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Strange Metal Solution in the Diagrammatic Theory for the 2d Hubbard Model
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We show that the numerically exact bold-line diagrammatic theory for the 2d Hubbard model
exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the
strong-interaction limit. The solution for the doped system features the expected phenomenology
with the NFL near half-filling at strong couplings and in a wide temperature range enclosed by
the atomic state at high temperatures and a Fermi liquid at low temperatures. We demonstrate,
however, that this behavior in the weakly doped regime is due to the unphysical branch of the
Luttinger-Ward functional. On the other hand, our analysis shows that the NFL physics is realized
at larger doping.

The strange metal in unconventional superconduc-
tors [1–5] is one of the most intriguing phenomena in
condensed matter physics. Universal experimental sig-
natures demonstrate clear deviations from conventional
Fermi-liquid (FL) theory: temperature (T )-linear in-
plane resistivity and violation of the Mott-Ioffe-Regel
(MIR) limit [6–8], robust power-law behavior in the
optical conductivity [9–11], T -linear magnetoresistiv-
ity [12, 13], and strong temperature dependence in the
NMR response in contrast to Korringa’s law [14]. The
2d Hubbard model [15] is widely believed to incorporate
the rich physics of high-Tc superconductivity, including
the strange metal phase [16, 17]. The basic model Hamil-
tonian is

HHM = −t
∑

〈ij〉σ

ĉ†iσ ĉjσ − µ
∑

iσ

n̂iσ + U
∑

i

n̂i↑n̂i↓ , (1)

where t, µ, and U represent the nearest-neighbor hopping
amplitude, chemical potential, and on-site repulsion, re-
spectively. ĉiσ (ĉ†iσ) is the annihilation (creation) opera-

tor of a spin-σ fermion at site i and n̂iσ = ĉ†iσ ĉiσ .
An alternative picture of the strange metal phase is

provided by the SYK model [18–22]. Originally intro-
duced to describe quantum spins with all-to-all inter-
actions and quenched disorder, the model in complex
fermionic representation with combined spin and site in-
dices can be written as

HSYK =

N
∑

abcd

Jabcdĉ
†
aĉ

†
b ĉcĉd − µ

N
∑

a

n̂a . (2)

Here, Jabcd are the random couplings between the
fermionic degrees of freedom, which follow a Gaussian
distribution with zero mean and U2 variance. The model
is exactly solvable in the large-N and low-T limit, and its
solution of a specific NFL form was shown to reproduce
the strange metal phenomenology [19, 23] of high-Tc su-
perconductors in its lattice extensions [24–26]. Despite
the different microscopic ingredients of models (1) and
(2), their strikingly similar strange metal properties make
the possibility of underlying connections between them a
topic of intensive research [27–30].

One such connection is of mathematical nature, ex-
pressed by the diagrammatic correspondence between the
SYKmodel and the t ≪ T, U limit of the Hubbard model,
the isolated Hubbard atom (HA) [29]. After averaging
over the Gaussian disorder, the saddle point equations of
the SYK model take the form [18]

G(iωn) =
1

iωn + µ− Σ(iωn)
,Σ(τ) = −U2G(τ)2G(−τ) ,

(3)

where G and Σ represent the interacting Green’s func-
tion and self-energy in imaginary-time τ or Matsubara
frequency ωn. On the other hand, Eq. (3) is exactly the
self-consistency condition of the bold-line (skeleton) di-
agrammatic theory for the Green’s function of the HA,
truncated at the second order in U . In regimes where
the truncation error is small, this formal correspondence
suggests a solution of the Hubbard model that features
a strange metal NFL behavior with properties similar to
those predicted by the SYK model. This could be a sce-
nario that connects the phenomenologies of the different
microscopic models, and further supports the status of
the Hubbard model as the “standard model” for high-Tc

superconductivity. Testing it appears straightforward,
since the skeleton diagrammatic series can be evaluated
to high orders without approximations [31–40].
However, this argument has a potential loophole: Con-

vergence of the expansion in U and the self-consistently
determined Green’s function to a unique solution does
not guarantee that this solution is physical. The un-
derlying Luttinger-Ward functional (LWF) has multiple
branches [41–49], which in certain regimes is known to
result in convergence of the bold-line series to an un-
physical solution [42]. Therefore, even if a SYK-like NFL
diagrammatic solution is found for the Hubbard model,
it needs to be scrutinized to prove its validity.
Here we use the numerically exact bold-line diagram-

matic Monte Carlo (DiagMC) method [31–40], to ob-
tain the diagrammatic solution of the Hubbard model
[Eq. (1)] in the strongly correlated regime. In this ap-
proach, all Feynman diagrams for the expansion in pow-
ers of U of the self-energy Σ[G] in terms of the full Green’s
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Figure 1. Mechanism of the unphysical solution (of
SYK-type NFL character in the Hubbard atom and the
intermediate-T 2d Hubbard model near half-filling) in the
bold-line diagrammatic theory, illustrated schematically by
the solution of the (0 + 0)d toy model [44, 49, 51]. The func-
tional Σ[G] has two branches Σw (red) and Σs (blue). The

partial sums Σ(n)[G] for n = 1, 5, 11 of the diagrammatic ex-
pansion of Σw[G] are the black dashed, dotted, and dash-
dotted lines, respectively. A self-consistent solution satisfies
the Dyson equation (green dashed line).

function G are summed stochastically to high order un-
til convergence; then a new estimate for G = G[Σ] is
obtained from the Dyson equation, and the scheme is it-
erated until self-consistency. At intermediate T and for
a range of doping we obtain a NFL solution with local
spectral properties resembling those of the SYK model
[Eq. (2)]. According to Ref. [50], the solution G is physi-
cal if the resulting diagrammatic series for Σ[G] is inside
its convergence radius. This implies that, in order to
yield an unphysical result, the self-consistency condition
must tune the series precisely to its convergence radius.
We find this to be the case for the NFL solutions in the
underdoped regime. These solutions are, therefore, re-
markable examples of unphysical results produced by the
diagrammatic theory that appear to be physically sound,
highly non-trivial, and consistent with general expecta-
tions. Further analysis of the series properties however
indicates that the NFL solution becomes physical in the
overdoped regime.

Feynman diagrams are a common tool in quantum
many-body physics [52]. While bare expansions in terms
of the non-interacting Green’s function G0 rely on the
arbitrary partition of the Hamiltonian into free parti-
cles and their interaction, the bold-line technique of-
fers a physically appealing picture: (i) G is measurable,
(ii) as revealed by Baym and Kadanoff [53], expansions
in terms of G automatically respect conservation laws,
(iii) they contain fewer diagrams since G itself represents
an infinite diagrammatic series, which is the essence of
renormalizations that eliminate unphysical divergences.
Ironically, divergences are manageable (by resummation

methods), while the convergence of bold-G series to the
unphysical answer [42] is fatal.
In the bold-line technique relevant for Eq. (3) [52], G

is determined by consecutive approximations G(n), G =
limn→∞ G(n), that solve the Dyson equation

[G(n)]−1 = G−1
0 − Σ(n)[G(n)]. (4)

Here the functional Σ(n)[G] is the sum up to order n of
the bold-line expansion in powers of U :

Σ(n)[G] =

n
∑

m=1

am[G](ξU)m, (5)

where the series coefficients am[G] depend only on the
function G and ξ is a formal expansion parameter set
to ξ = 1 in final expressions. Misleading convergence
results from the existence of at least two branches of
the LWF for the Hubbard interaction (actually, infinitely
many branches can be found [45]), as illustrated schemat-
ically in Fig. 1, which shows the solution of the (0 + 0)-
dimensional toy model [44, 49, 51]. For arbitrary G,
the functional Σ[G] consists of the “weakly-correlated”
branch Σw[G] (red line) and the “strongly-correlated”
branch Σs[G] (blue line), depicted in Fig. 1 at two char-
acteristic values of U . Being constrained by the Dyson
equation, the physical solution Gph,Σph lies at the inter-
section of G−1

0 −G−1 (the dashed green line) and Σ[G].
The key observation is that Σph switches from Σw[G] at
U < Ub to Σs[G] at U > Ub (Ub is the interaction at
which the solution is precisely at the branching point),
while Σ(n)[G] is the power series only for Σw[G] by con-
struction. Therefore, at U > Ub, the sequence G(n) can-
not converge to Gph. Although for each fixed n a solution
of Eq. (4) can be found (open circles), the sequence G(n)

approaches an unphysical fixed point (gray circle), which
is located precisely at the boundary of convergence of the
series Σ(n)[G] as a functional of G.
This mechanism allows one to formulate [50] a practi-

cal criterion for detecting unphysical solutions of the dia-
grammatic technique [Eq. (4), (5)]. If for the final result,
G = limn→∞ G(n), the series Σ(n)[G] is strictly within
its convergence radius, then limn→∞ Σ(n)[G] = Σw[G]
and G is necessarily the correct physical solution. If, on
the contrary, Σ(n)[G] happens to be at its convergence
radius, G is unphysical, possibly except for a space of
Hamiltonian parameters of measure zero. For a fixed G,
the convergence radius is given by |ξs|, ξs being the loca-
tion of the singularity nearest to the origin in the complex
plane of ξ extracted from the coefficients an[G]. There-
fore, an unphysical solution is signalled by pinning of the
singularity at |ξs| = 1 while the Hamiltonian parameters
are varied in a non-trivial range. This effect is illustrated
for the exactly-solvable (0 + 0)-dimensional model in the
top panels of Fig. 2, which show ξs as a function of U .
At small U < Ub, where the diagrammatic solution is
physical, Reξs > 1, but it moves towards the origin as U
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Figure 2. Singularity location ξs of the diagrammatic solu-
tion (4), (5) in the n → ∞ limit for the (0+ 0)d toy model at
various U [(a), (b)] and for the 2d Hubbard model at U = 16t
for various temperatures [at 10% doping, (c)] and doping δ
[at T = 3t/7, (d)].
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Figure 3. Bold-line diagrammatic solution G(τ ) of the half-
filled HA at various βU truncated at second order (n = 2,
squares) and converged with the diagram order (circles). The
exact solution of the HA and the long-time asymptotics of the
saddle-point solution of the SYK model are the dash-dotted
and dashed line, respectively.

is increased, reaching ξs = 1 at U = Ub and remaining
pinned there for all U > Ub.
Central to the nature of the many-body state is the

long-time asymptotic scaling of the local Green’s function

log [−Gloc(τ)] = C − 2ε
(

πδτ
β

)

+∆
(

πδτ
β

)2

, (6)

with [δτ = τ − β/2] ≪ β, ∆ the fermionic scaling di-
mension and ε the spectral asymmetry [54]. It is known
that ∆ = 1/4, found in the SKY NFL metal, translates
to T -linear behavior of the resistivity [24–26], while the
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Figure 4. Results of the bold-line diagrammatic theory for
different observables of the HA as functions of βU : (a) G(β/2)

multiplied by (βU)1/2, (b) double occupancy. The exact and
asymptotic SYK saddle point solutions are presented by the
dash-dotted and dashed line, respectively.

high-T atomic state and the FL metallic state exhibit
∆ = 0 and ∆ = 1/2, respectively.
We first demonstrate that NFL behavior of the SYK-

type is displayed by the full bold-line diagrammatic so-
lution of the HA beyond the second order. Although
the NFL solution is unphysical a priori for the low-
temperature HA, which is a Mott insulator, this exercise
sets the stage for the non-trivial case of the 2d Hubbard
model. We compute Σ(n) by DiagMC up to n = 6, which
is sufficient for reaching convergence with diagram or-
der. To improve convergence of the iterative solution of
Eq. (4), we use a weighted averaging that mixes in G(n)

from previous iterations [31]. Figure 3 shows the result-
ing G(τ) for the half-filled HA. As we increase the di-
mensionless parameter βU (β is the inverse temperature),
G(τ) crosses over from the high temperature atomic state
to a NFL with the SYK long-time scaling. To more
clearly demonstrate the SYK-type character, we plot in
Fig. 4(a) the quantity (βU)1/2G(β/2), which is a con-
stant in the SYK solution (3) at low enough T (dashed
line), but is suppressed exponentially with βU in the HA
(dash-dotted line) since −βG(β/2) corresponds to the
spectral function near the Fermi level at low tempera-
tures [55, 56]. The diagrammatic solution matches the
exact solution at higher T and crosses over to an un-
physical solution with the SYK scaling at lower T . The
double occupancies [Fig. 4(b)] of the diagrammatic solu-
tions also saturate at nonzero values for βU ≫ 1, which
implies an ever growing (with U) potential energy. This
is in contrast to the exponentially vanishing double oc-
cupancy in the exact physical solution of the HA.

We now turn to the 2d Hubbard model, where the bad
metal behavior is generically expected. We obtain the
full Green’s function Gk(τ) by the diagrammatic tech-
nique (4), (5) in the n → ∞ limit in regimes of parame-
ters where convergence of the series up to n = 7 can be
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Figure 5. Scaling exponent ∆ in the long-time asymptotics of
the local Green’s function, Eq. (6), obtained by the bold-line
diagrammatic technique (4), (5) for the 2d Hubbard model.
Panel (a) presents ∆ as a function of T/U on a logarithmic
scale at U/t = 16. The corresponding dashed and dot-dashed
lines show the atomic and noninteracting results, respectively.
The inset of panel (a) illustrates the log T scaling of the ki-
netic energy in the intermediate temperature regime. Panel
(b) shows ∆ (red symbols) and the location of the singular-
ity (blue symbols) for T = 3t/7. Depinning of the singu-
larity from |ξs| = 1 is observed around density ≈ 0.6, while
∆ remains around 0.28. Near half filling, the red symbols
with color gradient show the order dependence of ∆. At in-
termediate densities the bold diagrammatic series cannot be
converged within order 7.

achieved. To simplify the analysis and eliminate irrele-
vant singularities with Reξ < 0, we base the expansion on
the homotopic action [57] produced by a transformation
of the expansion parameter ξ by a conformal map [58],
as illustrated in Ref. [57]. To analyze the low-energy be-
havior of the solution, we fit Gloc(τ) =

∫

dk
4π2 Gk(τ) to

its long-time asymptotic form (6).
In contrast to the diagrammatic solution of the HA,

which exhibits a single crossover from the atomic (∆ = 0)
to the NFL (∆ ∼ 1/4) regimes, two characteristic tem-
perature scales emerge in the vicinity of half-filling. As
T is lowered, the atomic-state behavior (∆ = 0) gives
way to an SYK-type NFL (∆ ∼ 1/4), which is observed
in an appreciable T -range, before crossing over to the FL
(∆ ∼ 1/2) regime. Figure 5(a) shows the corresponding
∆ against T/U (at fixed U/t = 16). A plateau with
∆ ≈ 0.28 is observed at intermediate T for densities
0.6 . 〈n〉 ≤ 1, with the temperature range of the NFL
state decreasing with doping. Such a two-step crossover
with the NFL as the intermediate-temperature state is
generically expected. It has been reported not only in

the translationally invariant form of the SYK model [26]
but also in multi-orbital Hubbard models in the context
of spin-freezing crossovers [27, 59–66].

The non-local components of the Green’s function
gradually develop as T is decreased. Notably, the ki-
netic energy, given by the equal-time Green’s function
between neighboring sites, shows different temperature
scalings in the three regimes. In the intermediate NFL
regime, it turns out to be proportional to logT (see inset
of Fig. 5(a)), in contrast to the T 2 Fermi-liquid behavior
at low T and the 1/T atomic behavior at high T .

The central problem in light of possible misleading con-
vergence is proving the validity of the diagrammatic so-
lution. To this end, we examine the singularity struc-
ture of the self-energy series (5), evaluated at the con-
verged solution G, for |ξs| > 1 (physical solution) or
|ξs| = 1 (misleading convergence). Specifically, we obtain
ξs using Padé-based approaches [67] with controlled error
bars [68] for the series of the momentum-averaged (local)
self-energy at the lowest Matsubara frequency. The re-
sults are shown in Figs. 2(c) and (d). At density 0.9
[Fig. 2(c)], as the solution crosses over from the atomic
state to the NFL with cooling, ξs approaches the unit cir-
cle. For T/U . 0.16, the singularity remains pinned at
ξs = 1, which reveals the unphysical character of the NFL
solution near half filling. However, at a fixed T = 3t/7
[Fig. 2(d) and Fig. 5(b)], the singularity moves away from
the |ξs| = 1 boundary as the doping level increases.

Most importantly, at density ≈ 0.6, we can detect un-
pinning of the singularity from the |ξs| = 1 boundary
beyond the error bars. At this doping, the solution re-
tains its NFL character, as seen from Fig. 5(b), where
∆ is plotted alongside |ξs| against density. Therefore,
our data suggest that a physical NFL state is realized
in the 2d Hubbard model at strong interactions at least
near and above 40% doping. This finding is qualitatively
consistent with the phenomenological phase diagram of
cuprates, where the strange metal state occurs in a wide
doping regime at T above the superconducting dome.

In summary, we have shown that the numerically ex-
act bold-line diagrammatic solution of the 2d Hubbard
model exhibits the SYK-type NFL behavior in a broad
range of temperatures and doping. The physical NFL
state is realized at least near and above 40% doping at
T = 3t/7, but the physics at larger densities is inac-
cessible by the bold-line diagrammatics due to its mis-
leading convergence caused by the multivaluedness of the
LWF. It is expected that, by continuity, the NFL regime
should extend to smaller doping as well, while the spin-
freezing analogy [27] suggests that it will move closer
to the optimal doping with cooling. These results are
consistent with the emerging understanding [48] that the
regime of strong fluctuations, at least in the charge chan-
nel, is fundamentally located on the strongly-correlated
branch of the LWF, requiring the transition from the
weakly-correlated branch by its mathematical structure.
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Our findings thus imply that the NFL regime, being in-
trinsically a transitional state, extends into the weakly-
correlated branch across the branching point. The role
of the branching point in the nature of the NFL state
and its possible connection to the pseudo-gap line and
reported bad-metal-to-FL transitions [69] is an inter-
esting topic for future research. The unphysical bold-
line diagrammatic solution at smaller doping, exhibiting
non-trivial and expected physical properties without de-
tectable pathologies, is a remarkable example of a con-
trolled and consistent but delusory theory and a warning
for future studies.

Acknowledgement - A.J.K and E.K. are grateful to
the Precision Many-Body Group at UMass Amherst,
where a part of this work was carried out, for hospi-
tality. This work was supported by EPSRC through
grant EP/P003052/1 and by the Simons Collaboration
on the Many-Electron Problem. We are grateful to the
UK Materials and Molecular Modelling Hub for compu-
tational resources, which is partially funded by EPSRC
(EP/P020194/1).

[1] G. R. Stewart, Non-fermi-liquid behavior in d- and f -
electron metals, Rev. Mod. Phys. 73, 797 (2001).

[2] G. R. Stewart, Addendum: Non-fermi-
liquid behavior in d- and f -electron metals,
Rev. Mod. Phys. 78, 743 (2006).

[3] S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada,
S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda,
H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Evolution from non-fermi- to fermi-liquid transport via
isovalent doping in BaFe2(As1−xPx)2 superconductors,
Phys. Rev. B 81, 184519 (2010).

[4] M. Dressel, Quantum criticality in organic conduc-
tors? Fermi liquid versus non-Fermi-liquid behaviour,
J. Phys. Condens. Matter 23, 293201 (2011).

[5] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida,
and J. Zaanen, From quantum matter to high-
temperature superconductivity in copper oxides,
Nature 518, 179 (2015).

[6] H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava,
J. J. Krajewski, and W. F. Peck, Systematic evolution
of temperature-dependent resistivity in La2−xSrxCuO4,
Phys. Rev. Lett. 69, 2975 (1992).

[7] S. Martin, A. T. Fiory, R. M. Fleming, L. F.
Schneemeyer, and J. V. Waszczak, Normal-state
transport properties of Bi2+xSr2−yCuO6+δ crystals,
Phys. Rev. B 41, 846 (1990).

[8] T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D.
Gu, and N. Koshizuka, Temperature dependent scat-
tering rates at the fermi surface of optimally doped
bi2sr2cacu2O8+δ , Phys. Rev. Lett. 85, 828 (2000).

[9] A. El Azrak, R. Nahoum, N. Bontemps,
M. Guilloux-Viry, C. Thivet, A. Perrin, S. Labdi,
Z. Z. Li, and H. Raffy, Infrared properties of
YBa2Cu3O7 and Bi2Sr2Can−1CunO2n+4 thin films,
Phys. Rev. B 49, 9846 (1994).

[10] D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussi-
nov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven,
P. H. Kes, and M. Li, Quantum critical behaviour in a
high-Tc superconductor, Nature 425, 271 (2003).

[11] D. N. Basov and T. Timusk, Electrodynamics of high-Tc

superconductors, Rev. Mod. Phys. 77, 721 (2005).
[12] I. M. Hayes, R. D. McDonald, N. P. Breznay, T. Helm,

P. J. W. Moll, M. Wartenbe, A. Shekhter, and J. G. Ana-
lytis, Scaling between magnetic field and temperature in
the high-temperature superconductor BaFe2(As1−xPx)2,
Nat. Phys. 12, 916 (2016).

[13] P. Giraldo-Gallo, J. A. Galvis, Z. Stegen, K. A. Modic,
F. F. Balakirev, J. B. Betts, X. Lian, C. Moir, S. C. Riggs,
J. Wu, A. T. Bollinger, X. He, I. Božović, B. J. Ramshaw,
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