0

0.2

0.4

0.6

0.8

〈c
〉 s

MFT analytic solution

N = 21

N = 28

N = 35

N = 42

Figure 3. Mean clustering 〈c〉s = ψ′L(s), plotted as a function
of the scaling variable µ for different system sizes. (Here and
throughout, symbols show numerical results for the biased en-
semble described by (19).) The scaling collapse illustrates the
form (25). The analytic solution is based on the minimisa-
tion problem (41), which is solved by minimising (45,48) over
χ and χ1 respectively to obtain the density profile ρ. Using
this calculation the corresponding activity is obtained from
(12) with ρ = ρp. We take γobs = 0.07 and ρ0 = 7/3.

this has to be considered separately in the path inte-
gral. However, since particles cannot pass each other,
the typical displacement of the tagged particle is subdif-
fusive [8, 32], and it is consistent to treat that particle as
stationary on the hydrodynamic scale, with a fixed po-
sition Xp. We also define ρp = ρ(Xp) as the density in
the vicinity of the tagged particle, and we estimate the
time-averaged clustering as

c[x] =
1

γobs

∫ γobs

0

ceq(ρp)dt̂ (38)

where ceq(ρ) was defined in (12) as the average cluster-
ing for a particle in equilibrium at density ρ. The es-
timate (38) is accurate in the hydrodynamic limit be-
cause the particle explores its (locally-equilibrated) envi-
ronment on a time scale that is fast compared with τL. It
amounts to replacing ci by cslow

i , which is valid because
the slow modes are the dominant source of fluctuations
when tobs is large, recall (36).

Then, the path integral on the hydrodynamic scale,
analogous to (19), is

〈O〉s =
1

Zs

∫
D(ρ, j) O[ρ, j]e−S[ρ,j,xc]δ

(
dρ

dt̂
+∇ · ̂

)
(39)

where the delta function restricts the integral to paths
that obey the continuity equation (31), and Zs =∫
D(ρ, j) e−S[ρ,j,xp]δ(dρ

dt̂
+ ∇ · ̂) is a normalisation con-
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stant. Also

S[ρ, j, xp] = Lr

∫ γobs

0

∫ 1

0

D0
|̂+ ∇̂ρ/2|2

2σ(ρ)
dx̂dt̂

− µLr

2a

∫ γobs

0

ceq(ρp)dt̂ (40)

where boundary terms have been neglected. The first
line of this expression is familiar from Macroscopic Fluc-
tuation Theory [1], the second uses (38).

Note that (19) and (39) are different ways of defin-
ing biased ensembles of trajectories: the first is used for
particle models and the second for hydrodynamic theo-
ries (MFT). To the extent that the hydrodynamic theo-
ries represent accurately the underlying particle models,
we expect the two definitions to result in the same be-
haviour. The numerical simulations in this work are all
obtained for particle models, using (19). The MFT re-
sults consistently use (39). Several figures (including for
example Fig. 3) test the extent to which the two descrip-
tions agree with each other.

At hydrodynamic level, the dynamic free energy is
ψL(s) = limtobs→∞(1/tobs) lnZs, analogous to Eqn. (20).
For large L, this may be obtained by a saddle-point
method. For s = 0 the action is minimised by a constant
density ρ = ρ0 with j = 0. The bias s does not break
time-reversal symmetry so one has generally that j = 0
and that the optimal trajectory is constant in time, but
the optimal ρ may depend on x. Hence by minimising
the action one has for large L that

ψL(s) =
−D0

Lr
min
ρ(x̂)

[ ∫ 1

0

|∇̂ρ|2
4ρ

dx̂− µceq(ρp)

a

]
(41)

where we used (33) to substitute for σ(ρ). The value of
Xp is irrelevant for the minimization.

This minimization problem will be considered next,
but it is already clear from this expression that ψL obeys
the scaling form (25).

Numerical evidence for this scaling form is shown in
Fig. 3 which shows 〈c〉s = ψ′(s), which is indeed of the
form 〈c〉s = fc(µ), where fc is a scaling function and the
scaling variable µ was defined in (29).

We now solve the variational problem (41). The posi-
tion x̂ ∈ [0, 1) is measured relative to the tagged particle,
so Xp = 0. Considering the functional derivative with
respect to ρ(x̂) one obtains (for x̂ 6= 0):

− ∇̂
2ρ(x̂)

2ρ(x̂)
+

(∇̂ρ(x̂))2

4ρ(x̂)2
= −χ2, (42)

where χ2 is a lagrange multiplier that ensures conser-

vation of the number of particles,
∫ 1

0
ρ(x̂)dx̂ = ρ0. For

µ > 0, the general solution of (42) is

ρ(x̂) = A [cosh(2χ(B + x̂)) + 1] (43)

with integration constants A,B.
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µ
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15.0

〈ρ
p
−
ρ̄
〉 s

(a)

MFT analytic solution

N=21

N=28

N=35

N=42

0.0 0.2 0.4 0.6 0.8 1.0
x̂

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ρ

(b) µ = 54

Analytics

N=42, Sim

N=21, Sim

Figure 4. (a) Average density ρp as a function of the bias
µ from numerical simulations, compared with the analytic
solution of the variational problem (41), see (45,48). (b) The
corresponding density profiles: numerical results have system
size N = 42 and µ = 54. In this figure we take Xp = 0.5, the
analysis in the main text uses Xp = 0, which can be recovered
by a simple translation in space. We take γobs = 0.07 and
ρ0 = 7/3.

To gain insight into the minimization problem (41), it
can be useful [22] to draw an analogy between the spatial
profile ρ(x) and a trajectory of a particle in classical dy-
namics. The analogy identifies x and ρ(x) with t and q(t),
where t is a time variable and q a position co-ordinate. So
∇ρ is identified with the velocity q̇(t). Within this map-
ping then (41) becomes the classical action for a dynami-
cal system, expressed as the time integral of a Lagrangian
L(q, q̇, t) where (assuming as before that the probe parti-
cle is localised at the origin) the explicit time-dependence

of the Lagrangian appears in a term −µceq(q)
a δ(t).

Incorporating as before the normalization constraint
on ρ by the Lagrange multiplier χ2, the corresponding
Hamiltonian can be constructed as H(q, π, t) = qπ2 +

χ2q +
µceq(q)

a δ(t) where π = ∂L
∂q̇ = q̇/(2q) is the momen-

tum variable conjugate to q. Since the Hamiltonian only
depends on t via the delta function at t = 0, the energy
is conserved along the trajectory (except at t = 0). Such
an approach allows the second-order differential equation
(42) to be converted to first-order form, with the value of



8

the energy entering as one of the integration constants.
The value of this energy can be obtained by using the
fact that the action is to be minimized over periodic tra-
jectories (with a period of unity), because of the periodic
boundaries of the original spatial model.

In the present context, this analogy with dynamical
systems provides one possible way to derive (and inter-
pret) the general solution (43), as well as the correspond-
ing result (46) below, which is relevant when χ2 < 0.

With the solution (43) in hand, we next observe that
the minimiser of (41) is symmetric about x̂ = 1

2 and has
ρ(0) = ρ(1) from which we find B = −1/2. For µ > 0
then ρ(0) > ρ0 which corresponds to χ2 > 0. Enforcing
the constraint on the mean density we find

A =
ρ0χ

χ+ sinhχ
(44)

The object to be minimised in (41) becomes

S

LrtobsD0
= χA(sinhχ− χ)

+ µ/a
Aa coshχ− 1 + exp(−Aa coshχ)

Aa coshχ
(45)

This expression can be minimised numerically over χ sub-
ject to (44) and hence a density profile for ρ is found. (In
the analogy with the classical Lagrangian, this minimiza-
tion accounts for the effects of the delta-forcing term in
H at t = 0.)

For µ < 0 it is necessary to take χ2 < 0 so we define
χ1 = −iχ. (42) then becomes

ρ(x̂) = A [cos(2χ1(B + x̂)) + 1] (46)

The equation for A becomes

A =
ρ0χ1

χ1 + sinχ1
(47)

The expression for S with negative bias becomes

S

LrtobsD0
= χ1A(χ1 − sinχ1)

+ µ/a
Aa cosχ1 − 1 + exp(−Aa cosχ1)

Aa cosχ1
(48)

A similar situation with cosine and cosh profiles was
found in [19] for the distribution of two particles that
are biased to be more or less frequently in contact with
each other.

D. Comparison of analytic and numeric results

We now compare our analytical predictions with re-
sults from simulations. We emphasise that our theoret-
ical approach requires that L is large (to justify the hy-
drodynamic approach) and also that γobs →∞, to ensure
that trajectories are longer than the relevant relaxation

times (including τL), so that the system is in the large-
deviation regime. For numerical simulations, the results
are obtained by TPS, which limits the accessible values
of L and γobs. We perform finite-size scaling in L with
fixed density ρ0 and fixed γobs: this already necessitates
trajectories of length tobs ∼ L2, due to (28). In these one-
dimensional systems, we find that taking N = ρ0L in the
range 20 − 40 is sufficient to observe clear signatures of
hydrodynamic scaling. In all numerical results, we em-
phasise that density ρ0 is fixed, so that L and N are both
increasing together. Hence finite-size scaling arguments
can be equivalently expressed in terms of increasing L
or increasing N . For the trajectory length, numerical
results are obtained at γobs = 0.07: while this is not nu-
merically large, previous work [17] found this value suf-
ficient for semi-quantitative agreement with predictions
of the hydrodynamic large deviation theory, at manage-
able computational cost. Still, one should bear in mind
that neither L nor γobs are large enough to expect fully
quantitative agreement between theory and simulation.

Results for the dependence of 〈c〉s on s and L were
shown already in Fig. 3 above, showing the data collapse
as a function of the scaling variable µ from (29). Com-
paring now with the hydrodynamic theory, the analytical
results agree with the data for small bias: there are small
differences which can be attributed primarily to the finite
values of L and γobs used in the numerical simulations.

For larger positive bias, the agreement worsens: this
may be partly attributable to deviations from the hy-
drodynamic theory when density gradients become too
large, see for example [17]. This effect is in addition to
the finite size issues mentioned above which are accen-
tuated at larger µ. We also checked that the analytical
results (43,46) agree with direct numerical optimisation
of (25), via spatial discretisation of ρ(x).

Analytical and numerical results for the density in the
vicinity of the tagged (probe) particle are shown in Fig.
4, including its dependence on µ. The density profile is
also shown, as a function of the distance from the probe.
There is semi quantitative agreement between the nu-
merical and analytical results. As before, we attribute
this to corrections from finite L and γobs. An additional
caveat is that the theory assumes that the probe particle
is stationary, and that the presence of the probe does not
itself affect the local density. Both of these assumptions
should be valid in large enough systems, but there will be
deviations at finite L: these are examples of effects that
contribute to deviations between theoretical and numer-
ical results.

E. Discussion – long-ranged response to localised
bias

There are two important results of the analysis so far.
Firstly, Eq. (41) and Fig. 3 show that the response to
the bias s depends on the scaling parameter µ ∝ sL.
This means that ψL(s) does not converge to a smooth
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Figure 5. Typical trajectories for different levels of bias with two tagged particles in a system with N = 42 at (a) µ = −10.6,
(b) µ = 0 and (c) µ = 10.6. (a) With large negative bias the tags on the particles are localized in a region of low density. (b)
With no bias the tags diffuse freely around the system. (c) With large positive bias the tags diffuse in a very dense region. The
density of the system is ρ0 = 7/3 and we take γobs = 0.07. The time is in units of τB and x is in units of l0.

(analytic) function as L → ∞. The second important
result is Fig. 4(b) which shows the physical reason for
the scaling behaviour: the bias acts on one particle but
it generates a response in the particle density that covers
the whole system, even as L→∞.

In the analogy between thermodynamic ensembles and
biased trajectory ensembles [11, 25, 29], ψL(s) corre-
sponds to the free energy, which would be expected to
have an analytic limit as L → ∞ (unless the system is
exactly at a phase transition). Similarly, in thermody-
namic systems, applying a localized bias would be ex-
pected to yield a localized response, except in unusual
circumstances involving phase transitions or phase coex-
istence.

Hence, our results show that properties of trajectory
ensembles cannot always deduced from the analogy with
thermodynamics. In the dynamical context, hydrody-
namic modes can mediate long-ranged responses to local-
ized bias, and to non-analytic free energies. For systems
with such modes, we conclude that some care is required
when making analogies between thermodynamic ensem-
bles and biased trajectory ensembles. We are not aware
of analogs of these hydrodynamic effects in the thermo-
dynamic context.

It is also useful to compare the results so far with
trajectory ensembles that are biased by the total activ-
ity [5, 9, 17, 21], instead of biasing a single particle. In
that case the free energy ψ is a scaling function of sL2

(instead of sL) and the scaling function has an additional
singularity which corresponds to a spontaneous symme-
try breaking, where the system becomes inhomogeneous.
In the present context, translational symmetry is explic-
itly broken by the choice of probe particle, and the system
becomes inhomogeneous as soon as µ 6= 0. From our re-
sults, the scaling function Ψ in (25) does not appear to
have any singularity.

IV. BIASING TWO PARTICLES IN ONE
DIMENSION

Given that long-ranged correlations appear on bias-
ing a single tagged particle, one may expect interest-
ing collective effects between multiple tagged particles,
see also [46]. We illustrate this by considering two tags.
Since particles cannot pass each other in this 1d system, it
is convenient to consider tags that can be transferred be-
tween different particles. Specifically, if a tagged particle
is separated by less than a from an untagged particle, the
tag is transferred between them with rate D0/l

2
0. (This

rate is chosen so that the diffusive motion of the tag in a
dense region of the system is comparable to the diffusion
constant of a single particle in a dilute region.)

Let the indices of the tagged particles be p1(t) and
p2(t), so cp1(t)(t) is the analogue of ci(t) considered in
Sec. III. Then the analogue of (8) is

c[x] =
1

tobs

∫ tobs

0

[
cp1(t)(t) + cp2(t)(t)

]
dt . (49)

Representative trajectories in ensembles biased by this
c[x] are shown in Fig. 5, which may be compared with
Fig. 1. For the unbiased (equilibrium) ensemble both
the tags and the particles diffuse freely. On biasing the
tagged particles to increased clustering, the tags tend to
localise in a single dense region, since this is an efficient
way for both tagged particles to have large cp. Similarly,
on biasing the system to reduced clustering, the two tags
tend to localise in a single region of low density, this has
some similarities with [46].

A. MFT analysis

It is striking that the two tags evolve almost indepen-
dently in the unbiased system but they become strongly
correlated when the bias is introduced. To analyse this,
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Figure 6. Numerical results for the average distance between
two tagged particles, z = |x̂1−x̂2| where the system is periodic
with size 1 and we use the minimal image convention for the
distance, so z ∈ [0, 0.5]. Results are obtained by simulation
of the particle model and are shown at different levels of bias
µ. The two panels show a transition between two regimes,
where the separation is order L (so z = O(1) at small bias)

or of order L2/3 (so z = O(L−1/3) at large bias). We take
γobs = 0.07 and ρ0 = 7/3.

we generalise the action (40) to include the positions of
the tagged particles: the resulting action is S =

∫ γobs
0
Ldt̂

with

L[ρ, ̂, X̂1, X̂2] = Lr

∫ 1

0

(̂+ ∇̂ρ/2)2

2ρ
dx̂

− Lrµ

2a
c(ρ1, ρ2) +

D0

2Dt

(
˙̂
X2

1 +
˙̂
X2

2

)
(50)

where X̂1 and X̂2 are the (hydrodynamically-rescaled)
positions of the tags that diffuse, c(ρ1, ρ2) = ceq(ρ1) +
ceq(ρ2) and ρ1,2 = ρ(X1,2); also Dt is the tag diffusion
constant, and the dots indicate time-derivatives (with re-
spect to t̂). The tags can diffuse either by particle dif-
fusion or by transfer of the tag between particles – for
simplicity we take Dt as a simple constant, independent
of density.

In contrast to the one-particle case, the tagged particle
motion cannot be neglected, so obtaining the dynamical
free energy requires integration over the trajectories for

ρ, j and also the tag trajectories. As in the one-particle
case, the density and current integrals can be performed
by the saddle-point method – we assume for simplicity
that the density and current do not depend on time (con-
sistent with Fig. 5). This leads to a path integral for the

tag positions Zs =
∫
D(X̂1, X̂2)e−S2 with

S2 =

∫ γobs

0

[
D0

2Dt

(
˙̂
X2

1 +
˙̂
X2

2

)
+ LrVµ(X1 −X2)

]
dt̂

(51)
where

Vµ = inf
ρ

[ ∫ 1

0

|∇̂ρ|2
8ρ

dx̂ − µ

2a
c(ρ1, ρ2)

]
(52)

only depends on the separation of the particles X1−X2,
by translational invariance.

The action (51) describes a biased ensemble of trajec-
tories for two tags with positions X1,2 that diffuse freely.
The corresponding biased ensemble is similar to (17) with
reweighting factor exp[−s

∫
V (X1(t)−X2(t))dt]. Instead

of analysing this system via the path integral, the dynam-
ical free energy ψ(s) obeys an eigenvalue problem based
on the underlying Fokker-Planck equation [13], which in
this case is

− Dt

D0
P ′′(y) + LrVµ(y)P (y) = ψL(µ)P (y), (53)

where y = X̂2 − X̂1 is the particle separation and P (y)
is the eigenvector.

The periodic boundary conditions mean that the tags
can be considered as moving on a circle, and the sep-
aration is measured clockwise from particle 1 to parti-
cle 2, hence 0 < y < 1. The tags cannot pass through
each other so y(t) has reflecting boundary conditions at
y = 0 and y = 1. Hence (53) is to be solved sub-
ject to P ′(0) = 0 = P ′(1) [47]. The symmetry of
the problem means that the dominant eigenvector has
P (y) = P (1 − y), it is sufficient to solve on the domain
0 < y < 1

2 with P ′( 1
2 ) = 0.

Equ. (53) has the form of a (time-independent)
Schrödinger equation in which the potential is multiplied
by a large parameter Lr. For the unbiased dynamics
s = 0 (so µ = 0) then Vµ = 0 and the eigenvector
P (y) = 1 is constant. On the other hand, for s 6= 0,
the expected behaviour from Fig. 5 is that the tags tend
to localise near y = 0 or y = 1. This effect is independent
of the sign of s : the reason is that the two tagged par-
ticles can both benefit from the same region of reduced
(or increased) density, so both kinds of bias cause them
to co-localize.

The function Vµ could be computed numerically, but
the qualitative behaviour of the system can be deduced
by the following simple argument: Vµ has a minimum
at y = 0 and can be approximated as Vµ(y) = −V 0

µ +

yV ′µ(0) + O(y2) with V 0
µ , V

′
µ(0) > 0 both dependent on

µ. As Lr → ∞, the tags localise near y = 0 (or y = 1)
so this approximate form of Vµ is sufficient to determine
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Figure 7. The mean clustering around the two travelling tags
for different system sizes, obtained by numerical simulation
of the particle model. The clustering is a continuous function
of µ and confirms that in this system we still have a scaling
function ψL = 1

L
F (µ), similar to (25). Error bars are shown

except where they are smaller than symbol sizes. We take
γobs = 0.07 and ρ0 = 7/3.

the eigenvector. In particular Equ. (53) reduces to the
Airy equation and the dominant eigenfunction is the Airy
function of the first kind [48]

P (y) = C1 Ai

[(
D0LrV

′
µ

Dt

)1/3

y + C2

]
, (54)

where C1, C2 are constants. Similar distributions appear
in other large-deviation problems, for example [49–51].
For these, C2 is determined by the boundary condition
P ′(0) = 0, which requires that the rightmost maximum of
the Airy function is at y = 0 [49]; then C1 is determined
by normalisation. One sees from this eigenfunction that if
Vµ = O(1) (corresponding to µ = O(1)) then the typical

distance y between the tags is y = O(L−1/3).

B. Discussion and numerical comparison

The physical content of the preceding analysis is as fol-
lows. From Fig. 1, it is clear that biasing the behavior of
a single particle causes it to localise inside a macroscopic
cluster of particles (µ > 0) or a macroscopic void (µ < 0).
On biasing two particles, Fig. 5 illustrates that the tagged
particles tend to co-localise inside a single macroscopic
cluster (or void). An alternative scenario would be that
in large systems, the tagged particles get localised in two
separate clusters, but this is not observed in practice.
Our theoretical analysis shows that co-localisation in a
single cluster (or void), is expected on taking L→∞ at
any fixed value of µ (except for µ = 0).

We now compare this theory with numerical results.
Fig. 6(a) shows the behavior of the tag separation z =
|x̂1 − x̂2|. In contrast to y, this distance is measured in

the minimal image convention so 0 ≤ z ≤ (1/2). For
uncorrelated tag positions then 〈z〉 = (1/4), which is
the case for µ = 0. Both positive and negative biasing
fields lead to small particle separations, consistent with
the theory.

Fig. 6(b) shows that the small distance between the
particles scales as 〈z〉s = O(L−1/3), which is also con-
sistent with theoretical predictions. This corresponds to
a separation of order L2/3 when measured in the orig-
inal co-ordinates (before hydrodynamic rescaling), see
also [50]. Finally, Fig. 7 shows the activity in this biased
ensemble, which again shows a scaling form 〈c〉s = f(µ),
consistent with the theory.

V. BIASING ONE PARTICLE IN TWO
DIMENSIONS

We now consider a system in d = 2, using a biased
ensemble as in (17). Configurations from representative
trajectories are shown in Fig. 8, which illustrate either
increased or reduced clustering around the tagged par-
ticle. In contrast to Fig. 1, it is not clear whether the
response to the bias is localised around the probe, or if
it might be long-ranged. We will show that in fact the
response spans the whole system.

A. Typical fluctuations

As in one dimension, the role of hydrodynamic effects
is already apparent at the level of the variance of c[x],
via the scaling of χL(0) with L. The density ρ is defined
by generalising (30) to d = 2. The result (36) is still
applicable in d = 2: assuming that the slow contribution
dominates in large systems leads to

χL(0) ≈ c′eq(ρ0)2

∫ ∞
−∞
〈δρ(xp(t), t)δρ(xp(0), 0)〉dt (55)

where the approximate equality is accurate for large L.
(The neglect of the fast contribution will be discussed be-
low.) We introduce the Fourier transform of the density

ρ̃q(t) = L−d/2
∫
ρ(x, t) exp (−iq · x) ddx (56)

with q = 2π
L (m,n) where n,m are integers. Then the hy-

drodynamic scaling behavior of (55) can be obtained by
evaluating the correlation function with xp(t) = xp(0),
which yields

χL(0) ≈ c′eq(ρ0)2

L2

∫ ∞
−∞

∑
q

〈ρ̃q(t)ρ̃−q(0)〉dt (57)

The sum over wavevectors is restricted to |q| < Q with
Q ≈ 2π/Ω, because of (30).
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(a) Negative s (b) No bias (c) Positive s

Figure 8. Snapshots of the system under different levels of bias: (a) negative s (s = −4) and lower levels of clustering, (b) no
bias at all and (c) positive s (s = 18) and higher levels of clustering around the selected particle. From a cursory glance it
seems that only local effects are caused by this biasing, but we show below that long range effects are also at play. The density
is ρ0 ≈ 0.47 throughout this section.

At the level of macroscopic fluctuation theory (or fluc-
tuating hydrodynamics) one has

〈ρ̃q(t)ρ̃−q(0)〉 = (σ/D)e−D|q|
2|t|. (58)

In contrast to the one-dimensional case, the functions
σ(ρ) and D(ρ) are not known. These quantities depend
on microscopic details of the system, including the spe-
cific choice of interaction potential between the particles
(which we take here as a WCA potential). However, an
important feature of MFT is that it makes generic pre-
dictions, independent of the detailed dependence of σ,D
on ρ. For example, (57,58) yield

χL(0) ≈ 1

L2

Q∑
q

c′eq(ρ0)2σ(ρ0)

D(ρ0)2q2
. (59)

The summation may be approximated by an integral,
see [19] for a detailed discussion (specifically Eq. (E14)
of that work). The result is

χL(0) ≈ 1

4π

c′eq(ρ0)2σ(ρ0)

D(ρ0)2
lnL+ χ∞, (60)

where χ∞ = O(1). The key result is that the hydro-
dynamic modes lead to a logarithmic divergence of χL
– this is the dominant contribution in large systems.
The neglect of fast terms in (55) is justified a poste-
riori since these would contribute to χ∞ but they do
not affect the dominant (diverging) term. The values
of χ∞, D(ρ0), σ(ρ0) etc. depend on microscopic details
of the system, but the scaling of χL(0) with logL is a
robust MFT prediction, independent of microscopic de-
tails.

Fig. 9 shows the behaviour of χL(0, tobs) from numeri-
cal simulations. As tobs →∞, there is good evidence for
a logarithmic dependence of χL on L, which signals that
hydrodynamic modes dominate typical fluctuations, just
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Figure 9. Variance of the clustering in 2D divided by lnL,
obtained by numerical simulation of the particle model. This
demonstrates the scaling predicted in (60). We apply a dif-
fusive scaling to the observation time to observe a collapse of
the curves. The density is ρ0 ≈ 0.47

as they do in one dimension. [It is notable that the anal-
ysis of (55-59) is easily generalised to d ≥ 3; one finds
that fast contributions then dominate χL in that case.
[More precisely, the sum in (59) scales as L2−d so this
hydrodynamic contribution to χL vanishes as L→∞ for
d ≥ 3. On the other hand, (36) has a contribution of
order unity from fast modes, which determines the value
χL.]

B. Large deviations

We now turn to large deviations. The equivalent ex-
pression to (40) in d dimensions (assuming that diffusion
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and mobility are isotropic) is

S[ρ, j, xp] = Ld
∫ γobs

0

∫
[0,1]d

|D0̂+D(ρ)∇̂ρ/2|2
2D0σ(ρ)

ddx̂ dt̂

− sL2

2D0

∫ γobs

0

ceq(ρ)dt̂, (61)

where D0 is the diffusion coefficient at ρ = 0, also x̂ is
the position vector in d dimensional space (after hydrody-
namic rescaling) and we recall that γobs = tobs

τL
= 2D0tobs

L2 .
Comparing the relative sizes of the terms in the first

and second lines of (61), there is a strong dependence on
dimensionality. For d = 1 then it is necessary to take
s ∝ 1/L in order that the biasing term (proportional
to s) has the same L-dependence as the first (hydrody-
namic) term. Hence the response to the bias is controlled
by the scaling variable µ ∝ sL, as defined in (29). For
d = 2 then the biasing term has the same scaling as
the hydrodynamic one for s of order unity. In this case
one should expect such a bias to generate a long-ranged
(hydrodynamic) response in the density: this will be ver-
ified below. For d ≥ 3 then one would require s ∝ Ld−2

in order for the two contributions in (61) to have the
same scaling. However, such large biases are outside the
scope of the hydrodynamic theory. [To see this, note
that biasing fields of order unity already induce signifi-
cant responses in the fast modes of the system, leading
to changes in the local (microscopic) structure. For large
bias (s ∝ Ld−2), the microscopic structure will be com-
pletely different from its equilibrium state, contrary to
the assumptions of the hydrodynamic theory.] In prac-
tice, we expect interesting behavior for d ≥ 3 and bias s
of order unity, due to the response of fast modes to the
bias. That is, a local biasing field – acting on a single
probe particle – should significantly increase the density
in the vicinity of that particle. This response will be
short-ranged and cannot be computed by the hydrody-
namic theory.

Fig. 10 shows the behaviour of 〈c〉s = ψ′L(s) in this two-
dimensional system. The logarithmic divergence of χL in
(60) raises a question as to the analogue of (25) in this
case. One possibility that is consistent with 〈c〉s = O(1)
as well as a logarithmic divergence of χL is

ψL(s) ≈ 1

lnL
Ψ(s lnL) . (62)

This would suggest that s lnL is a useful scaling variable,
similar to sL in the 1d case. We do not have any math-
ematical argument in favour of (62) but Fig. 10 shows
that data for several system sizes collapse when plotted
as a function of this variable. (This is consistent with the
scaling of χL derived in (60) and shown in Fig. 9.).

Finally, we return to Fig. 8 and the question of whether
the bias on a single particle elicits a system-wide re-
sponse. We first investigate the response to the bias of
the Fourier components of the density

d

ds
〈ρ̃q(t)〉s =

〈
ρ̃q(t)c[x]

〉
, (63)
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Figure 10. Results for the clustering in 2D, as a function
of bias µ, obtained by numerical simulation of the particle
model. The data collapse as a function of s lnL is consistent
with c ∼ F (s lnL), which corresponds to (62). Here and for
the rest of this section γobs = 0.08.

where we used (19). Now use the definition of the clus-
tering of a trajectory (8), split the clustering into its slow
and fast contributions (as in (35)) and neglect the fast
contribution. Performing a Taylor expansion of the slow
contribution to the clustering in terms of the Fourier com-
ponents yields

d

ds
〈ρ̃q(t)〉 =

1

Ld/2

∑
q′

∫ ∞
−∞

〈
ρ̃q(t)c′eq(ρ0)ρ̃q′(t′)eiq

′·xp

〉
dt′

(64)
The only nonzero components of the sum have q′ = −q
since all other Fourier components are uncorrelated and
do not contribute. Considering this on the level of macro-
scopic fluctuations, working near equilibrium and using
(58) this expression reduces to

d

ds
〈ρ̃q(t)〉 =

σ(ρ0)c′eq(ρ0) exp(−iq · xp)
D(ρ0)2q2Ld/2

, (65)

where the mobility and diffusion were approximated by
their equilibrium values.

This result is already sufficient to verify the general
arguments from above, about conditions for observing
macroscopically inhomogeneous systems, as a function of
dimension d. To see this, note the normalisation conven-
tion in (56), which means that a homogeneous system
with Gaussian fluctuations has (typically) ρq of order
unity, as L → ∞. For macroscopically inhomogeneous
systems 〈ρ(x̂)−ρ0〉s should be of order unity, correspond-
ing to ρq of order Ld/2. (This assumes macroscopic wave
vectors, |q| of order L−1.) Under these assumptions (65)
predicts for d = 1 that the system will be macroscopically
inhomogeneous as soon as s = O(1/L). In d = 2 the cor-
responding condition is s = O(1). For d ≥ 3 then a bias s
of order unity is not sufficient to create a macroscopically
inhomogeneous system.
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For a comparison with numerics, it is convenient to
consider the structure factor, defined as

S̃s(q) = 〈ρ̃qρ̃−q〉s . (66)

Recalling again (56), this quantity is of order unity in
a homogeneous system. For an inhomogeneous system,
one expects 〈ρ̃qρ̃−q〉s ≈ |〈ρ̃q〉s|2 ∼ Ld. Hence, while
snapshots like those of Fig. 8 do not provide a clear
distinction between macroscopic and microscopic (finite)

clusters, computation of S̃s(q) can be combined with a
finite-size scaling analysis.

To this end,we focus on the structure factor associated
with the smallest allowed wavector, which has modulus
2π/L. From (65), the leading contribution (in s) to the
structure factor at this wavevector is predicted as follows:
For d = 1 then S̃s(q1) ∝ µ2L, corresponding to macro-
scopic inhomogeneity as soon as µ = O(1). For d = 2 the
corresponding result from (65) is

S̃s(q1)− S̃0(q1) ≈ s2L2

4π2

[
σ(ρ0)c′eq(ρ0)

D(ρ0)2

]2

(67)

which predicts macroscopic inhomogeneity as soon as
s = O(1). [For d > 4 the corresponding contribution van-
ishes as L→∞ so hydrodynamic modes are irrelevant at
this limit. For d = 3 then S̃s(q1) ∝ s2L which indicates
that the system is macroscopically homogeneous, but has
anomalous density fluctuations. We restrict our discus-
sion here to d = 1 and d = 2, but higher dimensions such
as d = 3 could be of interest in future work.]

Similar to the logarithmic scaling in (60), MFT leads

to a robust prediction (67), for the dependence of S̃s(q)
on s and L. This prediction is independent of micro-
scopic details such as the interaction potential between
particles; it is also straightforward to test numerically.
From TPS simulations, we estimate the Fourier trans-
form of the density as ρ̃q = L−d/2

∑
j e
−iq·xj . Fig. 11(a),

shows that in a two dimensional system S̃s(q) responds
most strongly to s at the smallest wavevectors. [A lo-

cal response would mean that S̃s(q) responds only for
wavectors q = O(1), but here the response is large for
very small wave vectors q = O(L−1).] Fig. 11(b) shows
the response at the smallest allowed wavevector. The re-
sult is consistent with (67), showing that the numerical
and analytical approaches are once again consistent with
one another.

VI. CONCLUSION

We have discussed large deviations of clustering around
tagged particles, and associated collective behaviour. All
the systems considered show collective responses to the
the bias, on length scales that are comparable to the
system size.

In d = 1 the response depends on a scaling variable
µ ∝ sL; for d = 2 the corresponding variable is s lnL.
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Figure 11. (a) Plot of the structure factor at s = 0 and
s = 8 for different system sizes in 2D. At s = 8 the first few
Fourier components are increased. This indicates that the
response to the bias is long-ranged and q-dependent. (b) Plot
of the structure factor of the first Fourier component and its
dependence on the bias s. The data collapses when plotted in
this way, consistent with (67). (All results in this Figure were
obtained by numerical simulation of the particle model.)

We have also found that the dynamical free energy has
the scaling form (25) in one dimension, and our corre-
sponding conjecture in two dimensions is (62). The sys-
tems can be analysed through the lens of MFT under the
assumption that (41) captures the relevant fluctuations.
From these we obtain information about the density pro-
file (44) and (47) and the associated clustering around the
single particle which we plot in figures 4 and 3 respec-
tively. Combining these results with Fig. 2, we observe
long range correlations in this system, which are caused
by hydrodynamic effects.

One can understand these as local correlations in the
rescaled MFT system with x̂ ∈ [0, 1] and t̂ ∈ [0, 1]. Hence
we can explain these long-range correlations, even if they
are not expected from the analogy between dynamical
large deviations and thermodynamics. A key strength of
this approach is that MFT provides robust predictions
for the scaling of different observable quantities with sys-
tem size L and bias s. That is, the results do not depend
on microscopic details of the system, such as the interac-
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tion potential. This can be appreciated by the fact that
the scaling predictions of MFT are accurate both for hard
particles in 1d and for WCA particles in 2d. Quantitative
predictions depend on knowledge of the functions D(ρ)
and σ(ρ), and on a joint limit of L, γobs → ∞. In this
work, the functions D,σ are known in d = 1 but not
in d = 2. The range of L, γobs that can be considered
numerically also hinders quantitative matches between
theory and numerics. Still, the numerical results are con-
sistent with MFT scaling, and the predictions in 1d are
semi-quantitative.

Compared with previous work where ensembles were
biased by quantities that depend on all particles at
once [5, 9, 14, 17, 22], we bias here one or two particles.
This explicitly breaks the translational symmetry of the
system. Hence this symmetry cannot be spontaneously
broken, in contrast to [17, 22]. Comparing with [33, 34],
our results accentuate that very large time scales (of or-
der L2) should be considered when analysing large de-
viations in systems with hydrodynamic modes, even for
single-particle quantities. The coupling of these modes
to large deviation events is important as tobs → ∞, but
this can easily be missed, even if the values used for tobs

are larger than all microscopic time scales: values of or-
der L2 are required. Consistent with other studies of
large deviations of local quantities [8, 31–34, 46, 52], our
results illustrate a rich phenomenology that appears in
biased ensembles, including dynamical free energies that
have scaling forms for large L. In particular, it is not
safe to assume that local biases result in local responses,
in these ensembles of trajectories.

Finally, we note that since previous work considered
biases acting on all particles [17] and we considered here
biases on one or two particles, a natural question would
be what happens for a bias on an intermediate number.
For example, what about tagging a finite fraction of par-
ticles? We have not investigated such situations, but
we offer some preliminary remarks. First, biasing a fi-
nite fraction of particles would change the scaling (with
L) of the bias term in (61), leading to a situation sim-
ilar to [17, 39], where all particles were biased. In that
sense, biasing a finite fraction of particles is more similar
to biasing all of them, and less similar to the situation
considered here. Second, the nature of any clustering
transitions would be different when biasing a finite frac-
tion of particles – the most appropriate analogy might be
that of de-mixing of tagged/untagged species, as distinct
from clustering of a single species. Such effects might be
usefully investigated in future work.

The data underlying this publication will
be available shortly after publication at
https://doi.org/10.17863/CAM.69871 .
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