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Abstract

We propose a new method for solving binary optimization problems
under inequality constraints using a quantum annealer. To deal with
inequality constraints, we often use slack variables, as in previous ap-
proaches. When we use slack variables, we usually conduct a binary ex-
pansion, which requires numerous physical qubits. Therefore, the problem
of the current quantum annealer is limited to a small scale. In this study,
we employ the alternating direction method of multipliers. This approach
allows us to deal with various types using constraints in the current quan-
tum annealer without slack variables. To test the performance of our
algorithm, we use quadratic knapsack problems (QKPs). We compared
the accuracy obtained by our method with a simulated annealer and the
optimization and sampling mode of a D-Wave machine. As a result of our
experiments, we found that the sampling mode shows the best accuracy.
We also found that the computational time of our method is faster than
that of the exact solver when we tackle various QKPs defined on dense
graphs.

1 Introduction

Combinatorial optimization problems are essential challenges that emerge in
numerous domains such as portfolio optimization [1], traffic flow [2], job-shop
scheduling [3], nurse scheduling [4], automated guided vehicles [5], and machine
learning [6]. Many researchers have been developing new algorithms to solve
these large-sized problems. Quantum annealing (QA) is a recently developed
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technology for solving combinatorial optimization problems [7]. This technol-
ogy was initially proposed in academia, inspired by simulated annealing (SA)
[8]. With the recent realization of quantum annealers [9, 10, 11], i.e., D-Wave
machines, many researchers have been studying QA for application in industry.
Thus, QA is attracting significant attention from numerous people in academia
and business. The current D-Wave machine, D-Wave 2000Q, can minimize the
following quadratic cost function:

E(x) = x
TQx (1)

where x = {0, 1}N is an N -dimensional vector of binary variables, and Q is
an integer or real matrix. Eq.(1) and Q are called the quadratic unconstrained
binary optimization (QUBO) problem and QUBO matrix, respectively. To use
the D-Wave 2000Q in practical situations, we represent our task using a QUBO
formulation. In this study, we assume that our task is given with the following
linear constraints:

minimize
x

f(x)

,subject to Flx = Cl (l = 1, · · · , L)

, Gmx ≤ Dm (m = 1, · · · ,M), (2)

where Fl,Gm ∈ Z
N , Cl, Dm ∈ Z, and f(x) is an objective function given as

the QUBO formulation. Here, we represent the equality constraints with the
penalty terms as follows [12]:

Flx = Cl (l = 1, 2, · · ·L) ⇔

L
∑

l=1

(Flx− Cl)
2
, (3)

Then, adding Eq.(3) into f(x), we obtain the QUBO-type cost function. In a
similar way, the inequality constraints can be written as follows [13, 14, 15]:

Gmx ≤ Dm (m = 1, 2, · · ·M) ⇔

M
∑

m=1

(Gmx−Dm + sm)
2
, (4)

where sm is called the slack variable. Thus, the inequality constraints can
be represented using the QUBO formulation by the binary expansion sm =
1x1 + 2x2 + 4x3 + · · · .

Unfortunately, we can solve only small-sized problems if we apply the slack
variables because the binary expansion requires many physical qubits, and D-
Wave 2000Q has only approximately 2000 qubits. In addition to the slack
variable, the embedding techniques limit the problem size that can be solved.
The physical qubits in the D-Wave 2000Q connect to other qubits in the chimera
graph. The connection of the hardware, chimera graph, is sparse and differs from
that of a logical variable representing the optimization problems. Therefore, we
use the embedding technique to represent the logical variables on the chimera
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graph [16, 17, 18, 19]. The embedding allows us to solve various QUBO problems
but uses numerous additional physical bits. We can compute only 64 logical
variables when the problem is defined on a fully connected graph. As a result,
the number of logical variables we can use dramatically decreases. Thus, it is
difficult for the D-Wave 2000Q to deal with inequality constraints.

In this study, we report a new method for solving inequality-constrained
binary optimization problems in the D-Wave 2000Q. Our algorithm is based
on the augmented Lagrangian method and the alternating direction method
of multipliers (ADMM) [20, 21, 22, 23]. These approaches allow us to solve
the inequality constrained problems without the slack variables. Our algorithm
applies not only to the D-Wave machine but also to other QUBO solvers. The
current digital QUBO solvers can deal with more logical variables than the D-
Wave 2000Q. Therefore, with our method, we can solve larger-sized problems
involving the inequality constraints.

The remainder of this paper is as follows. In Sec.2, we provide an overview of
the QA and D-Wave machine. Furthermore, we show the augmented Lagrangian
method and the main algorithm based on the ADMM. In Sec.3, we describe
the test results of our method on quadratic knapsack problems. In Sec.4, we
compare the accuracy and computation time obtained by our method and exact
optimizers. We then discuss the potential superiority of our method over the
exact optimizers. Finally, we summarize our study in Sec.5.

2 Methods

2.1 Overview of Quantum Annealing and D-Wave Ma-

chine

In QA, we set the system, which consists of the target and driving Hamilto-
nian [7, 24, 25]. The target Hamiltonian includes the Pauli matrices, whose
z-components are given as Ising variables as +1 and −1. The target Hamilto-
nian corresponds to the cost function E(x) because the Ising variable si can be
written as si = 2xi − 1. The driving Hamiltonian introduces quantum fluctua-
tions to the system. In the early step of QA, the driving Hamiltonian creates a
superposition of all solutions. By gradually reducing the influence of the driv-
ing Hamiltonian, we obtain the lowest-cost solution for the target Hamiltonian.
Thus, QA achieves the optimal solution if the annealing time is sufficiently long.
However, we typically set the annealing time to 20 µs when actually using the
D-Wave 2000Q. In addition, it is difficult to remove the effects of noise in the ac-
tual system. Therefore, the D-Wave 2000Q is used as a sampler, which provides
stochastically approximated solutions [26].

Herein, we introduce postprocessing modes used in the D-Wave 2000Q, i.e.,
optimization and sampling modes [25]. The optimization model conducts local
updates to the samples obtained through QA. Thus, we obtain a set of samples
with a lower cost function. In sampling mode, the samples obtain using QA are
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modified into a target Boltzmann distribution, which is defined as

P (x) =
1

Z
exp [−βE(x)] . (5)

where β is inverse temperature. When we take β →∞, only the lowest-energy
samples are obtained. By contrast, when β moves toward zero, diverse samples
are generated from P (x).

As mentioned in the previous section, we use the embedding technique.
Moreover, the unembedding technique is also essential [16]. We use the un-
embedding to obtain samples on the logical variables after applying QA. The
D-Wave 2000Q has several unembedding methods, and the default setting em-
ploys the majority-vote method. In this study, we use the minimize-energy
method. This method leads us to lower-cost samples by minimizing the local
cost function.

2.2 Augmented Lagrangian Method

We define the cost function including the inequality constraints. For simplicity,
we consider only the inequality constraints in Eq.(2). The inequality constraints
can be written using the penalty terms as follows:

Eineq(x) = f(x) + γ

M
∑

m=1

Θ(Gmx−Dm), (6)

where γ is relatively larger than the objective function f(x). Here, Θ(x) is the
Heaviside step function, which is defined as follows:

Θ(x) =

{

1 (x > 0)

0 (x ≤ 0).

When Θ(Gmx
∗ − Dm) is zero for ∀m, x∗ is the feasible solution. However,

the D-Wave 2000Q cannot directly deal with Eq. (6) because of the Heaviside
step function. We introduce the augmented Lagrangian method to transform
Eineq(x) into the QUBO formulation [20, 21]. Eq.(6) can be rewritten as follows:

minimize
x

f(x) + γ

M
∑

m=1

Θ(zm)

,subject to Gmx−Dm = zm (m = 1, · · · ,M), (7)

where {zm} ∈ Z
M are auxiliary variables. We obtain the new cost function Eaug

with the Lagrangian multipliers and the penalty terms as follows:

Eaug(x, z,λ) = f(x) + γ

M
∑

m=1

Θ(zm)

+

M
∑

m=1

λm(Gmx−Dm − zm) +
ρ

2

M
∑

m=1

(Gmx−Dm − zm)
2
, (8)
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where {λm} and ρ are the multipliers and coefficients for the penalty terms,
respectively.

2.3 Main Algorithm

To solve Eaug(x, z, and λ), ADMM is widely used [22, 23]. In ADMM, we
update x, z, and the multipliers λ by applying the sequential optimizations as
follows:

x
∗[t+ 1] = argmin

x

Eaug(x, z
∗[t+ 1],λ[t]), (9a)

z
∗[t+ 1] = argmin

z

Eaug(x
∗[t+ 1], z,λ[t]]), (9b)

λ[t+ 1] = λ[t] + ρ
(

G
T
mx

∗[t+ 1]−Dm − z∗m[t+ 1]
)

(m = 1, · · · ,M), (9c)

where t corresponds to the number of iterations. By repeating Eqs.(9a)–(9c)
until convergence, we eventually obtain the optimal solution. In this study,
we developed a hybrid algorithm that combines ADMM and QA. The main
difference between the usual ADMM and our hybrid algorithm is the use of a
quantum annealer for solving Eq.(9a). After applying QA for Eaug(x, z, and
λ), we obtain the samples {xν}, where ν is the index for each sample. We define
the lowest-cost solution x

∗
cost that minimizes Eaug(x, z,λ) as

x
∗
cost = argmin

{xν}

Eaug(x, z,λ). (10)

Note that x∗
cost is not necessarily a feasible solution, but other samples in {xν}

can be feasible. Here, we define a feasible solution x
∗
feas that minimizes f(x)

and satisfies the inequality constraints as follows:

x
∗
feas = argmin

{xν}

f(x) s.t. Gmx ≤ Dm (m = 1, · · · ,M). (11)

We use x
∗
cost to update z and λ, whereas x

∗
feas is utilized for searching the

feasible solution. We show the details of our ADMM algorithm as follows:

1. Initialize the parameters as {zm} = 0, {λm} = 0, and t = 1.

2. Apply the embedding for a fully connected graph with size N .

3. Compute the QUBO matrix using Eq.(8):

4. Obtain the samples {xν} by annealing the QUBO matrix.

5. Compute x
∗
cost and x

∗
feas using the samples {xν}.

6. Update z
∗ as z∗m = min (0,Gmx

∗
cost −Dm) (m = 1, · · · ,M)

7. Update λ as λm = λm + ρ (Gmx
∗
cost −Dm − z∗m) (m = 1, · · · ,M)

8. Check the convergence: When one of the following criteria is satisfied, the
calculation is completed.
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(a) t > tmax

(b) Eineq(x
∗
feas) is not improved in tconv steps

(c)
√

∑

m (Gmx∗
feas −Dm − zm)

2
< ǫ

where tmax, tconv, and ǫ are predetermined parameters.

9. t← t+ 1.

10. Iterate (3)-(9) until convergence.

Here, the unembedding process is involved in step 4. Thus, the unembedding is
applied after every sampling, whereas the embedding is conducted once before
the iterating part.

Note the essential points of our ADMM algorithm in the following. First,
we use the auxiliary variable z instead of the slack variable s. This leads to an
efficient utilization of D-Wave 2000Q because the binary expansion is not nec-
essary. Second, we search for the optimal solution using the sampler. Because
D-Wave 2000Q is a stochastic sampler, x∗

feas does not necessarily correspond to
the optimal solution even when the ADMM is finished. Therefore, we generate
many samples using the D-Wave 2000Q and search for a more accurate and
feasible solution.

3 Experiments

We tested the performance of our algorithm using the quadratic knapsack prob-
lem (QKP), which is defined as follows:

maximize
x

x
TPx

subject to w
T
x ≤ c

where P = {pi,j} ∈ Z
N×N
+ is the profit matrix, w = {wi} ∈ Z

N
+ is the weight

vector, and c ∈ Z is the capacity. In this study, we randomly generate P and
w, which was introduced by Gallo et al. [27]. The profits {pi,j} are zero with
probability (1−∆), and non-zero values given by a uniform distribution between
1 and 100 with probability ∆. This means that when ∆ is close to 1 (zero),
the objective function is given by a random dense (sparse) graph. The weights
{wi} are also randomly chosen from [1, 50], and the capacity c is taken from a
uniform distribution over [50,

∑

i wi]. We generate 10 instances for testing the
typical performance of our algorithm. To deal with maximization problems on
the D-Wave 2000Q, we define the objective function as f(x) = −xTPx.

To study the accuracy, we define the mean absolute percentage error (MAPE)
as follows:

MAPE =
1

Ninst

Ninst
∑

k=1

|fk(x
∗
opt)− fk(x

∗
feas)|

fk(x∗
opt),

(12)
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Figure 1: N -dependence of the MAPEs. The squares, lower, upper, and circles
correspond to the MAPEs obtained using DW(opt), DW(β = 0.1), DW(β =
1.0), and DW(β = 10.0), respectively.

where fk(x) is the objective function for the kth instance, and Ninst is the to-
tal number of instances. Here, x∗

opt is the optimal solution obtained using the
Gurobi optimizer [28], and x

∗
feas is the feasible solution in the ADMM. Thus,

MAPE = 0 corresponds to the ADMM achieving the optimal solutions for all
instances. We study the MAPEs obtained using optimization (DW(opt)) and
sampling (DW(β)) modes with β = 0.1, 1.0, and 10.0. During these experi-
ments, we set the annealing time to 20 µs and generate 2000 samples. To check
the performance of our algorithm, we calculate the exact solutions using the
Gurobi optimizer on a 4-core Intel i7 6700K processor with 64 GB of RAM.
We set the maximum calculation time in the Gurobi optimizer to 1000 s. The
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predetermined parameters in the ADMM are as follows:

ρ = 0.1 (13a)

tmax = 30 (13b)

tconv = 10 (13c)

ǫ = 10−3. (13d)

Fig.1 shows the N -dependence of the MAPEs in ∆ = 0.2, 0.6, 1.0. As shown
in Fig.1, we attain the feasible solutions for all instances at up to N = 64. The
results demonstrate the superiority of our ADMM approach. If we use the slack
variables, the D-Wave 2000Q cannot solve the problems at N = 64 because of
the additional binary variables. The ADMM allows us to deal with larger-size
problems on the D-Wave 2000Q than allowed by the previous approach.

We compared the MAPEs obtained by DW(opt), DW(β = 0.1), DW(β =
1.0), and DW(β = 10.0). Fig.1 shows that all MAPEs increase with an increase
in N in ∆ = 0.2. By contrast, for ∆ = 1.0, the MAPEs by DW(opt), DW(β =
1.0), and DW(β = 10.0) remain at near zero even when N increases. These
results indicate that the ADMM can accurately find feasible solutions for the
QKP on a dense graph. Table 1 shows the ∆-dependence of the MAPEs for N =
64. The MAPEs in DW(opt), DW(β = 0.1), DW(β = 1.0), and DW(β = 10.0)
decrease as ∆ increases. DW(β = 10.0) outperforms the other postprocessing
at N = 64. In addition, the accuracy of DW(opt) is comparable to that of
DW(β = 10.0).

Table 1: ∆-dependence of MAPEs at N = 64.
optimization β = 0.1 β = 1.0 β = 10.0

∆ = 0.2 0.1329 0.1473 0.1152 0.1133

∆ = 0.6 0.0192 0.0690 0.0330 0.0138

∆ = 1.0 0.0014 0.2423 0.0136 0.0012

The difference in accuracy between the postprocessing modes can be ex-
plained by the efficient sampling near the lowest-cost solution x

∗
cost. Fig.2

shows the histograms for the instance when the ADMM is finished in (∆, N) =
(1.0, 64). Here, the horizontal axis corresponds to the objective function f(x).
As can be seen from Fig.2, x∗

opt is near x
∗
cost, and does not correspond to the

one. Therefore, to find an optimal or accurate solution, sampling near x
∗
cost

is necessary. In fact, DW(opt), DW(β = 1.0), and DW(β = 10.0) have broad
histograms located near x∗

cost, and are successful in finding x
∗
opt. For this rea-

son, DW(opt) and DW(β = 10.0) show an accurate performance in our QKP
experiments.

Here, we comment on the β-dependence of the sampling mode. If the sam-
ples are indeed generated from the Boltzmann distribution, we obtain the widely
spread histogram with β = 0.1. However, DW(β = 0.1) has spike-like distri-
butions that are far from xcost. The reason for this is not clarified because we
cannot access the postprocessing on D-Wave 2000Q. Therefore, we should be
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careful in tuning β of the sampling mode. From our results, we recommend
using DW(β = 10.0) for the QKP.

Figure 2: Histograms obtained using DW(opt), DW(β = 0.1), DW(β = 1.0),
and DW(β = 10.0). The horizontal axis is the objective function, and we show
the vertical axis with only [0.0, 0.0005].

4 Discussion

We discuss improving the accuracy of the ADMM. We obtain ǫave > 0.0 in
our experiments, which means that the ADMM cannot achieve the optimal
solutions for several instances. A simple way to improve the accuracy is by
tuning the value of tconv. In this study, we terminate the ADMM when the
feasible solution is not improved in tconv steps. We can obtain more accurate
solutions by iterating more ADMM updates. Another way is to generate more
samples on the D-Wave 2000Q. Because D-Wave 2000Q is a stochastic sampler,
we need many samples to obtain an optimal solution.

We compare the computation times obtained by the ADMM and Gurobi
optimizer. We define the total QA, sampling, unembedding with tQA, tsampling,
and tunemb, respectively. The tQA value is the total access time for the quantum
processing unit on the D-Wave 2000Q. The total sampling time tsampling involves
the Internet latency, tQA, and other processing on the D-Wave 2000Q. In addi-
tion, tunemb is the total unembedding time in the ADMM steps. We set the total
computation times by the ADMM and Gurobi optimizer as tADMM and tGurobi,
respectively. Here, tADMM is given as the summation of tQA, tsampling, tunemb,

9



Figure 3: N -dependence of the computation times in ∆ = 0.2, 0.6, 1.0. The
red and blue circles represent the total computation times by the ADMM and
Gurobi optimizer, respectively. We also show the total QA times with the red
squares. The red lower and upper triangles correspond to the total sampling
and unembedding times, respectively.
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and other processes on the CPU. Fig.3 shows the N -dependence of tGurobi and
tADMM. The red and blue circles show the instance-averaged computation time,
tADMM and tGurobi, obtained using the DW(β = 10.0) and Gurobi optimizer,
respectively. We conducted a simulation using the Gurobi optimizer at up to
N = 128. Fig.3 also shows tQA, tsampling, and tunemb with the red squares
and lower and upper triangles, respectively. In ∆ = 0.2 and 0.6, the Gurobi
optimizer is significantly faster than the ADMM. However, tGurobi increases
dramatically as ∆ and N increase. In fact, we obtain tADMM < tGurobi in
(∆, N) = (1.0, 64). Thus, the ADMM can be faster than the exact optimizer
with an increase in ∆ and N .

Herein, we focus on tQA, tsampling, and tunemb. As can be seen from Fig.3,
tsampling and tunemb grow as N increases, whereas tQA remains almost constant.
Therefore, tADMM can be much faster if we reduce the computational overhead,
such as tsampling and tunemb. In particular, the embedding and unembedding
techniques are necessary only when the D-Wave 2000Q implements a sparse
graph. Thus, our method can outperform the exact optimizers if a quantum
annealer on a larger and denser graph is developed in the future.

5 Summary

In this study, we reported a new algorithm for solving inequality-constrained
binary optimization using the D-Wave 2000Q. We defined the new cost function
with the augmented Lagrangian method and developed a hybrid algorithm that
combines QA and ADMM. We tested the performance of our algorithm for
QKP and obtained three significant results. First, our algorithm finds feasible
solutions for large-sized problems that cannot be computed using a previous
approach. Next, the denser the coupling of the logical variables is, the more
accurately the ADMM can find the feasible solutions. Finally, the optimization
or sampling mode with β = 10.0 is appropriate for our ADMM algorithm. We
also compare the computation times obtained by the ADMM and the exact
optimizer. We show that the ADMM can be faster than the exact optimizer
when a QKP is given on a large and dense graph.
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nis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de
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