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When two graphene sheets are twisted relative to each other by a small angle, enhanced correlations lead
to superconductivity whose origin remains under debate. Here, we derive some general constraints on super-
conductivity in twisted bilayer graphene (TBG), independent of its underlying mechanism. Neglecting weak
coupling between valleys, the global symmetry group of TBG consists of independent spin rotations in each
valley in addition to valley charge rotations, SU(2)× SU(2)×UV (1). This symmetry is further enhanced to a
full SU(4) in the idealized chiral limit. In both cases, we show that any charge 2e pairing must break the global
symmetry. Additionally, if the pairing is unitary the resulting superconductor admits fractional vortices. This
leads to the following general statement: Any superconducting condensate in either symmetry class has to sat-
isfy one of three possibilities: (i) the superconducting pairing is non-unitary, (ii) the superconducting condensate
has charge 2e but admits at least half quantum vortices which carry a flux of h/4e, or (iii) the superconducting
condensate has charge 2me, m > 1, with vortices carrying h/2me flux. The latter possibility can be realized
by a symmetric charge 4e superconductor (m = 2). Non-unitary pairing (i) is expected for superconductors
observed in the vicinity of flavor polarized states. On the other hand, in the absence of flavor polarization, e.g.
in the vicinity of charge neutrality, one of the two exotic possibilities (ii) and (iii) is expected. We sketch how
all three scenarios can be realized in different limits within a strong coupling theory of superconductivity based
on skyrmions. Finally we discuss the effect of symmetry lowering anisotropies and experimental implications
of these scenarios.

Introduction— The discovery of superconductivity in
magic angle twisted bilayer graphene (TBG) [1] has inspired
immense research activity to determine its origin [2–17]. Sev-
eral mechanisms for the superconductivity were proposed
including phonon-induced pairing [7, 8], bosonic order pa-
rameter fluctuations [9–15], and topological skyrmion su-
perconductivity [16–18]. At the same time, a few works
have attempted to connect band topology to superfluid den-
sity [19, 20] or categorized different paired states on the basis
of symmetry [21]. TBG at small twist angles has a rather large
symmetry, particularly when we ignore weak Hunds coupling
that couples spins in opposite valleys. Here, we exploit this
large symmetry group to expose strong constraints on the na-
ture of superconductivity regardless of the mechanism respon-
sible for it. Remarkably, these constraints imply that the su-
perconductivity has to be exotic in one of three possible ways:
either (i) the pairing is non-unitary [22, 23] which means that
the different flavors pair independently, (ii) the pairing breaks
the global symmetries leading to an order parameter mani-
fold which admits fractional vortices, (iii) the superconduct-
ing condensate has charge 2me with m > 1 admitting frac-
tional vortices with flux h/2me. Each of these scenarios leads
to measurable physical consequences.

A notable feature of magic angle TBG is that electrons
appear with both spin and valley flavors. The absence of
spin-orbit coupling in graphene makes SU(2)S spin rotation
an excellent symmetry. Similarly, the small angle leads to
an additional U(1)V symmetry, implying conservation of
the valley quantum number, in addition to charge U(1)C
conservation. Finally, again in the small angle limit, the
independent spin rotation symmetry in the two valleys is only
weakly broken by a Hunds coupling, which can be ignored
for many purposes. Thus while the low energy symmetry
group is SU(2)S × U(1)C × U(1)V , it is meaningful to also
consider the symmetry group U(2)K × U(2)K′ denoting

independent U(2) symmetry groups in the opposite valleys.
Finally, several works [24–27] have suggested that this
symmetry is enhanced to a full U(4) flavor symmetry to a
good approximation. This approximation becomes exact in
the so-called chiral limit [28]. In the following, we will omit
the overall charge conservation U(1)C which will always be
assumed and denote the three possible symmetry settings by
Glow = UV (1)×SU(2)S ,G = UV (1)×SU(2)K×SU(2)K′ ,
and Ghigh = SU(4). A hierarchy of energy scales lowers
the symmetry in steps Ghigh → G → Glow [24]. For
the most part, we will ignore the weak intervalley Hunds
coupling and concern ourselves with either G or the enlarged
symmetry Ghigh. At the end we will discuss how the
conclusions are modified on including the weak Hunds cou-
pling, which can be either ferromagnetic or antiferromagnetic,
and close with a discussion about the relevance to experiment.

Summary of the results— Before presenting the details of
our analysis, let us summarize our main results. First, we note
that the pairing function is a matrix in the space of flat bands
labelled by band, spin, and valley indices. When considering
pairing in a multi-orbital superconductor, it is important to
distinguish the cases of unitary and non-unitary pairing first
discussed in the context of Helium 3 [22, 23]. Unitary pairing
corresponds to the case where the pairing matrix is propor-
tional to a unitary matrix which guarantees that its eigenval-
ues has the same magnitude leading to a single pairing gap.
In non-unitary pairing, this is not the case and we can get dif-
ferent pairing gaps for different flavors e.g. different gaps for
the two spin species. Usually, unitary pairing is energetically
favored when the normal state neither breaks flavor symme-
try [29, 30] nor is close to a flavor-symmetry breaking phase
transition [31, 32].

Our result can be phrased as a symmetry imposed con-
straint on the type of unitary pairing possible in TBG. This
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follows from the simple observation that there is no symmet-
ric charge 2e superconductor either under Ghigh = SU(4) or
G = UV (1)×SU(2)K×SU(2)K′ leaving one of two possibil-
ities. First, a charge 2e superconductor which spontaneously
breaks the global symmetry (G or Ghigh) by transforming as
a non-trivial representation. As we will show, such supercon-
ductors always admit exotic vortices which carry a fractional
flux. These arise from the non-trivial flavor structure of the
symmetry breaking pairing function which allows us to com-
pensate for a rotation in the phase of the condensate with an
internal rotation in the flavor space. This is in complete anal-
ogy with the emergence of half-vortices in liquid Helium 3
or spin-triplet superconductors [23, 33, 34] where a π phase
rotation of the overall phase is combined with an internal ro-
tation in spin space. The second possibility is a (G or Ghigh)
charge 2me superconductor with m > 1. Such higher charge
superconductor is allowed to be symmetric under the global
symmetry and it will automatically admit fractional vortices
with flux h/2me. Higher charge superconductivity can be
easily detected experimentally through the periodicity of the
Fraunhofer pattern in Josephson junctions. In this regard, we
note an important distinction between the fractional vortices
of the 2e superconductor and the fractional vortices in higher
charge symmetric superconductors. While the former have
logarithmically divergent energies, even in the presence of
a magnetic field, and can only be observed in certain meso-
scopic geometries [35–37], the latter has a finite energy and
can be stabilized in the infinite system. This difference can
be understood by recalling the difference between vortices in
a superconductor whose logarithmic divergence is cancelled
by the coupling to the electromagnetic gauge field and a neu-
tral superfluid where the logarithmic divergence persists. The
logarithmically divergent energy of the 2e fractional vortices
arise precisely because they combine a rotation of the super-
conducting phase, which can be cancelled by an external flux,
with an internal flavor rotation which cannot. On the other
hand, fractional vortices in symmetric higher charge super-
conductors arise from pure phase winding which can be com-
pletely cancelled with an external flux.

We discuss the implications of these results for finite tem-
perature physics and point out how, in certain cases, 2e-
superconductors with fractional vortices are reduced by ther-
mal fluctuations to higher charge superconductors. We also
demonstrate how these different scenarios for superconduc-
tivity are explicitly realized in the recently proposed theory
of skyrmion superconductivity [16, 17], by constructing both
2e and 4e charged skyrmions near charge neutrality. We note
here a recent work [18] which also investigated topological
terms in TBG within a Dirac approximation and found level
1 WZW terms for half-filling and level 2 WZW term for neu-
trality. These correspond to cases (i) and (iii) in our analysis
(see Fig. 1). Finally, we discuss the effects of further sym-
metry lowering perturbations such as the intervalley Hunds
coupling.

To discuss the implications of these results for TBG, we
need to distinguish the cases of pairing in the presence or
absence of flavor polarization. This distinction can be made
more clear by recalling some basic facts regarding supercon-

FIG. 1: Schematic illustration of the three possibilities for
superconducting pairing with the global symmetry

G = U(1)V × SU(2)K × SU(2)K′ or Ghigh = SU(4).
Non-unitary pairing (i) is expected in TBG for

superconductivity in the vicinity of flavor symmetry breaking
whereas unitary charge 2e superconductivity with fractional

vortices (ii) or higher charge superconductivity (iii) is
expected in the absence of flavor symmetry breaking. The
unitary charge 2e superconductor always breaks the global
(G or Ghigh) symmetry and is thus only possible at T = 0.

The possible order parameter manifolds for the unitary
charge 2e superconductor and its associated vortices are

summarized in Table I.

ductivity in the presence of ferromagnetic or antiferromag-
netic order. Although both spontaneously break SU(2) rota-
tion symmetry, only the former has finite spin polarization, i.e.
the state has a finite charge under a U(1) subgroup of SU(2).
This means that, at least in weak coupling, we have a spin
split Fermi surface where we expect pairing to take place inde-
pendently leading generically to non-unitary pairing. On the
other hand, an antiferromagnet breaks SU(2) but still retains
some discrete symmetries relating the two spin species which
usually results in the same pairing amplitude in the two spin
species, leading generically to unitary pairing. These ideas
can be generalized to TBG by definition a flavor polarized
state to be any state which carries a finite charge under any
U(1) subgroup of G, indicating finite spin or valley polariza-
tion. Note that many symmetry breaking state are not flavor
polarized in analogy to the antiferromagnetic case. For in-
stance, the intervalley coherent states considered in Ref. [24]
or the C2T -breaking valley Hall states [24, 38, 39] are not
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flavor polarized despite breaking some symmetries since they
still manage to retain some discrete symmetries (the so-called
Kramers time-reversal symmetry [24]).

This leads to the following conjectures about the nature
of superconducting pairing in TBG, summarized in Fig. 1.
First, the superconductors obtained in regions with flavor
polarization – which can be identified experimentally through
the evolution of the Hall number or quantum oscillations
– likely correspond to non-unitary pairing, which is not
constrained by our theory. This corresponds to the majority
of the superconductivity observed in experiments close to
half filling [1, 2, 5, 40, 41]. However, in certain isolated
cases, superconductivity in the vicinity of charge neutrality
[3, 4], or reached from charge neutrality in the absence
of flavor polarization [4, 41, 42], has also been observed.
We conjecture that these cases present a fertile hunting
ground for exotic forms of superconductivity, either paired
superconductors featuring fractional vortices or even higher
charge condensates such as 4e superconductors. We hope
future experiments will search for signatures of such novel
condensates.

Symmetry transformation of charge 2e superconduc-
tors— Let us begin by considering the transformation proper-
ties of an arbitrary charge 2e superconductor under a general
unitary transformation. A charge 2e superconductor is gener-
ally described by an order parameter ∆ which transforms as
∆ 7→ ∆e2iφ under global UC(1) charge conjugation which
acts on the electrons as c 7→ eiφc. This breaks UC(1) down
to Z2. We take the electron operators ca to be labelled by an
index a. For example, in a translationally symmetric system,
this index a = (α,k) includes both orbital α and momentum
k degrees of freedom. The pairing function is thus taken to be
a matrix of the form ∆ab = 〈cacb〉. Under a general unitary
transformation c 7→ Uc, ∆ transforms the same way as ccT

leading to

∆ 7→ U∆UT (1)

Note that this relation holds as long as ∆ transforms the same
way as ccT and does not make any addition assumption on its
nature. In particular, it holds well beyond the weak coupling
BCS limit.

Throughout most of this paper, we will focus on global
symmetries which only act on the orbital index α of the elec-
tron operator. This orbital index will be taken to label the 8
flat bands of TBG. We employ the Chern-sublattice-spin basis
defined in Refs. [16, 24] with Pauli matrices γz = ± dis-
tinguishing the ± Chern sectors, ηz = ± = K/K ′ distin-
guishing the two valleys and sz = ± =↑ / ↓ distinguishing
the two spins. The generators of U(4) = U(1)C × Ghigh

are γ0ηµsν where µ, ν = 0, x, y, z whereas the generators of
U(2)×U(2) = U(1)C ×G are γ0η0,zsν .

We first note that the generators for Ghigh (and as a result
also the generators of G ⊂ Ghigh) are all proportional to γ0.
This means that the pairing function can be decomposed into
different pairing channels in the Chern space which can be

considered independently

∆ =
∑

µ=0,x,y,z

∆µγµ, (2)

Here, ∆µ satisfies

∆T
µ =

{
−∆µ : µ = 0, x, z

∆µ : µ = y
(3)

Although the results in the remainder of this paper hold
for arbitrary pairing functions ∆µ, it is instructive to con-
sider the case of translationally symmetric pairing between
time-reversal related momenta k and k′ = −k given by
∆(k,k′) = ∆(k)δk,−k′ . This allows us to classify the
pairing function according to their transformation proper-
ties under spatial rotations into s, p, d, etc. We then
see from Eq. 3 that ∆0,x,z(−k)T = −∆0,x,z(k) whereas
∆y(−k)T = ∆y(k). Thus, antisymmetric pairing in orbital
space ∆T

µ (k) = −∆µ(k) is associated with even momentum
pairing (s, d, etc) for ∆0,x,z(k) and with odd momentum pair-
ing (p, f , etc) for ∆y(k). For symmetric pairing, the opposite
is true. Physically, we expect the pairing between Chern sec-
tors ∆x,y to be favored compared to pairing within a Chern
sector ∆0,z . However, in the following, we will keep our dis-
cussion as general as possible.

Let us briefly comment on the role of spatial symme-
tries. First, they place constraints on the k-dependence of
the pairing function ∆µ(k). In addition, as shown in the
supplemental material, symmetries which exchange valleys,
such as mirror or two-fold rotation, relate the two intra-Chern
pairing channels γ± = 1±γz

2 which will then form a higher-
dimensional representation of the full symmetry group. These
considerations, which are analyzed in detail in the supple-
mental material, do not affect any of the conclusions we will
derive below which only rely on the transformation properties
under global symmetries. For notational simplicity, we will
usually drop the k dependence of the pairing function since
we are mostly concerned with the symmetry transformation
properties under global symmteries which only act on the
internal (orbital) indices. We will also drop the µ subscript
since the action of the global symmetries do not mix the
different Chern channels.

Absence of symmetric charge 2e superconductors— Let
us first consider the high-symmetry limit withGhigh = SU(4)
whose action on ∆ is given by Eq. 1. One fundamental obser-
vation is that it is not possible to choose a non-zero pairing
matrix ∆ which transforms as a singlet under SU(4). In-
stead, the action of SU(4) on ∆ decomposes into a sum of
a 6-dimensional and a 10-dimensional representations. This
can be understood by noting that the action of SU(4) corre-
sponds to the tensor product of two copies of the fundamental
representation 4 which decomposes as 4⊗4 = 6⊕10. The 6
and 10 correspond to the antisymmetric and symmetric tensor
representations of SU(4), respectively.

Notice that SU(4) symmetry mixes inter-valley and intra-
valley pairing and there is no sense in distinguishing the two.
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This may seem at odds with our physical expectation that pair-
ing takes places between time-reversal related states which
live in opposite valleys. However, note that SU(4) allows
for unitary rotations which mix the two valleys. As a result,
we can define a modified time-reversal symmetry T ′ that acts
within the same valley by combining such rotation with the
standard time-reversal T . The existence of intra-valley time-
reversal was noted in Ref. [24] and more recently studied in
Ref. [43].

Next, we can consider what happens in the more realistic
limit where Ghigh is broken down to G = U(1) × SU(2) ×
SU(2). Let us first consider the SU(2) × SU(2) part. The
antisymmetric representation 6 splits into 4 ⊕ 1 ⊕ 1 under
SU(2) × SU(2) whereas the symmetric representation splits
into 10 = 4 ⊕ 3 ⊕ 3. These can be understood as fol-
lows: first recall the representations of SU(2) are labelled
by a half-integer S with dimension 2S + 1. Thus, the 1D
irrep of SU(2) × SU(2) is simply the singlet representation
in both valleys (SK , SK′) = (0, 0). The 3D irreps above
correspond to a singlet in one valley and triplet in the other
(SK , SK′) = (0, 1) or (1, 0) whereas the 4D irreps corre-
spond to S = 1/2 in both valleys. Alternatively, this 4D irrep
can be understood as the fundamental of Spin(4) which is iso-
morphic to SU(2)× SU(2). Note that, unlike the SU(4) case,
it is possible to have a SU(2) × SU(2) singlet. These corre-
spond to the intravelley pairing channels ∝ η0,z . However,
these pairing channels carry a charge under UV (1). Thus,
similar to the Ghigh case, there is no symmetric pairing chan-
nel under the full G symmetry. We note that our statement
for the symmetry group G is consistent with the symmetry
analysis of Ref. [21].

Although the above argument applies to all pairing
channels, the most natural expectation in the case of the
symmetry group G is pairing between time-reversal related
electrons in opposite valleys [9–12]. Restriction to intervalley
pairing is equivalent to the condition {∆, ηz} = 0. This
selects 8 of the 16 generators of U(4) given explicitly by
ηx,ysν , ν = 0, x, y, z. Among these generators, four are
symmetric and four are antisymmetric. Thus, the action
of SU(2) × SU(2) on the inter-valley pairing (which is
invariant under UV (1)) splits into 4 ⊕ 4. For the remainder
of this work, we will focus on the physically relevant case
of intervalley pairing. The case of intravalley pairing is
discussed in the supplemental material for completeness.

Charge 4e superconductors— The previous discussion
leaves open the more intriguing possibility of a symmetric
charge 4e condensate. The existence of such condensate can
be seen by first writing the charge 4e pairing function

∆αβγδ = 〈cαcβcγcδ〉 (4)

∆αβγδ transforms as

∆αβγδ 7→ Uαα′Uββ′Uγγ′Uδδ′∆α′β′γ′δ′ (5)

A singlet pairing channel is obtained by taking ∆ to be propor-

tional to antisymmetric tensor ∆αβγδ ∝ εαβγδ symbol since

Uαα′Uββ′Uγγ′Uδδ′εα′β′γ′δ′ = detUεαβγδ = εαβγδ (6)

Thus, in contrast to the charge 2e superconductor, an
SU(4) = Ghigh symmetric charge 4e superconductor is
possible. This conclusion also holds for the symmetry group
G ⊂ Ghigh.

Unitary pairing and fractional vortices— We start by dis-
cussing the case of unitary pairing [22] which is typically en-
ergetically favored if pairing takes place equally in all flavors.
In TBG, we expect unitary pairing in the vicinity of charge
neutrality or in samples with no signature of flavor symmetry
breaking [3, 4] as will be discussed later. For unitary pair-
ing, ∆∆† is proportional to the identity matrix so that we can
rescale ∆ to be unitary (away from the points where it van-
ishes).

To study different types of vortices, we start by noting that
the overall phase for a unitary superconductor described by an
n× n matrix order parameter ∆ is defined as

ϕ =
1

n
arg det ∆ (7)

This definition guarantees that the phase changes as ϕ 7→
ϕ + φ whenever we multiply ∆ by an overall phase φ. The
phase ϕ couples to the background gauge field with charge 2e
according to the Ginzburg-Landau (GL) functional

L ∝ (~∂µϕ− 2eAµ)2 + . . . (8)

Variations with respect to A leads to∫
dlµAµ =

~
2e

∫
dlµ∂µϕ (9)

which is equivalent to the condition of vanishing current in
the ground state. Let us see the implications of this for the
different symmetry settings.

Let us first discuss the more physical G symmetry and fo-
cus on the physically relevant intervalley pairing. This can be
decomposed into a symmetric and an antisymmetric compo-
nent given by

∆S/A =

(
0 ∆̃

±∆̃T 0

)
η

(10)

where ∆̃ is unitary. Notice that due to the SU(2) × SU(2)
symmetry, the SU(2) spin singlet and triplet components are
joined in a single 4-dimensional irrep. As a consequence,
we cannot split ∆S/A further into a valley-singlet spin-triplet
channel and a valley-triplet spin-singlet channel [21, 44]. This
is only possible in the presence of Hund’s coupling which
breaks SU(2)K×SU(2)K′ down to SU(2)S as we will discuss
later. For either the symmetric or antisymmetric representa-
tion, we can write ϕ = 1

4 arg det ∆ = 1
2 arg det ∆̃. Using

(9), we see that if only one of the two eigenvalues of ∆̃ winds
by 2π, the phase ϕ winds by π leading to a vortex with a flux
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of h/4e.
The case of SU(4) symmetry can be analyzed similarly. For

the antisymmetric representation with ∆T = −∆, the eigen-
values come in pairs {λ,−λ} which means that the winding
of ϕ is necessarily a multiple of π leading also to half-vortices.
For the symmetric representation, there is no constraint on the
winding of individual eigenvalues of ∆, which means that the
winding of ϕ is a multiple of π/2 leading to quarter vortices
with flux h/8e in this case.

Finally note that the case of intravalley pairing for the
symmetry group G can be obtained from the high symmetry
case Ghigh as follows. Unitary intravalley pairing splits into
an antisymmetric representation corresponding to spin-singlet
in both valleys and a symmetric representation corresponding
to spin-triplet pairing in both valleys. These can be obtained
by restricting the SU(4) antisymmetric and symmetric rep-
resentations using the condition [∆, ηz] = 0 which does not
affect the flux quantization condition leading to h/4e vortices
for the former and h/8e vortices in the latter. A more detailed
analysis of these cases is given in the supplemental material.

Order parameter manifolds for unitary pairing— We
will now present an alternative and more abstract argument
for the existence of fractional vortices in the different unitary
charge 2e superconductors. This argument will not rely on
any GL functional. Let us again start with the case of interval-
ley pairing with G symmetry. The symmetric/antisymmetric
pairing channels can be generated starting with an arbitrary
symmetric/ antisymmetric valley off-diagonal matrix and ap-
plying U(2)×U(2) symmetry according to (1). The resulting
pairing matrix is

∆S,A =

(
0 U1U

T
2

±U2U
T
1 0

)
η

, =⇒ ∆̃ = U1U
T
2

(11)
Thus, ∆̃ is parametrized by a pair of 2×2 unitary matrices U1

and U2 modulo the operation U1 7→ U1V , U2 7→ U2V
∗ for

any 2 × 2 unitary matrix V . This means that ∆̃ parametrizes
the coset space U(2) × U(2)/U(2) ' U(2). The existence
of half-vortices can be understood as follows. A full vortex
is a vortex in the overall phase of ∆̃ which corresponds to a
loop in the subgroup UC(1) generated by ∆̃ = eiφ with φ :
0 → 2π. On the other hand, we can write the decomposition
U(2) = UC(1)×SU(2)

Z2
which is seen more explicitly by writing

∆̃ as eiϕV with V ∈ SU(2). The identification of (ϕ, V ) and
(ϕ + π,−V ) allows for a π vortex in the superconducting
phase ϕ combined with a rotation which sends V to−V . This
can be written as π1(U(2)) = Z/2, where we identify the
element 1 ∈ Z with the fundamental loop in UC(1) generated
by ∆̃ = eiφ, φ : 0 → 2π. The minimal loop in this space
1/2 ∈ Z/2 thus corresponds to a half quantum vortex with
h/4e flux.

The existence of half (quarter) vortices for the antisymmet-
ric (symmetric) repsenetations of SU(4) can also be under-
stood by analyzing the order parameter manifolds. For the an-
tisymmetric representation ∆A

µ , the manifold is generated by
acting with U(4) on any given unitary antisymmetric matrix

according to (1) leading to

∆A = Uηys0U
T (12)

where U ∈ U(4). We notice that ∆A
µ is invariant under multi-

plying U from the right by any unitary matrix K satisfying

Kηys0K
T = ηys0 (13)

which is the definition of a 4 × 4 symplectic matrix K ∈
Sp(4). Thus, ∆A

µ parametrizes the coset space U(4)/Sp(4).
Writing U = eiθV where V ∈ SU(4), we see that we
can form a closed path in U(4) by taking V 7→ −iV and
θ 7→ θ + π/2. We note however that doing this twice yields
a regular vortex since the superconducting phase ϕ is twice θ
and the path V 7→ −V can be deformed into a pathK 7→ −K
lying completely in the symplectic group which is identified
with the identity. Thus, π1

(
U(4)
Sp(4)

)
= Z/2. A similar argu-

ment applies to the symmetric 10-dimensional representation.
In this case, the order parameter manifold U(4)

O(4) which admits

half-vortices similar to the case of U(4)
Sp(4) . However, due to the

structure of the O(4) group, we can also form quarter vor-
tices. These are obtained by taking a trajectory in U(4) which
starts at an element K+ ∈ O(4) with detK+ = 1 and ends
at an element K− with detK− = −1. Since O(4) ⊂ U(4)
and U(4) is path connected, we can always find such trajec-
tory. This trajectory is a loop in the coset space U(4)

O(4) which
involves a winding of the phase of θ by (2l + 1)π4 yielding a
quarter vortex for l = 0 of the superconducting phase ϕ = 2θ.
An explicit example of such trajectory is given by the diago-
nal matrix U = diag(1, 1, 1, eiθ), θ : 0 7→ π which connects
the identity to the matrix U = diag(1, 1, 1,−1) which is con-
tained in O(4).

In general, we can derive the flux quantization condition
without a GL function by employing the following two
axioms: (a) the flux is identified as a homomorphism from
the first homotopy group of the order parameter mani-
fold, which we will denote by M∆, to the real numbers
F : π1(M∆) 7→ R and (b) the element of π1(M∆)
corresponding to the fundamental loop in UC(1) generated
by eiφ, φ : 0 → 2π, is assigned a flux of h/2e. Using
this definition, we can reproduce the half and quarter
vortices identified above. For example, the full vortices
of the manifold U(2) were identified with the element
1 ∈ π1(U(2)) and the half vortices were identified with the
element 1/2. Since the flux F is a homomorphism, we have
2F (1/2) = F (1) = h/2e =⇒ F (1/2) = h/4e.

Non-unitary pairing— Let us now see what happens if we
lift the restriction of unitary pairing. Non-unitary pairing is
expected if the parent state has broken flavor symmetry such
that pairing takes place in each flavor separately. Although
not very common, there are a few known examples for non-
unitary pairing, particularly in ferromagnetic superconductors
[29, 30, 45, 46] where pairing develops on top of a spin-split
Fermi surface and has different amplitude for the different
spin species. Another example is the A1 phase of He3 [23].
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In the following, we will show that for non-unitary pairing, it
is possible to have no fractional vortices. For this purpose, it
suffices to focus on the most physically relevant case of inter-
valley pairing with G = U(1) × SU(2) × SU(2) symmetry.
In general, we can specify the pairing function ∆ using the
eigenvalues of ∆†∆ which are invariant under the symmetry
transformation (1). For inter-valley pairing, the pairing func-
tion has the form given in Eq. 10. Thus, the most general form
of the pairing functions ∆̃ is

∆̃ = U1

(
λ1 0
0 λ2

)
UT2 (14)

For |λ1| 6= |λ2|, this corresponds to so-called two gap super-
conductors with different amplitudes of the gap function for
the different electron species [35]. The GL theory in this case
is given by

L = ρ1(∂µϕ1 −
2e

~
Aµ)2 + ρ2(∂µϕ2 −

2e

~
Aµ)2 + . . . (15)

where the two U(1) phases ϕ1,2 = arg λ1,2 correspond to the
gap functions of the two different spin species. The vortex
quantization condition is∫

dlµAµ =
~
2e

∫
dlµ

ρ1∂µϕ1 + ρ2∂µϕ2

ρ1 + ρ2
(16)

We see that this generically leads to fractional vortices which
depend on the relative stiffness of the two superconductors
when both λ1 and λ2 are non-zero [35].

The existence of fractional vortices can also be understood
from our more abstract definition in the previous section. The
order parameter manifold can be understood as follows. Al-
lowing λ1 and λ2 to be complex, we can absorb the overall
phases of U1 and U2 as well as the effect of the transforma-
tions U1,2 7→ eiφ1,2σzU1,2 in the phases of λ1 and λ2. This
means that ∆̃ parametrizes the manifold U(1)×U(1)×S2×S2

which can be understood as follows. Due to the independent
SU(2) spin rotation in each valley, we can choose the spin
quantization axis independently in the two valleys leading to
two unit vectors parametrizing S2×S2. The two U(1) phases
describe the phase of the pairing function for the two spin
species. Note that π1(U(1) × U(1) × S2 × S2) = Z ⊕ Z
where the fundemantal vortex in UC(1) corresponds to the el-
ement (1, 1) ∈ Z ⊕ Z which represents 2π phase winding in
both U(1) phases. The flux quantization condition can then
be written as F [(1, 1)] = h/2e = F [(0, 1)] + F [(1, 0)]. In
the absence of any symmetry relating (0, 1) and (1, 0), i.e. the
two spin species, we can write F [(0, 1)] = xh/2e for some
arbitrary 0 ≤ x ≤ 1 which implies F [(1, 0)] = (1 − x)h/2e.
Comparing with (16), we can identify x with ρ2/(ρ1 + ρ2).
Note that whenever the two spin species are related by an un-
broken symmetry, x = 1/2 and we recover half vortices as in
the unitary case.

In the extreme non-unitary limit where pairing takes place
in only one species, i.e. one of λ1,2 (and consequently ρ1,2) is
zero, there are only regular h/2e vortices. This can be seen by
noting that the order parameter manifold for this case reduces

to U(1) × S2 × S2 because phase rotations on the vanishing
eigenvalue have no effect. This manifold has a single U(1)
with the GL functional (8) leading to the same quantization
condition (9) wheres the winding of ϕ has to be a multiple of
2π leading to standard h/2e flux. This serves to illustrate that
the non-unitary pairing allows for a conventional scenario
with a charge 2e superconductor that does not host fractional
vortices.

No-go theorem— In summary, we have proved the follow-
ing general statement: For any pairing in the ideal SU(4) sym-
metric model or the more realistic U(1) × SU(2) × SU(2)
model, one of three possibilities should occur: (i) the su-
perconducting pairing is non-unitary, (ii) the superconduct-
ing condensate has charge 2e but breaks the global symmetry
and admits at least half quantum vortices with flux of h/4e ,
or (iii) the superconducting condensate has charge of at least
2me with m > 1 with vortices carrying h/2me flux.

Note an important difference between the cases (ii) and
(iii). The fractional vortices of the charge 2e superconductor
combine a winding in the overall phase with a winding in
internal orbital indices. Whereas the former is compensated
by external magnetic flux, the latter is not, leading to logarith-
mically divergent energy at long distances. This means that
these vortices are only relevant at sufficiently short distances
e.g. in mesoscopic geometries. Such type of vortices were
already observed in mesoscopic samples in liquid Helium 3
[33] and spin-triplet condensates [47]. On the other hand,
vortices of a charge 2me superconductor with m > 1 which
carry a fractional flux of h/2me have finite energy and can
be observed in the infinite system.

Nonzero temperature and BKT transitions—Here we
discuss how the different scenarios we have discussed man-
ifest at nonzero temperatures. At nonzero temperature in two
spatial dimensions fractional vortices in charge 2e supercon-
ductors manifest as pure phase windings of a higher charge su-
perconductor once a non-zero temperature is included; above
a critical temperature Tc the superconductivity is lost due to a
BKT transition driven by the condensation of these fractional
vortices [6, 48–51].

We now describe this picture for the candidate supercon-
ductors allowed by our statement, starting with the case of
U(4) symmetry. The Mermin-Wagner theorem forbids the
continuous symmetry breaking of the charge 2e superconduc-
tors, but algebraic order in the U(1) phase may still persist.
In particular, the unitary charge 2e order parameters ∆S,A

that parameterize the manifolds U(4)/Sp(4) and U(4)/O(4)
respectively must be disordered, but the respective submani-
folds U(1)/Z4 and U(1)/Z8 retain XY order that melts for
sufficiently high temperatures through a BKT transition. The
BKT transition is driven by the condensation of half quantum
vortices and quarter-quantum vortices for the SU(4) antisym-
metric and symmetric superconductors, respectively. We may
interpet this in terms of higher charge superconductors as fol-
lows. For T > 0 the charge 2e superconductors are unstable:
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Symmetry Irreps generators SC Manifold (unitary pairing) Vortices

SU(4)
6 ηys0,x,z , η0,x,zsy

U(4)
Sp(4) Z/2

10 η0,x,zs0,x,z , ηysy
U(4)
O(4) Z/4

SU(2)× SU(2) ' Spin(4)
Inter-valley pairing

4 ηys0,x,z , ηxsy U(2) Z/2
4 ηysy , ηxs0,x,z U(2) Z/2

TABLE I: Summary of the order parameter manifolds and the irreducible representations for the unitary pairing charge 2e
superconductors. For the ideal SU(4) case, the symmetry action splits into a 6-dimensional antisymmetric and a

10-dimensional symmetric irrep whose corresponding manifolds admit half and quarter quantum vortices respectively. For the
more realistic U(1)V × SU(2)× SU(2), we focus on the physically relevant inter-valley pairing which is U(1)V singlet and

splits into two 4-dimenstional irreps under SU(2)× SU(2) whose manifolds admit half vortices.

∆A,S is disordered. However, for the antisymmetric case,

∆4e = εαβγδ∆A
αβ∆A

γδ (17)

is an SU(4) singlet and parameterizes U(1)/Z4. It retains
algebraic order and gives rise to a charge 4e superconductor
for T > 0. The h/4e vortices in ∆4e are the finite temperature
remnants of the half quantum vortices in ∆A

2e. Similarly the
operator

∆8e = εαβγδεα
′β′γ′δ′∆S

αα′∆S
ββ′∆S

γγ′∆S
δδ′ (18)

is an SU(4) singlet built out of ∆S that parameterizes
U(1)/Z8. It can have algebraic order for T > 0 and host
h/8e vortices.

For intervalley pairing in the U(1)× SU(2)× SU(2) sym-
metric case, the operator

∆̃4e = εabεa
′b′∆̃aa′∆̃bb′ (19)

is a singlet with charge 4e. Here we used (10) to write the
order parameter in terms of an arbitrary unitary matrix ∆̃.
The unprimed and primed indices transform under the first
and second copy of SU(2), rotations in valley K and K ′, re-
spectively. For the antisymmetric representation (17) and (19)
coincide up to a constant.

It is possible that at T = 0 these higher charge supercon-
ductors are the ground state anyway and there is no charge
2e order at T = 0. The T > 0 phenomena of higher charge
superconductivity are similar in both cases, though the corre-
lation length for charge 2e order will diverge exponentially as
T → 0 if a charge 2e superconductor is the quantum ground
state. For Josephson junctions with linear extent smaller than
the charge 2e correlation length the system will behave like a
charge 2e superconductor.

Symmetry Lowering by Intervalley Hunds Coupling—
Ultimately SU(2) × SU(2) symmetry is broken down to its
diagonal subgroup of overall spin and charge rotations SU(2)
by intervalley Hunds terms [21, 44, 52]. These terms are sup-
pressed by the lattice to moiré scale a/L� 1, and have mag-
nitude |JH | ≈ 0.2 − 0.5meV. Nonzero JH splits the 4 rep-
resentation of SU(2)× SU(2) to 3⊕ 1 of SU(2), spin triplet
and spin singlet respectively [21]. The sign of JH is unknown

and determines whether spin triplet or spin singlet states are
favored.

If the singlet state is favored, then at zero temperature there
will only be full quantum vortices. The critical temperature
for the spin-singlet pairing will be smaller than the critical
temperature for charge 4e order for sufficiently small JH . By
analogy with the Heisenberg model with a small easy plane
bias [53–56], we expect the critical temperature to have the
following form as JH → 0

TC singlet, 2e =
c1ρ

log c2ρ
JH

, (20)

where c1,2 are numbers and ρ is the phase stiffness. Thus
even with small but finite JH due to the slow variation of the
logarithm, there may not be a significant separation of scales
between TC singlet, 2e and TC 4e ∝ ρ. On the other hand, if the
triplet state is favored and the pairing is unitary, half quantum
vortices persist. An extreme non-unitary triplet state is worth
mentioning as well, and was considered in Ref. 57. Here the
order parameter actually parameterizes SO(3) which has fun-
damental groupZ2 – a double vortex is no longer a metastable
configuration. Here there is no BKT transition [21], however;
theZ2 nature of the vortices implies that there is no composite
operator built from the zero temperature order parameter that
retains XY order for nonzero temperatures.

Spin orbit coupling at very small scales may also break
the overall SU(2) spin rotation and stabilize a charge 2e
state with no half quantum vortices at nonzero temperature.
However, spin orbit coupling is extremely weak and so
even with a logarithmic critical temperature dependence
similar to (20) we expect that there will be a large win-
dow where the charge 2e order has melted but the charge
4e order is still present with observable half quantum vortices.

Skyrmions with charge 2e and 4e and superconductiv-
ity— Let us now discuss how the different pairing scenarios
discussed in this work arise very naturally from the topolog-
ical mechanism of superconductivity proposed in Ref. [16]
which we review briefly below. In that work, the authors pro-
posed a topological mechanism for superconductivity based
on pairing topological skyrmion textures. They considered a
simplified problem where the spin degree of freedom is ne-
glected. This is likely relevant to the extreme non-unitary



8

limit where superconductivity takes place in only one spin
species. In this limit, the system consists of two bands in
each Chern sector which are labelled by the pseudospin index
η. The low energy states of the system with vanishing Chern
number correspond to ferromagnetic order of the pseudospin
vector in each Chern sector which are coupled antiferromag-
netically between the opposite Chern sectors. A pseudo-spin
skyrmion texture in the C = ± sector carries charge ±e. The
antiferromagnetic coupling between the opposite Chern sec-
tors leads to an attractive interaction between a skyrmion in
one sector and an antiskyrmion in the opposite sector despite
having the same charge. This attraction leads to the formation
of a charge 2e bound state which leads to superconductivity
upon condensation.

Let us now see how this picture changes when we con-
sider the fully spinful model in the absence of flavor symmetry
breaking where unitary pairing is expected. In this case, each
Chern sector contains four bands labelled by spin and pseu-
dospin. The low energy states with zero total Chern number
are specified by filling 2 out of the 4 bands within each sector
[24]. Such state is parametrized by the 4 × 4 matrices Q± in
the spin-pseudospin space satisfying Q2

± = 1 and trQ± =
0. Within each Chern sector, Q± parametrizes the manifold

U(4)
U(2)×U(2) which, similar to the 2-sphere S2 = U(2)

U(1)×U(1) , ad-

mits skyrmion textures due to π2

(
U(4)

U(2)×U(2)

)
= Z. A gen-

eral skyrmion texture in this manifold intertwines the pseu-
dospin and spin degrees of freedom. We can understand the
different types of possible skyrmions by restricting ourselves
to some simple limiting cases. One possibility is to consider a
pseudospin skyrmion in only one of the spin species. Such a
skyrmion can be written as

Q+(r) =

(
n0 · η 0

0 nsk(r) · η

)
↑/↓

(21)

where n0 is some fixed vector whereas nsk(r) describes a
skyrmion texture. This skyrmion is the same as the spinless
pseudospin skyrmion and will consequently carry an electric
charge of ±e. Another more symmetric possibility is to take
the same skyrmion in both spin directions so that

Q+(r) = s0nsk(r) · η (22)

This skyrmion consists of two copies of the spinless charge
e skyrmion and will thus carry a total charge of 2e. Notice
that these Chern skyrmions cannot condense since they feel
a net magnus force (effective magnetive field). However, as
in the spinless case, the two Chern sectors are antiferromag-
netically decoupled by a term of the form J trQ+Q− which
favors Q+ = −Q− leading to an attractive interaction be-
tween skyrmions in one Chern sector and antiskyrmions with
the same charge in the opposite sector. The resulting bound
state feels no net magnetic field and can condense leading to
a charge 2e or charge 4e superconductor. The former is real-
ized by pairing the single spin skyrmions in Eq. 21 which is
excepted to break the SU(4) symmetry while the latter is real-
ized by pairing the spin-singlet skyrmions in Eq. 22 which is

expected to yield an SU(4)-singlet. A detailed analysis of the
symmetry transformation properties of the different skyrmion
superconductors will be provided in an upcoming work [58].

The discussion above can be substantiated by writing the
field theory derived in Ref. [16] (although that work focused
on the spinless limit, the field theory derived was valid for any
number of flavors)

L[Q+, Q−] = L+[Q+] + L−[Q−] + J trQ+Q− (23)

with L[Q] given by

L±[Q] =
ρ

2
tr(∂iQ)2 + ieAµJ±,µ[Q] + LB [Q]± LWZW[Q],

J±,µ[Q] = ± iεµνλ
16π

trQ∂νQ∂λQ (24)

Here, LB is the Berry phase term [59] whereas LWZW is
a Wess-Zumino-Wittern term which ensures that charge e
skyrmions are fermions as expected. This term, which was
not included in Ref. [16], will not play a role in our discus-
sion but is generally important to obtain the right symmetry
properties as we will show in a subsequent paper [58]. What
is important to our current discussion is the skyrmion charge
given by integrating J±,0[Q]. We see that for the single spin
skyrmion defined in (21), the expression in (24) simplifies to
1

4πnsk ·(∂xnsk×∂ynsk) which corresponds to the charge den-
sity of a standard spin skyrmion that integrates to 1, thus indi-
cating it is indeed a charge e skyrmion. On the other hand, the
spin singlet skyrmion defined in (22) has twice the topologi-
cal density leading a total electrical charge of 2e. An effective
field theory describing the different insulators and skyrmion
superconductors analogous to the CP1 theory of Ref. [16] will
be presented in Ref. [58].

In conclusion, it is possible to realize the three possibilities
– non-unitary pairing, unitary charge 2e and charge 4e
superconductivity – within the skyrmion mechanism. The
former corresponds to the spinless limit where pairing takes
place in a single spin species. The latter two possibilities
are realized in the full spinful model by pairing charge e
skyrmions (21) leading to an SU(4)-breaking superconductor
or charge 2e objects (22) leading to an SU(4)-symmetric
superconductor.

Experimental consequences— To discuss the experimen-
tal implications of the statement above for TBG, let us
first review some experimental facts. In many experiments
[1, 2, 4, 5, 41, 60], superconductivity is observed in the
vicinity of a flavor-symmetry-breaking insulator at ν = −2,
which suggests non-unitary pairing. However, there are a few
samples [3, 4] where superconductivity is observed close to
charge neutrality with no signature of flavor symmetry break-
ing nearby. This is likely to be unitary pairing where cases (ii)
or (iii) of our theory should apply. In addition, several groups
[4, 5, 41] have observed superconductivity in the absence of
an insulator close to ν = ±2. The absence of insulator is
not sufficient to rule out flavor symmetry breaking since it
does not exclude the possibility of a flavor-polarized metal.
A stronger evidence for flavor polarization is provided by the
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presence of a Landau fan emanating for ν = ±2 indicating
a Fermi surface reconstruction. Thus, our general criteria for
unitary vs non-unitary pairing can be translated respectively
to the absence or presence of a Landau fan emanating from
an integer filling in the vicinity of the superconductor. This
can be taken as a proxy for flavor symmetry breaking in the
parent state. We leave open the unusual scenario where non-
unitary pairing develops on top of a flavor symmetric state.
This was observed in UTe2 [61] and was argued to occur due
to proximity to a ferromagnetic transition [62].

Having established the connection to the experimental
setup in TBG, let us now investigate the implications of our
results. In the vicinity of ν = ±2, the most likely flavor
polarization is spin which has two possibilities depending on
the sign of Hund’s coupling. For the ferromagnetic sign of
Hund’s coupling, the flavor polarized state is a spin ferromag-
net which favors a spin-triplet superconductor where pairing
takes place in a single spin species. This corresponds to the
scenario discussed in Ref. [57] with only Z2 vortices. In prin-
ciple, this implies the superconductor cannot exist at finite
temperature and has no BKT transition. This appears hard
to reconcile with the robust pairing state observed in experi-
ments. On the other hand, antiferromagnetic Hund’s coupling
results a non-unitary pairing between anti-aligned spin direc-
tions in the two valleys. This state is a superposition of a
spin singlet and the Lz = 0 component of spin-triplet. At fi-
nite temperature, SU(2) rotation symmetry is restored and the
spin-triplet component disorders leading to a spin-singlet su-
perconductor. In the absence of spin anisotropies, this appears
to be the likely candidate for the experimentally observed su-
perconductivity.

For superconductors observed in the absence of flavor po-
larization, we expect unitary pairing with fractional vortices
or higher charge superconductivity. Ordinary half quantum
vortices are not present in large systems due to logarithmi-
cally divergent energies associated with their windings in fla-
vor space. While the phase winding costs finite energy due
to the presence of magnetic flux in the vortex core, there is
no physical gauge flux that can cancel the flavor space wind-
ing. However, as discussed above, in two spatial dimensions
fractional vortices in charge 2e superconductors manifest as
pure phase windings of a higher charge superconductor once
a non-zero temperature is included [6, 48, 51].

This has the following implications for the periodicity of
the Fraunhofer patterns in magnetic Josephson junctions or
SQUIDS. If the ground state is a charge 2me superconductor
with m > 1, this will be observed as a modified periodic-
ity of the Fraunhofer pattern with period 2π/m for any tem-
perature below the KT transition. On the other hand, if the
ground state is a charge 2e superconductor, we can only ob-
serve the modified periodicity for sufficiently large junctions
whose size exceed the charge 2e correlation length. The lat-
ter decreases with increasing temperature making it likely to
observe the modified periodicity at sufficiently large tempera-

tures provided that they are still below the KT temperature.
In mesoscopic annular geometries it may be possible to di-

rectly observe half quantum vortices as h/4e jumps in the flux
threaded through the hole of the annulus. Mesoscopic geome-
tries are ideal to avoid the logarithmically divergent energy
cost associated with the unscreened flavor space winding [35–
37] and were previously used to observe half quantum vortices
[33, 47, 63].

As discussed above, a Hund’s coupling that favors spin sin-
glet pairing will stabilize a unitary charge 2e superconductor
without half quantum vortices. Because the critical temper-
ature (20) goes to zero very slowly for small JH , it is likely
that experiments done at cold temperatures would not observe
such vortices if the Hunds coupling favors singlet pairing.
However, the lack of a large separation of scales does not ex-
clude a potentially large temperature window where the sin-
glet Hunds pairing has melted but the charge 4e condensate
has not. Within this window one would still observe fractional
vortices.

Fractional vortices have previously received much atten-
tion due to the promise of Majorana zero modes [64–66].
However, these zero modes are specific to p-wave pairing
where winding in a single spin mimics a full quantum vortex
for a spinless p + ip superconductor. Full quantum vortices
are not expected to host Majorana zero modes in spinless
TBG, and so half quantum vortices in spinful TBG also will
not host them. However, both full and half quantum vortices
are expected to host multiple protected fermionic zero modes
if the pairing is between Chern sectors and valleys. We will
discuss these zero modes in more depth in a subsequent paper.

Conclusion— In conclusion, we have proven a no-go
theorem under mild assumptions which constraints the prop-
erties of superconducting condensates in TBG, particularly
for regions in the phase diagram where flavor polarization is
absent. The main outcome of our analysis is that such regions
present ideal hunting grounds for unconventional and exotic
types of superconductivity. Our results are independent of the
underlying mechanism of superconductivity and are equally
applicable to weak coupling BCS-type superconductor as
well as strong coupling superconductors. We hope our study
will inspire future experiments to look for signatures of
fractional vortices and higher charge consendensates in these
superconducting regions.
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Supplemental material:
Symmetry constraints on superconducting pairing in twisted bilayer graphene

I. TRANSFORMATION UNDER SPATIAL SYMMETRIES

In the main text, we only considered the transformation properties of the pairing function under global symmetries. Here, we
consider the spatial symmetries. We follow the notations of Refs. [16, 24] by writing the microscopic symmetries acting on the
microscopic annihilation operators fk which is a vector in valley (τ ), sublattice (σ), spin (s), and layer (µ):

C3 : fk 7→ ei
π
3 σzτzfO3k, C2 : fk 7→ σxτxf−k, My : fk 7→ σxµxfmyk (S1)

where O3 denotes the standard action of threefold rotation on a 2D vector and my(kx, ky) = (kx,−ky). Note that all these
symmetries acts trivially on the spin index due to the SU(2) rotation symmetry. Next, we project these symmetries onto the flat
bands. Due to the finite sublattice polarization, we can label the wavefunctions with the sublattice σ their weight is concentrated
on [24], which means that the flatband electron annihilation operators are labelled by valley (τ ), sublattice (σ), and spin (s).
A more convenient basis is obtained by replacing the valley-sublattice indices with the the Chern (γ) - pseudospin (η) indices
defined via [16]:

γ = (σx, σyτz, σzτz), η = (σxτx, σxτy, τz) (S2)

Due to the non-trivial band topology of the flat bands, some symmetries acquire a k-dependence when projected onto them. This
dependence was derived in detail in Refs. [16, 24] leading to the results summarized in the table below

basis C2 C3 My

microscopic σxτx ei
π
3 σzτz σxµx

projected σxτxe
iθ2(k) eiθ3(k)σzτz σxe

iθy(k)σzτz

projected (γ, η) ηxe
iθ2(k) eiθ3(k)γz γxe

iθy(k)γz

Let us now consider the transformation properties of the pairing function. We restrict ourselves to the physically relevant case
of opposite momentum pairing:

∆k = ckc
T
−k (S3)

which behaves under spatial symmetries as

ck 7→ UkcOk =⇒ ∆k 7→ Uk∆OkU
T
−k (S4)

As in the main text (Eq. 3), we can use the fact the global symmetries do not have structure in the Chern space γ to decompose
the gap function into different channels

∆(k) = ∆x(k)γx + ∆y(k)γy + ∆+(k)
1 + γz

2
+ ∆−(k)

1− γz
2

(S5)

The antisymmetry of the full pairing function ∆(k)T = −∆(−k) means that

∆x,±(k)T = −∆x,±(−k), ∆y(k)T = ∆y(−k) (S6)
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The transformation properties under C2, C3 and My can now be obtained:

C2 : ∆x,y,±(k) 7→ ηx∆x,y,±(−k)ηx, (S7)

C3 : ∆x,y(k) 7→ ∆x,y(O3k), ∆±(k) 7→ e±2iθ3(k)∆±(O3k) (S8)

My : ∆x(k) 7→ ∆x(myk), ∆y(k) 7→ −∆y(myk), ∆±(k) 7→ e±2iθy(k)∆∓(myk). (S9)

The last two equations imply that the ∆± pairing channels are tied together in a single irrep of the spatial symmetry group,
whereas ∆x and ∆y transform as separate irreps. To understand the action of C2, we decompose each ∆µ into symmetric and
antisymmetric intervalley pairing and an intravalley pairing. For intervalley pairing considered in the main text

∆S/A(k) =

(
0 ∆̃S/A(k)

±∆̃S/A(k)T 0

)
=⇒ ∆̃S/A(k) = ±∆̃S/A(−k)T (S10)

Combining with Eq. S6 yields

∆̃
S/A
x,± (k)T = ∓∆̃

S/A
x,± (k), ∆̃S/A

y (k)T = ±∆̃S/A
y (k) (S11)

This represents a restriction on the individual blocks ∆̃ in the different pairing channels±, x, y for symmetric and antisymmetric
pairing functions. Finally, we consider intravalley pairing

∆(k) =

(
∆K(k) 0

0 ∆K′(k)

)
, =⇒ ∆K(k) = ∆K′(−k) (S12)

which dictates that the pairing in both valleys has the same gap and symmetry properties (singlet or triplet).

II. FRACTIONAL VORTICES FOR INTRAVALLEY PAIRING

Let us now consider the case of intra-valley pairing. This is not likely to be the relevant case physically but we include it here
for completeness. Assuming unitary pairing, we can write the most general form for intra-valley pairing as

∆ =

(
∆K 0
0 ∆K′

)
, ∆K∆†K = ∆K′∆†K′ ∝ 1 (S13)

If both ∆K and ∆K′ are antisymmetric, which corresponds to the singlet channel of SU(2) in each valley, then we can use the
same considerations as in the main text to determine the type of vortices with the GL Lagrangian

L = ρK(∂µϕK −
2e

~
Aµ)2 + ρK′(∂µϕK′ − 2e

~
Aµ)2 + . . . (S14)

leading to the vortex quantization condition∫
dlµAµ =

~
2e

∫
dlµ

ρK∂µϕK + ρK′∂µϕK′

ρK + ρK′
(S15)

Symmetries such as C2 and time reversal exchange valleys and therefore relate ∆K and ∆K′ as well as ρK and ρK′ . As long
as the superconductivity develops in a state that preserves one of C2, time reversal or any combination of one of them with an
internal symmetry, we expect ρK = ρK′ for unitary pairing. We then obtain h/4e vortices.

This conclusions can also be verified by considering the manifold of the superconducting order parameter by writing ∆ =
sye

i(φη0+φV ηz). Thus, we can form a loop in the space of ∆ where both φ and φV go from 0 to π. This will correspond
to a half-vortex in the overall superconducting phase φ. This reflects the nature of the manifold of the superconducting order
parameter UC(1)×UV (1)

Z2
which admits half-vortices. This case is similar to the case of non-unitary pairing considered in the

main text where π1 of the superconducting manifold is Z ⊕ Z and vortices with arbitrary flux xh/2e are in principle allowed.
However, the presence of any symmetry relating the two valleys would force x = 1/2 leading to half quantum vortices.

If both C2 and time reversal are broken in the parent state and there is no other unbroken symmetry that relates the two valleys
then ρK and ρK′ may be different. In such a state we would expect nonunitary pairing since there is also no symmetry relating
∆K and ∆K′ which means unitary pairing should not be stable to RG flows; it must be fine tuned. If we nonetheless fine tune
to obtain unitary pairing, and furthermore fine tune one of the stiffnesses to zero despite a nonzero pairing potential, we obtain



3

conventional h/2e vortices. We do not take this latter scenario into account for our main theorem due to the extreme amounts of
unphysical fine tuning, but detailed its existence here for completeness.

Next, we consider the case where either ∆K or ∆K′ is symmetric, i.e. SU(2) triplet. The existence of fractional vortices
in this case follows immediately from the existence of half-vortices in the spin-triplet case whose manifold is U(2)/O(2) with
π1(U(2)/O(2)) = Z/2. When included in the bigger order parameter for both valleys, this yields fractional vortices. For
instance, if pairing is triplet in both valleys, this will be a quarter vortex similar to the symmetric SU(4) case considered in the
main text.
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