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Antiferromagnets exhibit distinctive characteristics such as ultrafast dynamics and robustness against per-
turbative fields, thereby attracting considerable interest in fundamental physics and technological applications.
Recently, it was revealed that the Néel vector can be switched by a current-induced staggered (Néel) spin-orbit
torque in antiferromagnets with the parity-time symmetry, and furthermore, a nonsymmorphic symmetry en-
ables the control of Dirac fermions. However, the real-time dynamics of the magnetic and electronic structures
remain largely unexplored. Here, we propose a theory of the ultrafast dynamics in antiferromagnetic Dirac
semimetals and show that the Néel vector is rotated in the picosecond timescale by the terahertz-pulse-induced
Néel spin-orbit torque and other torques originating from magnetic anisotropies. This reorientation accompanies
the modulation of the mass of Dirac fermions and can be observed in real time by the magneto-optical effects.
Our results provide a theoretical basis for emerging ultrafast antiferromagnetic spintronics combined with the
topological aspects of materials.

INTRODUCTION

The control and detection of antiferromagnetic (AFM) or-
ders have been a challenging problem because of the absence of
net magnetizations. Since the energy scale of antiferromagnets
lies in the terahertz range, which is beyond the scope of con-
ventional electronics, optical pulses are suitable for controlling
AFM orders [1–3] through magnon excitations [4–7], inverse
magneto-optical effects [8–10], magnetic anisotropy [11–14],
photoinduced phase transitions [15–18], and so forth [19–23].
For detecting AFM orders, the magneto-optical effects are fre-
quently utilized for collinear and canted antiferromagnets [24–
30]. The X-ray magnetic linear dichroism with photoemission
electron microscopy has succeeded in imaging the AFM do-
main structure [31–34]. While these optical and X-ray mea-
surements have the potential for time-resolved observations of
magnetic dynamics [1, 35–38], their application to the AFM
orders remains difficult and under development.

Several years ago, another mechanism that modulates
AFM orders via electric currents was proposed and demon-
strated [39, 40]. In antiferromagnets with a combined space-
inversion and time-reversal symmetry, electric currents in-
duce a staggered spin density, and thus, a staggered torque
termed the Néel spin-orbit torque (NSOT). The NSOT can
efficiently switch the staggered magnetization, i.e., the Néel
vector, thereby yielding significant progress in AFM spintron-
ics [41–44]. Recently, it was found that a nonsymmorphic
crystalline symmetry in addition to the parity-time symmetry
preserves the crossing of doubly degenerate bands; this implies
that Dirac fermions are controlled by the direction of the Néel
vector [45]. The discovery of this close relationship between
the magnetic and electronic structures opened a research field
called topological AFM spintronics [46, 47]. Some exper-
iments have shown that not only electric current pulses but
optical pulses can control the AFM order [48, 49]; these stud-
ies performed transport measurements such as the anisotropic
magnetoresistance and the planar Hall effect to observe the
magnetic structure [44]. Meanwhile, the topological elec-
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tronic structure has received less attention, and therefore, the
real-time dynamics of the Néel vector and the Dirac fermions
induced by the NSOT are still unclear.

From a theoretical viewpoint, two approaches have been
established to study the real-time dynamics of magnets. One
is based on microscopic models such as the Hubbard model and
Kondo lattice model [18], which allows considering electron
correlation and quantum effects; however, the cluster size is
severely limited and approximations are needed to deal with the
symmetry-broken ordered states. The other approach is to use
the Landau–Lifshitz–Gilbert (LLG) equation of the classical
vectors of magnetic moments, which has been widely adopted
in spintronics [50–55]. This equation enables the simulation
of large-scale magnetic structures, while the electronic degree
of freedom is integrated out. Therefore, a unified framework
is required to reveal the relationship between the magnetic and
electronic structures.

In this work, we propose a theory based on a minimal two-
dimensional model of AFM Dirac semimetals to investigate
the real-time magnetic and electronic dynamics. We show
that the Néel vector is rotated by optically-induced NSOT and
other torques originating from magnetic anisotropies. This
reorientation accompanies the modulation of the mass of Dirac
fermions. Furthermore, the magneto-optical effect is found to
be promising for the time-resolved measurement of the Néel
vector.

RESULTS

Theoretical model

We consider a minimal tight-binding model of AFM Dirac
semimetals projected onto the two-dimensional square lattice.
The Hamiltonian is divided into three parts as H = Hele +
Hexc + Hmag. The first term

Hele = −2ℎ1𝜏
𝑥 cos

𝑘 𝑥

2
cos

𝑘 𝑦

2
− ℎ2 (cos 𝑘 𝑥 + cos 𝑘 𝑦)

+ 𝜆𝜏𝑧 (𝜎𝑦 sin 𝑘 𝑥 − 𝜎𝑥 sin 𝑘 𝑦) (1)
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FIG. 1. Equilibrium properties of the model of AFM Dirac semimet-
als. a Energy band structure. b Staggered spin texture of the lower
bands in the reciprocal space. The localized spins are aligned anti-
ferromagnetically along the [100] direction, i.e., n = (1, 0, 0).

consists of the nearest-neighbor (ℎ1) and next-nearest-
neighbor (ℎ2) hoppings, and the spin-orbit coupling (𝜆) of
itinerant electrons with momentum k. Here, the spin and
sublattice degrees of freedom of the itinerant electrons are
described by the Pauli matrices σ and τ , respectively. The
localized magnetic moments on each sublattice denoted by SA
and SB couple to the itinerant electrons through the exchange
interaction

Hexc = 𝐽exc

[
1 + 𝜏𝑧

2
σ · SA + 1 − 𝜏𝑧

2
σ · SB

]
. (2)

Hereafter, we define the uniform and staggered magnetizations
as m = (SA +SB)/2 and n = (SA −SB)/2, respectively. The
vector n is termed the Néel vector. The exchange Hamiltonian
is an extension of the model for SA = −SB = n proposed
by Šmejkal et al. [45]. While both the parity (P) and time-
reversal (T ) symmetries are broken because of the presence of
the localized magnetic moments, the parity-time (PT ) sym-
metry is preserved when m = 0. This guarantees the Kramers
degeneracy of the energy bands in the whole Brillouin zone.
In addition to the PT symmetry, this model is invariant un-
der a nonsymmorphic glide symmetry operation only when
the Néel vector is directed along the 〈100〉 directions, which
causes the crossings of the doubly degenerate energy bands,
i.e., the gapless Dirac points, to be protected at the Brillouin
zone boundary [45], as shown in Fig. 1a. The energy gap at
the Dirac points depends on the value of 𝐽exc and the direction
of n(𝑡). The spin-orbit coupling and the AFM ordering of
the localized moments lead to the spin-momentum locking of
the itinerant electrons. The expectation value of the staggered
spin moments of the itinerant electrons in the lower bands is
displayed in Fig. 1b, which indicates that the net staggered
moment 〈𝜏𝑧𝜎𝑥〉 takes a negative value when n = (1, 0, 0)
because of the AFM exchange interaction.

To stabilize the initial state in which the Néel vector is
aligned with the [100] direction, we introduce magnetic
anisotropy energy

Hmag =
∑︁

𝛾=A,B

[
𝐾𝑧 (𝑆𝑧𝛾)2 + 𝐾𝑥𝑦 (𝑆𝑥𝛾𝑆

𝑦
𝛾)2] , (3)

where 𝐾𝑧 and 𝐾𝑥𝑦 represent coefficients of the easy-plane and
biaxial anisotropies, respectively. Here, other magnetic in-
teractions such as the exchange interaction between the local-
ized moments, which can be implemented in a straightforward
manner, are omitted because the AFM state is stabilized by the
indirect exchange mediated by the itinerant electrons at half
filling.

The time-dependent electric field F (𝑡) parallel to the two-
dimensional plane is incorporated in the model via the Peierls
substitution. The time evolutions of the itinerant electrons
and the localized magnetic moments are described by the von
Neumann and LLG equations, respectively; these equations
are solved simultaneously by the fourth-order Runge–Kutta
method. The parameter values and units are presented in
Methods.

Application of a constant electric field

First, we discuss real-time dynamics induced by a constant
electric field that is switched on at time 𝑡 = 0 and applied in
the [110] direction, i.e., F (𝑡) = 𝐹0𝛩(𝑡) (cos 𝜋/4, sin 𝜋/4, 0)
with 𝛩 being the step function. Figure 2a shows the real-time
profiles of the in-plane 𝑥-component of the Néel vector and
the out-of-plane 𝑧-component of the uniform magnetization.
Figure 2b displays the excited electron density defined by the
number density of electrons that occupy single-particle energy
levels above the chemical potential 𝜇 of the initial state. The
energy bandgap shown in Fig. 2c is defined by the difference
between the single-particle energies of the lowest level above
𝜇 and the highest level below 𝜇; this difference is equal to
the direct gap when there is the particle-hole symmetry with
ℎ2 = 0. As time evolves, 𝑛𝑥 abruptly decreases towards zero
at time 𝑡 = 𝑡1, 𝑡2, or 𝑡3, which is indicated by arrows in Fig. 2a
and is hereafter termed a reorientation time 𝑡r. Meanwhile,
the 𝑧 component of the uniform magnetization appears with
values of the order of 𝑚𝑧 ∼ 0.03; this means that the magnetic
structure is slightly canted as illustrated in Fig. 2e. As the field
magnitude increases from 𝐹0 = 0.005 to 0.009, the reorienta-
tion time 𝑡r becomes short. The excited electron density shown
in Fig. 2b increases as time evolves. Figure 2b shows some
plateaus in which the excited electron density is constant in
time and the energy bandgap opens simultaneously (Fig. 2c).
Once the excited electron density becomes greater than ap-
proximately 0.01 (indicated by the shade in Fig. 2b), the Néel
vector starts to rotate. Note that the bandgap opens through
the Néel-vector dynamics induced by the constant field, which
is in contrast to the gap opening of the Floquet–Bloch bands
under the high-frequency driving of electrons [56]. These
phenomena induced by the constant electric field occur in a
timescale of the order of 𝑡 ∼ 10000ℏ/ℎ1, which corresponds
to 6.6 ps for ℎ1 = 1 eV. Therefore, the Néel vector and the
energy bandgap can be controlled by the external field in such
a short timescale.

The mechanism of the reorientation of the Néel vector is
understood as follows. The external electric field induces the
nonequilibrium staggered spin density of the itinerant elec-
trons through the spin-orbit coupling, and it generates torques
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FIG. 2. Real-time dynamics induced by the constant electric field. a–c The time evolution of (a) the Néel vector and uniform magnetization,
(b) excited electron density, and (c) energy bandgap, as functions of time 𝑡 in units of ℏ/ℎ1 = 0.66 fs. d Sketch of NSOTs TA and TB acting
on sublattice moments SA and SB, respectively. Arrows of b⊥A and b⊥B represent effective fields perpendicular to SA and SB, respectively.
Uniform magnetization appears in the [001] direction because of NSOT, and it induces another effective field attributed to the easy-plane
anisotropy that rotates the Néel vector as shown in e with the 𝑧 components exaggerated. f Polar plots of the in-plane angle of the Néel vector
as a function of the dimensionless time 𝐹0𝑡 for 𝐹0 = 0.0004–0.012. The inset of f is the enlarged view from 𝐹0𝑡 = 0 to 30. g Time 𝑡r for the
Néel vector to rotate towards the [010] (or [01̄0]) direction as a function of 𝐹0. The electric field is applied in the [110] direction in a–g.

in the [001] direction (see Fig. 2d). Then, the two sublattice
magnetic moments are slightly canted towards the [001] direc-
tion, which means 𝑚𝑧 > 0. The easy-plane anisotropy, whose
energy per sublattice moment is estimated to be 𝐾𝑧 (𝑚𝑧)2, in-
duces another effective field (0, 0,−2𝐾𝑧𝑚

𝑧) that rotates the
localized moments in the anticlockwise direction as depicted
in Fig. 2e. Here, we have shown the NSOT-driven reorienta-
tion of the Néel vector on the basis of the microscopic model
in which the real-time dynamics of the itinerant electrons and
the localized moments are explicitly considered.

Figure 2f shows the polar plots of the in-plane angle of the
Néel vector 𝜑 as a function of time multiplied by the field
magnitude for different values of 𝐹0. The Néel vector rotates
towards the [010] direction for sufficiently large field magni-
tudes 𝐹0 & 0.004. For the weak magnitude 𝐹0 . 0.004, the
trajectories of 𝜑(𝐹0𝑡) are on a universal curve independent of
𝐹0; this implies that the timescale of the dynamics is deter-
mined by the vector potential A ∼ F 𝑡 rather than the electric
field F . This is because the NSOT is induced by the electric
current due to the diamagnetic response. The reorientation is
regarded as a deviation from the weak-field universal trajectory.
Even before the reorientation, the Néel vector slightly deviates
from the 𝑥 axis because of the NSOT; once the excited elec-
tron density exceeds approximately 0.01, the NSOT-induced
staggered torque shown in Fig. 2d overcomes the other torques
originating from the magnetic anisotropies. These behaviors
are summarized in Fig. 2g, where the reorientation time is

plotted as a function of 𝐹0 for different values of the biaxial
anisotropy 𝐾𝑥𝑦 and the Gilbert damping constant 𝛼. Over-
all, 𝑡r is inversely proportional to 𝐹0, which means that the
vector potential ∼ 𝐹0𝑡r governs the reorientation dynamics; 𝑡r
becomes shorter as 𝐾𝑥𝑦 or 𝛼 decreases. It is also found that
the product 𝑡r𝐾𝑥𝑦 is a function of 𝐹0/𝐾𝑥𝑦 for 𝐾𝑥𝑦 ≥ 0.01
and 𝛼 = 1. The reorientation time shows the step-like feature
indicated by the dotted lines, which reflects a discontinuous
behavior of 𝜑(𝐹0𝑡) with respect to 𝐹0 as seen in the inset
of Fig. 2f. Although the anisotropy energies and the Gilbert
damping constant are highly material dependent, this reori-
entation can occur in the timescale of subpicoseconds with a
sufficiently large 𝐹0 (& 0.01) irrespective of 𝐾𝑥𝑦 and 𝛼.

Irradiation of a monocycle pulse

We show the real-time dynamics induced by a monocycle
pulse of which the frequency is in the terahertz range but is
off-resonant (see Methods for parameters). The electric field
is parallel to the [110] direction. Figure 3a shows the in-
plane components of n and the out-of-plane component of
m for 𝐹0 = 0.02. The Néel vector rotates towards the [010]
direction during pulse irradiation, and it stops the rotation after
irradiation. This reorientation accompanies the modulation of
the bandgap as shown in Fig. 3b. When the bandgap is opened,
the excited electron density does not increase as in the case of
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FIG. 3. Real-time dynamics induced by the monocycle pulse. a, b The time evolution of (a) the Néel vector and uniform magnetization, and
(b) excited electron density and energy bandgap, as functions of time 𝑡, for F0 = 𝐹0 (cos 𝜋/4, sin 𝜋/4, 0) and 𝐹0 = 0.02. The dashed lines in a
denote the results for the [1̄10] polarization. c Polar plots of the in-plane angle of the Néel vector with respect to time 𝑡 for 𝐹0 = 0.002–0.03.
d, e The time derivative of the in-plane Néel vector angle and the 𝑧 component of the uniform magnetization divided by 𝐹0 for 𝐹0 = 0.002–0.03.

the constant field, which means that the pulse is off-resonant.
The dashed lines in Fig. 3a shows 𝑛𝑦 and 𝑚𝑧 for the same

field amplitude but different polarization, i.e., F0 ‖ [1̄10],
whose signs are opposite to those in the F0 ‖ [110] case
(solid lines). This polarization dependence is also seen in the
case of the constant field (not shown), and it implies that the
direction of the Néel vector is determined by the polarization
and inverted by the mirror operation on F0 against a plane
perpendicular to n(𝑡 = 0).

The pulse amplitude dependence of the Néel vector dynam-
ics is summarized in Fig. 3c. When the amplitude is weak
(𝐹0 < 0.01), the Néel vector cannot climb over the poten-
tial barrier of the magnetic anisotropy. However, the in-plane
angle exceeds 45◦ for a sufficiently large 𝐹0 (≥ 0.01) for
which the excited electron density becomes greater than ap-
proximately 0.01, and the Néel vector remains in the [010]
direction after irradiation for even larger 𝐹0 (≥ 0.02).

Figures 3d and 3e show the in-plane angular velocity of the
Néel vector and the 𝑧 component of the uniform magnetization,
both of which are divided by 𝐹0. For weak 𝐹0 < 0.01, the
time profiles of 𝑑𝜑/𝑑 (𝐹0𝑡) and 𝑚𝑧/𝐹0 are on each universal
curve, whereas the deviations from the curves are found for
𝐹0 ≥ 0.01 and they lead to the reorientation towards the [010]
direction. These time profiles are quite similar because 𝑑𝜑/𝑑𝑡
is approximated by 2𝐾𝑧𝑚

𝑧 as long as ‖m‖ � ‖n‖.

Optical conductivity and magneto-optical effect

Finally, we show the optical longitudinal and transverse
(Hall) conductivities for different Néel vector angles, and we
discuss the resulting magneto-optical Voigt effect, assuming
that the system is in the collinear AFM ground states. Fig-
ures 4a and 4b display the real parts of the longitudinal (𝜎𝑥𝑥)
and transverse (𝜎𝑥𝑦) conductivities as functions of the in-plane
Néel vector angle 𝜑. The peaks of Re𝜎𝑥𝑥 (𝜔) for 𝜔 > 0 are

attributed to the Van Hove singularity; the Drude peak is also
seen at 𝜔 = 0 for n ‖ [100] and [010] when ℎ2 ≠ 0. Because
of the two-fold symmetry around the 𝑧 axis, 𝜎𝑥𝑥 and 𝜎𝑥𝑦 are
periodic in 𝜑. Here, 𝜎𝑦𝑦 is equivalent to𝜎𝑥𝑥 under the rotation
𝜑 ↦→ 𝜑 + 𝜋/2, and 𝜎𝑥𝑦 is equal to 𝜎𝑦𝑥 . The sign of the trans-
verse conductivity is unchanged by 𝜆 ↦→ −𝜆 or 𝐽exc ↦→ −𝐽exc
(not shown), which implies the conductivity is an even function
of 𝜆 and 𝐽exc. Since the present model holds the D4h symmetry
in the limit of 𝐽excn → 0, the conductivity linear in the electric
field can be expanded with respect to a time-reversal-breaking
field B ∼ 𝐽excn as 𝜎𝑖 𝑗 (B) = 𝜎

(0)
𝑖 𝑗

+ 𝜎 (1)
𝑖 𝑗𝑘
𝐵𝑘 + 𝜎 (2)

𝑖 𝑗𝑘𝑙
𝐵𝑘𝐵𝑙 ,

where 𝜎 (1) vanishes when B ⊥ [001] and

𝜎
(2)
𝑖 𝑗

=

[
𝜎

(2)
𝑥𝑥𝑥𝑥𝐵

2
𝑥 + 𝜎

(2)
𝑥𝑥𝑦𝑦𝐵

2
𝑦 2𝜎 (2)

𝑥𝑦𝑥𝑦𝐵𝑥𝐵𝑦

2𝜎 (2)
𝑥𝑦𝑥𝑦𝐵𝑥𝐵𝑦 𝜎

(2)
𝑥𝑥𝑦𝑦𝐵

2
𝑥 + 𝜎

(2)
𝑥𝑥𝑥𝑥𝐵

2
𝑦

]
𝑖 𝑗

(4)

is a symmetric tensor. The off-diagonal components of
𝜎(B) can be written as 𝜎𝑥𝑦 (B) = 𝜎𝑦𝑥 (B) ∝ sin 2𝜑 for
n = (cos 𝜑, sin 𝜑, 0). This is consistent with the numerical
result of 𝜎𝑥𝑦, although the present values of 𝜆 (= 0.8) and
𝐽exc (= 0.6) are beyond the perturbative regime. From these
properties of 𝜎𝑥𝑥 and 𝜎𝑥𝑦, we can identify the direction in
which the Néel vector rotates by measuring the longitudinal
optical conductivity and magneto-optical signal. Figures 4c
and 4d show the magneto-optical rotation angle and elliptic-
ity calculated from 𝜎𝑥𝑥 and 𝜎𝑥𝑦 (see Methods). The rotation
angle 𝜃 exhibits large values up to 1◦. In real materials, the
values of 𝜆 and 𝐽exc may be smaller than the values adopted
here, which causes a reduction in the rotation angle down to
a few millidegrees. Even so, the magneto-optical rotation can
be measured using modern optical apparatus.

The transverse conductivity 𝜎𝑥𝑦 appears when 𝜆 ≠ 0 and
𝐽exc ≠ 0 even though the magnetic structure is collinear AFM.
Recently, the transverse response in collinear antiferromagnets
is attracting considerable attention, and it has been discussed
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FIG. 4. Optical conductivity and magneto-optical effect. a, b Real parts of (a) longitudinal and (b) transverse optical conductivities. Energy 𝜔
and optical conducvitity 𝜎 are shown in units of ℎ1 = 1 eV and 𝑒2/(ℏ𝑎) = 6.4× 103 S cm−1, respectively. Insets in (a) and (b) show the optical
conductivity for n ‖ [100], [110], [010], and [11̄0]. Panels c, d show the magneto-optical rotation angle 𝜃 and ellipticity 𝜂 as functions of the
in-plane angle of the Néel vector. The lattice constant and broadening factor are set to 𝑎 = 0.38 nm and 𝛤/ℎ1 = 0.02, respectively.

for the case in which the conductivity tensor is antisymmet-
ric [57, 58]; our calculations demonstrate the transverse optical
response attributed to the symmetric tensor in collinear anti-
ferromagnets.

DISCUSSIONS

We investigated the real-time dynamics of the magnetic and
electronic structures induced by the constant and pulse elec-
tric fields, and we revealed the microscopic mechanism of the
NSOT-driven reorientation of the Néel vector. Our method
can be applied to any tight-binding model coupled to localized
moments. The experimental verification of the present results
is necessary for a better understanding of the NSOT-induced
dynamics and for further progress in ultrafast AFM spintronics
combined with the topological aspects of the materials. Can-
didate materials include orthorhombic CuMnAs [45, 59–61]
and MnPd2 [62], which have been studied in the field of AFM
spintronics and are expected to host Dirac fermions. Note that
the reorientation of the Néel vector demonstrated in this study
is not directly related to what has been observed in experi-
ments because of the discrepancy in the timescale. To make
more quantitative discussions on, e.g., the timescale of the re-
orientation and the required magnitude of the field, we should
consider the crystal structure and dimensionality of materials,
obtain realistic estimates of model parameters as well as the
Gilbert damping constant from the ab initio calculations and
experiments, and take other dissipation processes caused by
the electron-electron interaction into account; these are left for
future work.

Recent intense terahertz pulse sources, whose oscillation pe-
riod is 1 ps and peak amplitude is more than 1 MV cm−1 [63],
are promising to drive the reorientation of the Néel vector in
the picosecond timescale. In our calculations, a typical value
of 𝐹0 is of order 0.01, which corresponds to 0.26 MV cm−1

(see Methods). There are many earlier studies on the electrical
modulation and detection of the Néel vector [44]; their time
resolution was limited to & 1 ns. However, it may be possible
to observe the Néel vector dynamics in real time via optical
measurements because the magnetic structure is closely re-
lated to the electronic structure in the present model. One
approach is the time- and angle-resolved photoemission spec-
troscopy; this can directly access the energy band structure,
which reflects the direction of the Néel vector as the positions
and energy gaps of the Dirac points or nodal lines. Another
approach is to use magneto-optical effects. This system ex-
hibits the magneto-optical rotation with angles up to 1◦. The
time-resolved magneto-optical measurements can be carried
out even in the subpicosecond timescale, which provides a
sufficient time resolution to observe the real-time dynamics
discussed in this study.

METHODS

Real-time dynamics

We calculate the real-time dynamics of the itinerant elec-
trons and the localized magnetic moments as follows [64, 65].
The quantum state of the electrons is exactly described by a
one-body density matrix 𝜌̂k because the electronic Hamilto-
nian Hele contains no many-body interaction. Once the local-
ized magnetic moments are given, the Hamiltonians in Eqs. (1)
and (2) can be diagonalized for each k as (Hele +Hexc) |k𝜈〉 =
𝜀k𝜈 |k𝜈〉, where |k𝜈〉 is obtained by the unitary transform as
|k𝜈〉 = ∑

𝛾=A,B
∑

𝑠=↑,↓ |k𝛾𝑠〉𝑈∗
𝜈,𝛾𝑠 . In the initial state in which

the external field is absent, the density matrix is given by
𝜌̃k =

∑
𝜈 |k𝜈〉𝑛k𝜈 〈k𝜈 |, where 𝑛k𝜈 = 𝛩(𝜇 − 𝜖k𝜈) is the step

function with 𝜇 being the chemical potential chosen such that
the number of electrons is 𝑁ele. The time evolution of the
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density matrix is governed by the von Neumann equation
𝑑𝜌̂k

𝑑𝑡
= −i[H , 𝜌̂k] (5)

with the initial condition 𝜌̂k (𝑡 = 0) = 𝑈−1
k 𝜌̃k𝑈k. The ex-

pectation value is defined by 〈·〉 = 𝑁−1 ∑
k Tr[ · 𝜌̂k], where 𝑁

represents the number of k points in the Brillouin zone. The
localized moments on each sublattice denoted by SA and SB
are treated as classical unit vectors, and therefore, the Hamil-
tonian H(𝑡) depends on the classical spins and the external
field. The classical spins follow the LLG equation

𝑑S𝛾

𝑑𝑡
= S𝛾 × b𝛾 − 𝛼S𝛾 ×

𝑑S𝛾

𝑑𝑡
(6)

for 𝛾 = A,B, where 𝛼 denotes the Gilbert damping constant
and b𝛾 ≡ −〈𝜕H/𝜕S𝛾〉 represents the effective field given by

b𝛾 = −𝐽exc〈σ𝛾〉 − 2
(
𝐾𝑥𝑦𝑆

𝑥
𝛾 (𝑆

𝑦
𝛾)2, 𝐾𝑥𝑦 (𝑆𝑥𝛾)2𝑆

𝑦
𝛾 , 𝐾𝑧𝑆

𝑧
𝛾

)
. (7)

Here, σA/B = (1 ± 𝜏𝑧)σ/2 denotes the sublattice spin den-
sity. The time-dependent electric field F (𝑡) is incorpo-
rated in the model via the Peierls substitution Hele (k) ↦→
Hele (k − 𝑒A(𝑡)𝑎/ℏ), where A(𝑡) = −

∫ 𝑡
F (𝑡 ′) 𝑑𝑡 ′, 𝑒, and

𝑎 denote the vector potential, elementary charge, and lat-
tice constant, respectively. Throughout this paper, ℎ1, 𝑒,
𝑎, and ℏ are set to unity. The physical quantities of time,
electric-field magnitude, and conductivity are expressed in
units of ℏ/ℎ1 = 0.66 fs, ℎ1/(𝑒𝑎) = 26.3 MV cm−1, and
𝑒2/(ℏ𝑎) = 6.4 × 103 S cm−1, respectively, for ℎ1 = 1 eV and
𝑎 = 0.38 nm. In most calculations, we use ℎ2 = 0.08, 𝜆 = 0.8,
𝐽exc = 0.6, 𝐾𝑧 = 0.1, 𝐾𝑥𝑦 = 0.01, and 𝛼 = 1.

The easy-plane anisotropy coefficient 𝐾𝑧 determines the
in-plane angular velocity of the Néel vector 𝑑𝜑/𝑑𝑡. For the
above parameters, the difference in the total energies of the
ground states is 〈H〉|n=(0,0,1) − 〈H〉|n=(1,0,0) = 0.13ℎ1. This
may be considerably larger than the anisotropy energy of real
materials (. 1 meV) [60, 61]. However, we confirmed that the
reorientation of the Néel vector occurs within 10 ps even for
smaller values: 𝐾𝑧 = 𝐾𝑥𝑦 = 0.001, 𝜆 = 0.08, 𝐽exc = 0.06, and
𝐹0 = 0.001.

Equations (5) and (6) are simultaneously solved using the
fourth-order Runge–Kutta method with a time step 𝛿𝑡 = 0.01.
We perform the numerical calculation with 𝑁 = 512 × 512-
point mesh in the Brillouin zone, and we fix the number of
the electrons to 𝑁ele = 2𝑁 (half-filled). The external field
F (𝑡) = −𝜕𝑡A(𝑡) is given by A(𝑡) = −F0𝑡𝛩(𝑡) for the constant
electric field and A(𝑡) = −F0·(𝑡 − 𝑡c) exp[−(𝑡 − 𝑡c)2/(2𝑡2w)]
for the monocycle pulse. We adopt 𝑡c = 2000 and 𝑡w = 300.

Optical conductivity and magneto-optical effect

We calculate the optical conductivity from

𝜎𝑖 𝑗 (𝜔) =
𝜒𝑖 𝑗 (𝜔 + i𝛤) − 𝜒𝑖 𝑗 (i𝛤)

i(𝜔 + i𝛤) , (8)

𝜒𝑖 𝑗 (𝑧) =
1
𝑁

∑︁
k𝜇𝜈

𝐽𝑖k𝜇𝜈𝐽
𝑗

k𝜈𝜇

𝑛k𝜇 − 𝑛k𝜈
𝜀k𝜈 − 𝜀k𝜇 − 𝑧 , (9)

where Jk𝜇𝜈 = 〈k𝜇 |Jk |k𝜈〉 denotes the matrix element of the
electric current operator Jk = −𝛿H(k − A)/𝛿A|A=0 and 𝛤
represents a broadening factor. The dielectric tensor is given
by

𝜖𝑖 𝑗 (𝜔) = 𝛿𝑖 𝑗 +
i𝜎𝑖 𝑗 (𝜔)
𝜖0𝜔

(10)

with 𝜖0 = 8.854 pF m−1 being the electric constant. Since
the optical conductivity tensor is symmetric (𝜎𝑥𝑦 = 𝜎𝑦𝑥) and
anisotropic (𝜎𝑥𝑥 ≠ 𝜎𝑦𝑦) in the present model, we cannot use
the well-known formula of the complex Kerr rotation angle
𝛷K = 𝜖𝑥𝑦/[(1−𝜖𝑥𝑥)

√
𝜖𝑥𝑥]. According to Maxwell’s equations

in material media, the electric-field amplitude F0 satisfies

(N̂ · N̂ )F0 − (N̂ · F0)N̂ + 𝜖F0 = 0, (11)

where N̂ represents a complex refractive index vector. From
Eq. (11) we have the relation (𝑁̂2 − 𝜖𝑥𝑥) (𝑁̂2 − 𝜖𝑦𝑦) = 𝜖2

𝑥𝑦,
assuming that the propagation vector of incident light is per-
pendicular to the two-dimensional 𝑥𝑦-plane. The symmetric
property of the conductivity and dielectric tensors leads to the
eigenmodes of Eq. (11) being linearly polarized, contrary to
the antisymmetric case in which the eigenmodes are circularly
polarized. The boundary condition is that the tangential com-
ponents of the electric field F and magnetic field N̂ × F /𝑐0
(𝑐0 is the speed of light) are continuous at the surface, from
which we obtain two eigenmodes and complex refractive in-
dices. The incident linearly polarized light is decomposed into
a linear combination of the eigenmodes. The amplitude vec-
tor of the reflected light is proportional to (𝑟pp, 𝑟sp, 0), where
𝑟pp and 𝑟sp are the amplitude reflection coefficients of the
incident p-polarized light to the reflected p- and s-polarized
light. The magneto-optical rotation angle 𝜃 and ellipticity 𝜂
are determined by the fit of the electric-field trajectory to an
ellipse rotated around the 𝑧 axis by angle 𝜃, and the relation
𝜂 = sgn[arg(𝑟sp/𝑟pp)] × |𝑟sp |/|𝑟pp |, respectively.
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