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Theory of inhomogeneous rod-like Coulomb fluids
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A field theoretic representation of the classical partition function is derived for a system composed
of a mixture of anisotropic and isotropic mobile charges that interact via long range Coulomb and
short range nematic interactions. The field theory is then solved on a saddle-point approximation
level, leading to a coupled system of Poisson-Boltzmann and Maier-Saupe equations. Explicit so-
lutions are finally obtained for a rod-like counterion-only system in proximity of a charged planar
wall, generalizing the standard Gouy-Chapman results. The nematic order parameter profile, the
counterion density profile and the electrostatic potential profile are interpreted within the framework
of a nematic wetting layer with a (Donnan) potential difference.

I. INTRODUCTION

Coulomb fluids composed of anisotropic charge carriers are ubiquitous in many contexts. In fact it is worth noting
that strong electrostatic interactions between rod-like charges were already invoked in the case of nematic ordering
of tobacco mosaic virus (TMV) in the seminal work of Bernal and Fankuchen [1], which is also one of the first cases
of the application of the Poisson-Boltzmann theory to biological systems [2]. Apart from the TMV, other charged
rod-like viruses and virus-like nanoparticles have been used in functional materials assembly [3] whose formation is
controlled by the electrostatic interaction with the substrate [4].

A strong electrostatic attraction between the substrate and the deposited filamentous viruses enhances a stable film
formation, as is clear from the effect of the ionic strength and the pH of the solution |5,16]. Different types of filamentous
viruses [7], as well as short fragments of DNA [g§], F-actin |9], and cellular scaffold microtubules [10] all exhibit also
properties of polyvalent rod-like ions as do also many other multivalent strongly anisotropic biological polyvalent ions
[11] that can be either modeled as spatially distributed point charges or as higher order point multipoles [12-14].
Last but not least, ionic liquid crystals (ILCs) [15] are solvent-less ionic systems with a dual ionic and organic nature
[16], that are composed of cations and anions with at least one ionic species and characterized by highly anisotropic
molecular shape |17].

The rod-like shape of ions leads to ordered structures whose formation exhibits features of liquid crystal ordering as
well as long-range electrostatic interactions. It is this latter example that has recently witnessed a real proliferation
of theoretical works set to illuminate the basic principles of order formation in these complex Coulomb systems.

The theoretical approaches to charged anisotropic systems in the bulk are varied and abundant. Here we delimit
to a few that are directly relevant for subsequent developments. The work of Deutsch and Goldenfeld |18, [19] for
thin charged rods relies on a collective coordinate transformation method applied to the ordering of charged rods
in 3D. In addition, for rod-like charged cylinders a generalized Onsager theory could also be used to describe the
ordering transition with electrostatic interactions strongly modifying the hard core diameter of the rods as well as
providing a mechanism for twisting interaction as first described by Odijk [20-22]. This approach has seen many
further developments with different level modifications and extensions [23-27]. A generalized variational field theory
of particles with rigid charge distributions [28] and an order parameter based mean-field approximation of rod-like
polyelectrolytes [29] both lead to an ordering transition in 3D.

The properties of bulk systems composed of a mixture of multipolar charges have also been analyzed in detail based
on a field theoretic approach that naturally incorporates also non-local dielectric response [30-32], while the nematic
order and electrostatics in the case of ion-doped nematic electrolytes, with an anisotropic dielectric response, have
been considered on a phenomenological level [33]. Bulk properties as well as electrical double layers in ionic liquid
crystals have been analyzed in the work of Bier within the density functional approach [34, 135] that was formulated
for homogeneous as well as inhomogeneous systems with interfaces [36, [37]. Tt is the latter case that is particularly
interesting as it should exhibit features of both, the nematic ordering as well as the Gouy-Chapman-type electrostatic
double layers.
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FIG. 1. A schematic presentation of the system with rod-like cations and simple anions in the bulk (left). An inhomogeneous
system of rod-like cations close to a charge surface (right). Both the cations as well as the anions are charged, though in general
differently. Apart from long range Coulomb interactions the rod-like cations interact also via short range nematic interactions
described by a Lebwohl-Lasher interaction potential.

The problem of an inhomogeneous system with multipolar anisotropic charges has also been addressed on various
levels of modelling and approximations. The case of a system bounded by charged wall(s) with mobile dipolar charges
has been analyzed with field theoretical approach ], while quadrupolar charges ,@] and finite size dumbbell
charges ﬂE, @] have been investigated on different levels of approximations, including field theoretical approach.
Density functional theory was formulated for the case of inhomogeneous systems of charged anisotropic particles with
interfaces @, 36, @], specifically a semiinfinite isotropic or nematic bulk system in contact with a charged hard wall
exhibiting nematic wetting of the substrate, which is close to our point of departure.

Our focus here will be on how to formulate a theory of an inhomogeneous system of anisotropic charges with
Coulomb and nematic interactions - as in the case of rod-like cations close to an oppositely charged wall - based on a
formalism that could be seen as a straightforward generalization of the Gouy-Chapman theory for simple ions. Thus,
in what follows we will derive a statistical theory of a Coulomb system composed of anisotropic rod-like cations and
point-like anions with microscopic interactions of the simple Lebwohl-Lasher nematic as well as Coulomb type and
derive its mean-field approximation form. We will then apply the general theory to the case of an inhomogeneous
system, composed of a negatively charged planar interface in the presence of rod-like counterions, thus generalizing
the standard counterion-only Gouy-Chapman problem of colloid physics. We will derive the equations governing the
density distribution and electrostatic potential on the mean-field level, in the case of a one dimensional system with
an electrified interface. By solving the mean-field level equations that emerge as a coupled system of the Maier-Saupe
and the Poisson-Boltzmann equation, we are able to derive some salient properties of inhomogeneous nematic ordering
induced by the charged interface as well as the modifications in the electric double layer distribution wrought by the
presence of nematic order.

II. COLLECTIVE DESCRIPTION AND FIELD THEORETIC REPRESENTATION
A. Order parameters

Let us consider a system composed of monovalent anions (charge —e) and polyvalent rod-like cations (charge +qge)
with chemical potential u, a situation often encountered in many ionic liquid system with cations being extended stiff
rods, while anions are considered to be point-like particles, see Fig. [Il

The respective microscopic order parameters are the nematic order parameter density defined as (see e.g. Ref. ﬂﬁ])

Qij(x) = > 3 (miny — 36,5) 0 (x — xn),, (1)
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with n(x,) the director of the n — th rod-like cation, together with the microscopic charge density

Py () = (+4,-1) 36 (x - x,) (2)

(£)

so that the total charge density is p(x) = p(4)(x) + p(~)(x). The cations are polyvalent, with valency ¢, and the
anions are univalent ¢ = 1. The ensemble averaged forms of the above order parameters are defined as

(Qiy(x)) = e4 (%) S&) 3 (nilx)n;(x) — $05) (3)
and
(p+(x) =aer (0, (p-(x)) = —c-(x), (4)
where the corresponding thermodynamic densities of the rod cations and anions are cy(x),c_(x) and the nematic
scalar order parameter is S(x).
The microscopic Hamiltonian is assumed to be of the general Lebwohl-Lasher type, though in the original formu-

lation it was assumed to act only between nearest neighbors [44]. This constraint was relaxed in a recent analytical
formulation [45]. By assumption then

2
Hlrn,n,] = 3 Z uQQ(Xn — Xm) ((nnnm) — %) +
+3 Z Upp (X0 = X)), (5)

where n, m run over all the particles in the system and n,,, n,, are the unit directors of the n-th and m-th particles.
The interaction strengths are all expressed in thermal units. The Lebwohl-Lasher interaction type is chosen in order
to simplify the derivation but is not essential and can be easily generalized. The Onsager interactions are at least to
the lowest order equivalent to the first term in Eq. Bl where the nematic interaction has a delta function range [46].
The theory presented here therefore incorporates to the lowest order also the standard Onsager results.

The interaction energy Eq. Bl can be clearly recast as

H[r,,n,] = // dxdx’ Qu;(x)ugq(x — x') Q4 (x') +
+f /V dxcdx! px)up(x — x')p(x), (6)

where we further assume that the scalar part u,,(x —x’) is due to the long-range Coulomb interactions. The coupling
between the two is omitted to the lowest order but can be considered for e.g. dipolar or quadrupolar rods. The self-
energies which were also omitted from the formula above can be absorbed into the chemical potential when defining
the grand canonical partition function.

B. Field theoretical representation and thermodynamic relations

In the Appendix we derive the field theoretical representation of the grand canonical partition function, =, in terms
of the tensor, ®;;(x), and scalar, ¢(x), auxiliary fields with

=[Py (x /p ul /p o BH@ (<):000)] )

with the effective field action as

~OHls (s o6 = ~ 4 [ /V i s (x)ugh (x — X)) - § [ / dxdx’ G(x)up (x — X)o(x') +

+ )\(Jr)/vdx ew(x)ﬂnp(@j(x))—i—)\( )/ dx e~ ) (8)



where A1) are the fugacities of the two ionic species and P(®;;(x)) is the orientational partition function of a single
particle, see Eq. B3l

Py (x)) = (2 (59 29 )
The orientational trace is defined in such a way that < 1 >o= 1. From the expressions above it is clear that for the
cations the interaction with the fields has a scalar, electrostatic component, and a tensor nematic component given
by the orientational entropy. While the field theoretical representation of the partition function cannot be solved
analytically, it suggests a number of developments that lead to meaningful approximations, such as the saddle-point
approximation that we will detail in what follows. In addition other approximations that turned out to be useful in
the context of isotropic Coulomb fluids could be exploited as well [47].

There is a number of thermodynamic relations that need to be satisfied by the derivatives of the partition function.
In the case of a set chemical potential, the fugacity and the average number of molecules in the system are given by
the standard relations. In addition, the invariance of the functional integral with respect to the linear transformation
of the fluctuating fields yields two relations

O [Pi;(x); G(x)]\ _ OH[Pij (x); ¢\ _
{ 50, (x) =0 ad (SIS0 (10)
where the averages stand for
[ DIy ()] [ DIp(x)] ... e Mt (o)
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These two relations, Eq. [0, furthermore yield the following exact connections between the average values of the order
parameters and the auxiliary fields

<Q}j(x)> = —i/de’ ugo (X — x’)<q>ij(x’)> =

o OInP(Pi;(X)) is(x)+nP(@i;(x)\ _
=i (¢ )=

e ({3 (umy - ) ), s, )

where we took into account the definition of the double brackets Eq. [[4l Furthermore by analogy

(p60) = =i | ax ux =) (o)) =
+ qA(+)< ei¢(x)+1ﬂ7’(‘1’ij(x))> Y <e—i¢<x>>' (13)
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where the unnormalized orientational average, < . >Q, is with respect to the distribution Eq.

On the saddle-point level we will soon see that the above two equations are actually the modified Maier-Saupe
(MS) self-consistent equation and the modified Poisson-Boltzmann (PB) self-consistent equation for the tensor and
scalar fields, respectively.

C. Saddle-point approximation

Since the field action Eq. B4 is non-linear, no further exact developments are feasible and one needs to resort to
the saddle-point approximation that yields two mean-field equations for the two auxiliary fields. At the saddle-point
the fields are pure imaginary, so that one can transform

D,i(x) — —i@;‘j(x) and ¢(x) — id*(x). (15)



The thermodynamic averages < . > are given at the value of the mean-field, and the two self-consistent field equations,
Eqgs. M2 03] are then reduced to

<Qij (X)> =AM <% (nyn; — %51‘3‘) >>Q€_¢*(x)+lnp(_@:j 0 = )¢ (X))<% (nyn; — %5@‘) >>Q’ (16)

with the orientational partition function P(—i®};(x)) defined in Eq. [l taken at the imaginary value of the tensor
auxiliary field, and

(p(x)) = Fary e OTIPEELEN 3y o770 = g (6" (x)) — e (7 (), (17)

with obvious definitions of the cation and anion densities, c(1)(¢*(x)) and ¢_y(¢*(x)). In what follows we will assume
a short range attractive orientational potential and a Coulombic positional potential. This implies

ugo(x — %) = —ugh(0)5(x — x') (18)
and
uy ) (x —x') = —eV?§(x — x') (19)

where € = €pe, with € the dielectric permittivity of the solvent and €y the permittivity of space. Other forms of
the nematic interaction potential are of course possible but would lead to more complicated tensorial saddle-point
equations.

With this in mind we then derive the tensorial part in the form of a modified Meier-Saupe (MS) equation

—uéég(O) D75 (x) + e <<% (n;n; — %51-3-) >>

We will see that the Maier-Saupe equation determines only the nematic order parameter but not the orientation in
the ordered phase, which is assumed to be homogeneous. The orientation of the ordering would be determined by
the substrate-nematic interaction potential in line with the model described in |48]. Without any loss of generality
we can assume the ordering is perpendicular to the bounding surface. To describe the orientational relaxation effects
one would need also the elastic deformation energy which would stem from the expansion of the nematic interaction
potential w.r.t. the gradient of the tensorial order parameter as in the general inhomogeneous Landau-de Gennes
Ansatz |48]. We assume that the that the characteristic length of the nematic order relaxation is much shorter then
the electrostatic relaxation length, either the Gouy-Chapman length or the Debye length, and can thus be neglected.
We discuss the possible generalizations in the Discussion section.

The scalar part of the mean-field equations can be written in the form of the Poisson-Boltzmann (PB) equation as

eV2¢* (x) + qc4) — ¢(—) = 0. (21)

=0 (20)

The two mean-field equations Eqs. 20land 21l correspond to the nematic and electrostatic degrees of freedom in a similar
manner that the Edwards and the polymer Poisson-Boltzmann equation correspond to polymer and electrostatic
degrees of freedom for charged flexible polymers [49, |50]. Consequently any other degree of freedom would introduce
its own mean-field equation. Clearly the approximations entailed in the derivation of the mean-field equations imply
that the spatial relaxation of both fields is given solely by the electrostatic component, so that in this respect the
nematic field is subservient to the electrostatic field.

Inserting the mean-field Ansatz into the free energy Eq. [B4] we obtain the general form of the mean-field free
energy F[®};(x); ¢*(x)] as a functional of the mean-field nematic potential, ®};(x), and the mean-field electrostatic
potential, ¢*(x) as

BP0 (0] = = — 4 [ [ dxax’ @ (xughx = x)05 ) = [ [ s’ 07 () x = )0 () -

— )\(+)/ dx e~ ¢ ()FInP(=i®i;(x)) _ /\(,)/ dx et® (), (22)
v 1%
The mean-field theory for rod-like cations thus couples the MS equation for simple liquid crystals to the PB equation

for simple Coulomb fluid, except that formally the electrostatic potential of the rod-like cations is transformed to
¢*(x) — ¢*(x) — InP(—i®};(x)). Clearly one could expand the above free energy in terms of the nematic order
parameter obtaining a generalized Landau-de Gennes free energy but then lose the direct connection with the Gouy-
Chapman theory. As already stated in the Introduction we aim to keep and develop this connection.

The theory was formulated specifically for a rod-like cationic species and a point-like anionic species, but based on
the methodology other possibilities are just as amenable to the same procedure of deriving the field theory as well as
the mean-field equations.



III. ROD-LIKE COUNTERION-ONLY SYSTEM IN ONE DIMENSION

There are of course countless cases that one can dwell on in order to apply the general theory, and thus some
selectivity is in order. In what follows we shall delimit ourselves to the case of a rod-like counterion-only system in
the presence of a single electrified surface, which is a direct generalization of the standard Gouy-Chapman paradigm
of the colloid electrostatics. The only spatial dependence is in the direction of the surface normal, which we choose to
coincide with the z axis. One also needs to remember that the counterion only system has no reservoir and thus no
chemical potential, so that the number of counterions is set only by the neutralizing charge on the bounding surface.
Nevertheless this does not affect the above derivation.

A. Coupled system of Maier-Saupe and Poisson-Boltzmann equations

The scalar mean-field equation in this case is the modified Poisson-Boltzmann equation that is obtained as
£¢™"(2) + qae(4) (97 (2)) = 0, (23)

2 4 x
where ¢*"(z) = %2(2) is the second derivative of the mean potential with respect to z. Comparing the above

expression with the standard PB equation for a point-like counterion-only case, the difference is manifest in the
presence of the orientational entropy of the rods, equal to InP(—i®};(x)). We will solve this equation later.

The tensor mean-field equation, i.e., the modified Maier-Saupe equation, can be solved by assuming a non-vanishing
orientational order characterized with the director n

D}i(2) = s(2) 3 (hn; — 36;;) (24)
so that
07;(2)* = § 5*(2), (25)

and s(z), proportional but not equal to the nematic order parameter, then simply represents the absolute value of
®*.(z). In infinite space without any anchoring fields, i is arbitrary but would be set by surface free energy terms
[48], which we did not invoke explicitly since the Maier-Saupe equation is local and thus valid for any orientation.
One can recall, Eq. Bland Eq. 4] which means that

er = uéé(O)@fJ = uéé(O)s % (fllflj — %513) = C+ S % (fliflj — %61']‘) (26)

wherefrom we derive the exact connection between the nematic order parameter S, strictly limited to the interval
0 < 8 <1, and the parameter s introduced in Eq. as

T O 27)

By multiplying both sides of Eq20 by (fliﬁj - %5”-) and tracing over the indices, we finally obtain

() = Juqo(O)e (6"(2)) {(@-0)2 = 1) . (28)
Since the above relation is a local one, it remains the same at any position z, and the explicit dependence on the

coordinate can be dropped in what follows. This is a consequence of the assumption that the nematic order relaxation
is much shorter then the electrostatic relaxation length. Developing further, this eventually yields

<<(n.f1)2_%>>Q:<<cos€2—%>>92%1nt](’7), (29)

where obviously v = %s and from Eq. [[4it furthermore follows that the orientational partition function is obtained
as

R Gl ) W T R (30)

with D(x) as the Dawson’s integral [51]. The Maier-Saupe expression can then be cast definitively as

0
= 2§7?ch¢2(())0+8—7 InJ(7v) (31)
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FIG. 2. Phase portrait solution of the Maier-Saupe equation. Phase portrait P(Q) obtained from the mean-field equation, Eq.
37 The solution starts with Py obtained from the boundary condition Eq. and then moves towards P = 0 far away from
the surface. If Py is above the IN transition point, e.g. ”A”, the solution first follows the MS branch (full line) and then at
the transition migrates to the PB branch that it follows until the electrostatic field levels off to zero far away from the surface,
just as in the case of point-like counterions. On the other hand, if Py is below the transition point, e.g. ”B”, the solution
simply follows the PB line as if the counterions are point-like. (Inset) The dependence of the nematic order parameter S on
the dimensionless density @, defined in Eq. The isotropic-nematic (IN) transition takes place at a critical value Q. ~ 3.
and the jump in the order parameter amounts to 0.313.

where the nematic order parameter is then extracted from Eq. 2T as S = v/(Jugq(0) c4+). In 2D the same type of
analysis would just replace the Dawson integral by a modified Bessel function integral [52]. Eq. BIlcorresponds exactly
to the Kleinert formulation [51] of the Maier-Saupe theory, if one takes his coupling strength of nematic interactions
equal to Ag = 3uqgq(0)cy

Note again that the mean-field Maier-Saupe equation is a local equation that pertains to every point in the domain,
which is a consequence of the fact that in the Ansatz Eq. we only considered local nematic interactions.

The solution of the Maier-Saupe equation for 0 < § < 1 exhibits a first order isotropic-nematic transition at a
critical value of ¢(4), where the order parameter makes a discontinuous jump from an isotropic phase to a nematic
phase. It is important to realize that the solutions of the MS theory for this counterion only system differ from the
standard case, where the two phases are kept under the same chemical potential that allows for the density jump at
the transition. The counterion only system is not regulated by a chemical potential and exhibits no density jump.

B. First integral and the phase portrait analysis

Introducing now the generalized van’t Hoff osmotic pressure as

p((b*(z),s(z)) = C+(¢*(Z)’S(Z))7 (32)

it is possible to write the mean-field equations in a ”Lagrangian” form (see Ref. [53])

e — OP(@7(2),5(2)
V=
Op(97(2), 5(2)) (33)

s(z) = —3uqQq(0) 35(2)
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FIG. 3. The dimensionless counterion density profile Q) obtained from Eq. as a function of the dimensionless separation from
the bounding surface for different values of Qo as indicated on the figure. For Qo < 3. the dimensionless density dependence
on Z coincides with the PB branch. For Q¢ > 3. it stays on the PB branch for Q < Qo but then exhibits a jump at the
transition point and continues on the MS branch afterwards. The dimensionless density profile is continuous everywhere, but
displays a discontinuity of the derivative at the wetting layer. In addition for Qo > 3. the PB branch does not correspond to
Qpre(Z = 0) = Qo at the surface but to a rescaled value such that Qas(Z = 0) = Qo, the difference stemming from the form
of the boundary condition Eq. on the MS and PB branches.

Proceeding now as in the case of the first integral of the Gouy-Chapman theory |54], by multiplying the first equation
by ¢*' and the second one by s’(z) and then summing them up, we obviously remain with

op . Op . . _ d . 1
557 aa? ) = (979 () + Fuaa(0)Hs(2)s'()) = - (3667 ()P — § uae(0) (), ()
which can be cast into the form of the first integral that generalizes the standard Poisson-Boltzmann result
2
Le(o*' (2 2—58(2) —p(¢*(2),8(z)) = const. 35
3€(¢7(2)) 100(0) (6% (2), 5(2)) (35)

Because of the assumption of the short range nematic interactions, the field s(z) has no associated ”dynamics”, i.e.,
the first integral contains no derivatives of s(z).

The ”Lagrange equations” Eq. can be solved and plotted in a phase portrait mode that has been invoked
previously by Pandit and Wortis to describe the phase equilibria in lattice models with surfaces and interfaces [55)].
The phase portrait method allows for an easy and physical visualization of the mean-field theories and has been
successfully applied also to the case of the Poisson-Boltzmann case [56].

One can now obtain the full implicit form of the solution of the mean-field equations by introducing two new
variables

P = /ugq(0)e ¢*'(2)

Q= UQQ(O)A(+) e_d)*(z)-HnJ(V(z)) = uQQ(O) c, (36)

where ¢ = ¢, is the counterion density, Eq. B2l @ can thus be interpreted as the dimensionless density of the rod-like
counterions and P is the dimensionless electrostatic field. It follows from the first integral Eq. that

P =£,/20 + $72(Q), (37)



where for a single charged surface the constant in the first integral can be obtained as vanishing, just as in the
standard Gouy-Chapman case, meaning that the osmotic pressure of the system is zero. The solution of the problem
is therefore completely specified by the dependence P = P(Q), while v(Q), Eq. BIl becomes a solution of

B
0v(Q)

Numerical solutions of the above equations are presented in Fig. 2lin the form of the dependence of the nematic order
parameter S(Q) on the dimensionless rod-like counterion density, with the jump from zero to 0.313 at the critical
value Q = 3., obviously corresponding to a first order isotropic-nematic transition. The phase portrait of the system,
P = P(Q), presents the dependence of the dimensionless electrostatic field P on the dimensionless density showing
the pure PB branchand the MS branch that separates from the PB branch at the nematic transition point.

The surface charge density at the bounding surface sets the boundary value to

(@) =FQ In J(v(Q)). (38)

0.2

P§ =2Qo + 3:7%(Qo) = uqq(0)

which follows directly from the Gauss boundary condition for the electrostatic field at a surface with surface charge
density o, i.e. €¢*'(z = 0) = 0. The solution, Qo = Qo(c), then implies that the P(Q) curve starts at Py and then
moves along the solution line to P = 0, corresponding to the vanishing of the electrostatic field far from the surface.

For P, large enough (see the A intercept in Fig. ) the solution first follows the MS branch in the ordered phase
until it reaches the transition point. The system thus exhibits a finite thickness nematic wetting layer close to the
surface. After that the solution migrates to the PB branch, following it until the electrostatic field levels off to zero
far away from the surface. On the other hand for Py smaller then a critical value (see the B intercept in Fig. [2)) there
is no nematic wetting and the system remains disordered along the whole P(Q) solution, following the PB line as if
the counterions are point-like.

Clearly far away from the charged surface the system is disordered while in the proximity to the surface, where
electrostatic attraction between the cations and the negatively charged surface increases their local concentration, it
orders up, creating a surface wetting layer of the nematic phase.

A note of caution is in order here: in the nematic wetting context the wetting layer and specifically its thickness is
a result of the competition between the order parameter inhomogeneities, described by the order parameter gradient
terms in the free energy, and the bulk free energy [48, 157, I58]. The wetting layer and its properties in our case is
related but does not coincide with the the standard definition of nematic wetting. As already stated, we assumed
that the spatial relaxation of both the nematic as well as the electrostatic fields is governed solely by the electrostatic
component, so that in this respect the nematic field is subservient to the electrostatic field. A more complete but
unfortunately also much more complicated theory would have to encompass both relaxations separately.

(39)

)
15

C. Dimensionless counterion density and electrostatic potential

The final dependence of the mean-field rod-like counterion density as well as the electrostatic potential on the

2

dimensionless distance from the bounding surface, Z = ¢4/ <z, is obtained implicitly from two equations. First by

integrating the Poisson equation, Eq. 23] that can be rewritten in the form

[ R(5)

giving the dimensionless counterion density @ as a function of Z, and then obtaining the dependence of the dimen-
sionless potential on the dimensionless density, ¢*(Q), that can be derived from Eq. Bl in the form

Qo
o@-0@= [ G (rel). (a1)

so that ¢*(Z) is obtained form ¢*(Q(2)). The value of Qp is obtained from the boundary condition and Eq.
and yields Qo = Qo(o). Clearly Qo can be either on the MS branch or the PB branch, as is clear from Fig. [
and consequently the functional dependence on Z will depend on the g, too. Note that the functional dependence
Qo = Qo(o) changes on the PB and the MS branch.
It is straightforward to obtain the limiting behavior for the dimensionless density from Eqgs. 0, 1] which leads to
. Z 1
(0121;11@(5) =Qoe 7"~ Qo(l— ;) and 521@(5) “Grar (42)
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FIG. 4. Dimensionless mean-field electrostatic potential difference ¢*(Q)—¢*(Qo) from Eq. [I]as a function of the dimensionless
distance from the surface z for different values of Qo, Eq. B9, as indicated in the figure. For Qo < 3. the electrostatric potential
stays completely on the PB branch. For Qo > 3. it stays on the PB branch for @ < 3. but then exhibits a jump at the transition
point and continues on the MS branch afterwards. The inset shows the details of the dependence for Qo = 5.. We refer to this
jump at the transition point as the ”Donnan potential difference”. The value of Z at this jump, that can be read off Fig. [3]
also corresponds to the thickness of the nematic layer. In addition for Qo > 3., #*(Q) — ¢*(Qo) = 0 at the surface only for the
MS branch while th ePB branch is suitably rescaled due to the form of the boundary condition Eq. B9 on the MS and PB
branches.

where a = limgs az;g;)) = 4/3/2 and 22 = 2/Qo. The former limit is valid for small separations, while the latter is
valid for large separations, coinciding with the standard counterion-only Gouy-Chapman result, as it should.

Naively one would assume that the mean field electrostatic potential is proportional to the log of the density, just
as in the standard GC case. However, the rod-like counterions also contain the orientational entropy as part of the
mean field energy, see Eq. Bl and thus the electrostatic potential is given rather by

—¢"(Q) = 10g Q/~(Q)). (43)

While the spatial density profile is itself continuous with the derivative being discontinuous at the I-N transition,
the electrostatic potential is discontinuous and displays a Donnan potential difference at the transition point. This
Donnan potential difference, ¢%,, can be obtained straightforwardly from Eq. A3] as

6 = log J (v1-n) = log J ($s1-n), (44)

where s;_ is the jump of the orientational order parameter at the I — N transition, and is therefore universal for
all the electrostatic potential curves. It can be viewed as a Lagrange multiplier that ensures the electroneutrality of
the system. The value of the Donnan potential difference across the phase boundary can be read off the graph, Fig.
M as 0.313, which equals exactly log (J(2.53)) according to Eq. [441

IV. DISCUSSION AND CONCLUSIONS

While one can formulate the theory of inhomogeneous charged rod-like systems on different levels of approximations,
we were specifically motivated to remain as close as possible to the Gouy-Chapman theory of point-like ions, the reason
being that the Poisson-Boltzmann mean-field framework presents the foundation for the soft matter electrostatics and
serves as a standard against which the new developments are usually compared with. Of course this necessarily implies
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also that the present theory shares at least the same weaknesses as those well known for the Poisson-Boltzmann theory
[47).

The main feature of the theory presented is the two coupled mean-field equations which present generalizations of
the standard Maier-Saupe and Poisson-Boltzmann equations. Their solution for a single charged surface with rod-like
counterions leads to the existence of a nematic wetting layer, driven by the interplay of nematic and electrostatic
interactions between charged rods and the bounding surface charges. The phase boundary at a finite distance from the
surface is in addition characterized by an electrostatic potential jump corresponding to the nematic order parameter
jump. While there are obvious similarities with the standard nematic-isotropic transition and the existence of nematic
wetting, one needs to remember that in our case there is no chemical potential driving the density changes as well as
no order parameter elastic energy driving the nematic wetting. The only driving force is electrostatics.

Among the possible and obvious generalizations of the present theory we should mention two explicitly. The first
one is the tensorial nature of the interaction potential

(x —x'), (45)

which would correspond to a more complicated liquid crystal elastic energy. The second one is the non-locality of the
nematic interactions which implies the following form for the ué};, (x — x') interaction

ugo(x —x') — ugy

iklm

uéég(x -x') — uéég(()) (1+ §2V2) 5(x —x'), (46)

or the corresponding tensorial expression consistent with Eq. Above ¢ is the nematic order correlation length.
The non-local form of the interaction potential in its turn leads to a non-local form of the Maier-Saupe equation, Eq.
20O and one ends up with a system of two coupled non-linear differential equations. This would in its turn require
also the introduction of the surface energy that would pin the surface value of the order parameter. The no doubt
complicated solutions would reduce to those studied above when the nematic correlation length £ is much smaller
then the electrostatic correlation length, i.e., either the Gouy-Chapman length or the Debye length, depending on the
composition of the system.

The other possible and obvious generalization would be to include the higher multipolar moments into the interaction
energy, Eq. [l such as the quadrupolar electrostatic term. Formally this can be seen as leading to a modification in
Eq. of the form

Pij(x) — yj(x) +tViV;o(x), (47)

where t is the strength of the quadrupolar moment of the charged rod. This generalization would treat the rod-
rod electrostatic interactions more accurately, allowing for the existence of the Odijk effect (preferred perpendicular
orientation of the rods) but would again imply a more complicated form of the Poisson-Boltzmann equation.

A variation on the geometry of the model could be pursued for a system confined between two charged surfaces with
point-like co-ions. In this case one can either expect a surface nematic wetting transition or indeed a Fredericksz-type
transition with a nematic phase between the surfaces and isotropic layers vicinal to the surfaces. These variations
in the geometry setup would allow for interesting phenomena also in terms of the effective electrostatic interactions
between the bounding surfaces that would no doubt deviate from the standard expectations.

V. ACKNOWLEDGEMENT

This work was funded by the Key project #12034019 of the National Science Foundation of China. I would also
like to acknowledge the support of the School of physics, University of the Chinese Academy of Sciences, Beijing and
of the Institute of physics, Chinese Academy of Sciences, Beijing. Finally I would like to thank D. Andelman, S.
Buyukdagli and J. Everts for illuminating and helpful discussions and in particular M. Bier for valuable comments on
an earlier version of this manuscript.

VI. APPENDIX

Here we will give a short derivation of the field theoretic representation of the partition function as a functional
integral over the scalar and tensor auxiliary fields based on the respective order parameters. The grand canonical
partition function for the system with Hamiltonian Eq. [f] is defined standardly as

) + — - Tp,Mp
:‘[rn7 nn] = FIN- / . /’D[xn]’D[nm] e BH ]7 (48)

N+ N
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where the integral over the orientational degrees of freedom, [n,,], is only over the cationic species. Introducing the
”decomposition of unit” in the form

= / D[Qs; (x)] T (Qis (x) — Oy (x))
/ Dlp(x)] Thed () — (), (49)

together with the functional integral representation with auxiliary potentials ¢(x) and ®;;(x) for the functional delta
functions, one then remains with the following form of the partition function

itama) = [ DIQs )ID(B(00)] ¢
/’D[p(x)]D[¢(x)] e BHIQi; (%), p(x)] o
ZZ N+IN ! /Dxn O (50)
N+ N( )

where we introduced the field coupling part, H[Q;;(x), p(x)], that stems from the two decompositions of unit as well
as the interaction energy written with the collective coordinates, in the form

Q). o] = =} [ [ dxix’ Qxugalx—x)Qy () = [ [ dxax’ plyuy, (= x )i -
—i [ dx 0y y00 i /V dx p(x)9(x), (51)

while the configurational part in the internal space of the particles has the form

—BH*[rp, 0y, = i/vdx Q,; (x)P;;(x) —i—i/vdx px)p(x) =1 Z 3 (minj — 36i5) @4j(xi) + zqz o(xi) — zz o(xi),
(+)

(52)
where we explicitly used the definitions of the microscopic scalar charge density and the microscopic tensor nematic
order parameter density, Eqs. [2 and [[I Since the Q;;(x) and p(x) functional integrals in Eq. are obviously
Gaussian, these variables can be integrated out explicitly, yielding a pure field theoretical representation of the
original configurational partition function Eq. @8 in terms of the tensor, ®;;(x), and scalar, ¢(x), fields with

=[04(9:0x)] = [Dlyy(0)] [Dlo)] o2 (7000, (53)

where the effective field action is finally obtained in the form

IR 00: 000 = 4 [ [ axax @ 0ughx—x)0y(x) — 4 [ [ s o) x - x)ot) +
A /V dx GPCITINP@i0) |y /V dx e— 069 _
—2In Det(ugg(x — x')) — 3In Det(up,(x — x')). (54)
Here we introduced the orientational partition function of a single particle
3
. — l§(ninj §5 )<I>”(x)
P(®35(x)) = (e ) (55)

The orientational trace is defined in such a way that < 1 >o= 1. The log of this expression is actually the orientational
entropy of the rods. Were the field ®;;(x) pure imaginary, the above distribution would correspond to the Bingham
distribution, and the ®;;(x) field would be playing the role of the Bingham field.

The formal identity of the configurational, Eq. [48, and auxiliary field representations, Eq. B3] can be recapitulated
as

=lrn 0] = Z[0y (x); 6] (56)
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The steps leading to this identity are analogous to the case of Edwards transform for the Coulomb fluid partition
function [47)], except for the orientational Lebwohl-Lescher part that leads to a tensor order parameter and a tensor
auxiliary field.

Notably, the two fluctuational Trlog expressions at the end of the above equation pertain to the Casimir-type
fluctuation terms [47] and would be combined with the fluctuational determinant of the second order expansion of
the above field theory. We will not delve into these details here.
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