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We consider heterostructures obtained by stacking layers of two s-wave superconductors with
significantly different coupling strengths, respectively in the weak- and strong-coupling regimes. The
weak- and strong-coupling superconductors are chosen with similar critical temperatures for bulk
systems. Using dynamical mean-field theory methods, we find an ubiquitous enhancement of the
superconducting critical temperature for all the heterostructures where a single layer of one of the two
superconductors is alternated with a thicker multilayer of the other. Two distinct physical regimes
can be identified as a function of the thickness of the larger layer: (i) an inherently inhomogeneous
superconductor characterized by the properties of the two isolated bulk superconductors where the
enhancement of the critical temperature is confined to the interface and (ii) a bulk superconductor
with an enhanced critical temperature extending to the whole heterostructure. We characterize the
crossover between these regimes in terms of the competition between two length scales connected
with the proximity effect and the pair coherence.

I. INTRODUCTION

The design of artificial heterostructures has established
as an ideal framework to engineer the properties of func-
tional materials by combining materials with different
bulk behavior. The advances in our ability to control
the properties of heterostructures allows to realize tun-
able quantum phenomena, as it happens in the spectac-
ular example of twisted blayer graphene1,2. Remarkable
examples include heterostructures based on oxides3–6 or
two-dimensional Van der Walls materials7.

Any heterostructure is built by a series of interfaces
between different materials where a variety of fascinat-
ing phenomena such as magnetisms8,9 or superconductiv-
ity5,6,10 can be observed even when they are not present
in the bulk of the constituent materials. The periodic
repetition of interfaces in different patterns offers a fur-
ther handle to design and engineer artificial compounds
thereby controlling their functional properties11.

Superconducting materials are among the most used
bricks to build heterostructures, not only for their intrin-
sic interest, but also because they are known to show the
proximity effect, which is associated with Cooper pairs
leaking from a superconductor to another material across
an interface.12–14 For example, the proximity effect can
be used to stabilize a superconducting state at the inter-
face, which either does not exist in the bulk compound
or it requires different conditions to be realized.

This has been proposed and realized in seminal works,
mainly using cuprate high-temperature superconductors
.6,15,16 In these examples, the key is to exploit the dif-
ferent properties of under- and over-doped compounds
in order to enhance the overall superconductivity. These
ideas can have a very wide range of applications, for ex-
ample building heterostructures of materials with differ-
ent pairing source or pairing symmetry and/or displaying

other quantum phases.

In this work we consider heterostructures in which the
two components are two s-wave superconductors char-
acterized by a different strength of the superconducting
coupling, which puts one of the two systems in a weak-
coupling regime and the other in the opposite strong
coupling regime. We choose an s-wave pairing as de-
scribed by a simple attractive Hubbard model. We can
tune the two systems to have a similar critical tempera-
ture in the bulk owing to the non-monotonic behaviour
of the critical temperature as a function of the coupling
in models with tunable attractive interaction. We con-
sider different patterns and we study the evolution of the
superconducting state using an extension of the Dynam-
ical Mean Field Theory (DMFT)17,18 designed for lay-
ered structures19–22. The use of DMFT allows to treat
the different regimes of superconductivity without any
perturbative assumption or bias.

Besides its fundamental character, this analysis has
also a relevance for real systems, since a crossover from
weak to strong coupling can be used as a very sim-
ple effective picture of the evolution of superconductiv-
ity moving from overdoped to underdoped cuprates23–28,
which can be realized also in the two-dimensional Hub-
bard model29,30 and it has been recently proposed also
in iron-based superconductors31,32.

Our main result is that in the case where a single layer
of one material is hosted into a thicker slab of the other,
we find an enhancement of the critical temperature with
respect to both the isolated samples. We understand
this result discussing how the heterostructuring cures the
weaknesses of the two bulk superconductors leading to
an optimized superconducting phase which can be pic-
tured as an effective intermediate-coupling superconduc-
tor. We show how such effective critical temperature is
affected by the periodicity of the heterostructure and we
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rationalize the results in terms of two length scales, asso-
ciated respectively to the proximity effect between weak
and strong coupling superconductors and to the coher-
ence properties of the pairs.

The rest of this manuscript is organized as follow: in
Sec. II we introduce the model for the heterostructure
and discuss physical its properties in different limits.
In Sec. III we present the results concerning the crit-
ical temperature and its evolution with some relevant
model parameters. The discussion of the main results
and their physical interpretation in terms of phenomeno-
logical quantities is the subject of Sec. IV.

II. MODEL

We model the heterostructure in terms of a simple at-
tractive Hubbard model where every site experiences a
local interaction between two fermions on the same site

Hint = −
∑
i

Uini↑ni↓, (1)

where ni↑ and ni↓ are the number operators for the
fermions and Ui > 0. The two different superconduc-
tors forming our heterostructure will be characterized by
different values of Ui.

For uniform systems with constant U , the model has
been widely investigated using several methods 33–36, in-
cluding DMFT27,37–42 and its extensions20,22,43,44.

The ground state of the model is superconducting with
s-wave symmetry for every value of U , but the properties
of the superconducting state evolve in a non-trivial way
as a function of the ratio between the interaction and the
bandwidth W of the non-interacting model.

At weak coupling, when U is much smaller than W ,
the superconducting state is well described by a BCS-
like theory with an instantaneous attraction and the su-
perconducting state is characterized by the formation
of weakly bound Cooper pairs with a large correlation
length. Upon increasing the temperature the pairs are
progressively broken, until we reach the critical temper-
ature where the pairs are completely destroyed and the
system becomes a normal metal.

In the opposite limit of strong attraction for U/W � 1,
the superconducting state is associated with the forma-
tion of tightly bound pairs with a short correlation length
and quickly loosing their coherence with increasing tem-
perature. This is often called a Bose-Einstein conden-
sation (BEC) regime where ”preformed” bosonic pairs
condense when the critical temperature is reached from
above. In the BCS regime U/W � 1 the critical temper-
ature Tc is exponentially small and increases as a function
of the attraction. Instead, in the strong coupling regime
Tc decreases as t2/U . This results in a non-monotonous
behaviour of the critical temperature as a function of
U/W . The optimal critical temperature is realized for
an intermediate pairing strength U ' W for which none
of the two limiting scenarios applies. In this regime we

interface layer

hosting bulk

Figure 1. Sketch of the heterostructures considered in this
work. The different colors indicate two different types of su-
perconductors. In the following the will denote the strong-
coupling superconductor in blue and the weak-coupling one
in red.

have a delicate balance between a large pairing amplitude
φ and a high mobility of pairs leading to coherent quan-
tum state. The non-monotonic behavior of Tc is realized
despite the zero-temperature superconducting order pa-
rameter φ = 1/N

∑
i〈ci↑ci↓〉 measuring the amplitude of

Cooper pairs increases monotonically with U/W . The
large value of φ in the BEC limit reflects the fact that
the electrons are tightly bound in pairs, while the low
critical temperature follows from the reduced mobility of
the pairs. At the critical temperature the modulus of
the order parameter remains finite, but the system is a
collection of local pairs with disordered phase hence the
average of φ as complex number vanishes. The dome-
shaped behaviour of the critical temperature is the re-
sult of an optimization of the superconducting properties
and it matches a common experimental trend in materi-
als, where the critical temperature reaches maxima as a
function of doping as in the cuprates or of other control
parameters like pressure. These results for the homoge-
neous system guide us to understand the properties of
the heterostructures.

In the rest of this work we consider a layered struc-
ture. The system is assumed to be spatially homoge-
neous in the the xy-plane, while it has a modulation along
the z direction given by the alternate stacking of two
different layered superconductors, respectively at weak-
coupling (SC-w) and strong-coupling (SC-s). The peri-
odic pattern is determined by the infinite repetition of
slabs of Nw (weak-coupling) and Ns (strong-coupling)
layers. (Nw = 1, Ns = 0) and (Nw = 0, Ns = 1) re-
alize two homogeneous bulk superconductors with weak
and strong coupling characters, respectively.

Accordingly, we split the site index in terms of the
in-plane coordinate R and z the layer index z. The in-
teraction depends only on the layer coordinate U ≡ U(z).
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The layered structure Hamiltonian reads:

H(Nw, Ns) =
∑
kσz

∑
z

ε(k)c†kzσck‖zσ + tc†kzσck(z+1)σ + h.c.

−
∑
Rz

U(z)nRz↑nRz↓ − µ
∑
Rσ

nRzσ

(2)

with the interaction U(z) varying periodically every Λ =
Nw +Ns layers

U(z) =

{
Uw 1 + kΛ ≤ z ≤ Nw + kΛ
Us Nw + 1 + kΛ ≤ z ≤ Λ + kΛ

(3)

where k is an integer number.

Throughout the rest of the paper we set Uw/W = 0.28
and Us/W = 3.16 which in the homogeneous system
are characterized by comparable critical temperatures
Tc,w/W ≈ 0.015 and Tc,s/W ≈ 0.014. In the rest of
the paper we indicate with Tc,0 = (Tc,w + Tc,s) /2 the
average of the critical temperatures of the two bulk su-
perconductors.

Among all the possible (Nw, Ns) configurations of
the heterostructure, we consider the two extreme cases
(1, Ns) and (Nw, 1), corresponding to the periodic inser-
tions of a single layer of one type of superconductor into
the bulk of the other. In the following we will refer to the
periodic insertion as the interface and to the hosting bulk
as the bulk (see Fig. 1). Given this choice of the configu-
ration, we introduce a single parameter ∆N ≡ Ns −Nw

univocally identify the heterostructure. For ∆N > 0 the
strong coupling superconductor assumes the role of bulk
and the weak coupling is the interface, whereas the op-
posite holds for ∆N < 0. The case ∆N = 0 corresponds
to the (. . .−w−s−w−s− . . .) heterostructure and there
is no distinction between interface and bulk.

The inhomogeneous superconducting phases of model
(2) are described by using a real-space extension of
DMFT19,21,22,45 where the self-energy is local in space,
i.e., Σij = Σiδij where i and j are two lattice sites, but
it can depend on the site. In this work we explicitly en-
force translational invariance within each layer, while the
different layers have a different local self-energy with nor-
mal and an anomalous superconducting components Σ(z)
and S(z) with the same periodicity of the heterostruc-
ture Σ(z + Λ) = Σ(z) and S(z + Λ) = S(z). We solve
the quantum impurity models associated to each layer
using a Lanczos-based exact diagonalisation algorithm
at zero and finite temperature.46,47. Finally, we impose
a half-filling condition for every layer. Therefore we in-
hibit charge-density wave solutions, which are known to
exist for the attractive Hubbard model and any process
where the charge distribution is not homogeneous. This
choice allows us to focus on superconductivity and the
intrinsic effect of the heterostructuring.

Figure 2. Spatial average of the superconducting order
parameter as a function of temperature. We compare the
homogeneous cases (thin lines with small symbols) at weak
coupling U = Uw = 0.28W (diamonds) and strong coupling
U = Us = 3.16W (triangles) with the heterostructures with
∆N = +4 (circles) and ∆N = −4 (squares), whose data are
connected by thick lines. The grey arrow below the horizon-
tal axis highlights the critical temperature enhancement with
respect to the value of the homogeneous case. The vertical
dashed lines with symbols indicate the temperature values
used in the next Fig.3.

III. RESULTS

A. Enhancement of the critical temperature

We start the discussion highlighting the main result of
this work, namely the overall enhancement of the crit-
ical temperature of the heterostructure with respect to
the constituents. We illustrate this enhancement for
the two cases ∆N = ±4 in Fig. 2. For each layer
we compute the local superconducting order parameter

φ(z) = 〈cRz↑c†Rz↑〉 and we compute the average along z,

〈φ〉 = 1
N

∑
z φ(z).

Notice that the two homogeneous superconductors
have fairly different zero-temperature order parameter
despite their very close critical temperatures. While
the zero-temperature order parameters of the two het-
erostructures fall between the two homogeneous systems,
we observe that the average order parameter clearly re-
mains non-zero up to temperatures significantly larger
than the homogeneous Tc.

In the homogeneous case the order parameter falls to
zero with a rather sharp behaviour compatible with a
square-root behaviour φ2 ∼ 1 − T 2/T 2

c . On the other
hand, the decrease in the heterostructure as a function of
temperature is much smoother, mainly as a consequence
of the inhomogeneous nature of the order parameter.

A first simple interpretation of these results can
be drawn in terms of a proximity effects which has
already been discussed at interfaces between s-wave
superconductors22. The key observation is that, for
bulk superconductor, superconducting order requires fi-
nite values of the complex order parameter, which in turn
requires both a finite pairing amplitude and a fixed value
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Figure 3. Left Panels (a-b): Order parameter as a function of the layer index at different temperatures for ∆N = +4 (top) and
∆N = −4 (bottom). The temperatures of the order parameters profiles are indicated by vertical lines with the corresponding
markers in Fig. 2. Right Panels (c-f): Temperature evolution of the order parameter on the interface (c-d) and in the bulk
(e-f). Panels (c) and (e) refer to the case ∆N ≥ 0 whereas panels (d) and (f) refer to the case ∆N ≤ 0. The ∆N = 0 case is
shown for both configurations.

of the phase. The latter is associated to the coherence
between the pairs, which is ultimately related to the pair
mobility. The critical temperature is basically set by the
”weak-link” between the two, i.e., the condition which
is harder to meet. More concretely, the weak-coupling
superconductor is characterized by a coherent motion,
but the critical temperature is low because of the small
pairing amplitude, while the strong-coupling system has
a large pairing amplitude, but the pair mobility and the
relative coherence are small (proportional to t2/U), lead-
ing to a critical temperature decreasing as the ratio U/W
grows.

In the heterostructure proximity effects are expected to
compensate for the weaknesses of the two bulk supercon-
ductors. The proximity of the BEC superconductor can
enhance the pairing amplitude on the weak coupling side
which can be pictured as a leaking of Cooper pairs. On
the other hand, the strong coupling side can benefit from
an enhancement of the mobility induced by the coupling
with BCS layers, similar to what happens in heterostruc-
tures involving metals and Mott insulators, where the
quasiparticles at the metallic side increase their degree
of localization through coupling with the Mott insula-
tor48–50.

In a nutshell, both the superconductors are supplied
by the other with a boost in the weak link quantity. In
very loose terms, we can picture the enhancement of the

critical temperature as an effective intermediate-coupling
system which realizes artificially the ideal conditions for
superconductivity. In the following we explore in more
details the results to make the physical picture more con-
crete and definite.

B. Inhomogeneous superconductivity: Interface
and bulk order parameters

We now investigate in details the inhomogeneous char-
acter of the superconductivity in the heterostructure. In
Fig. 3(a-b) we report the order parameter profile as a
function of the layer index for the two cases ∆N = ±4 in-
troduced above for the four temperatures marked in Fig.
1 with symbols. At low temperatures (pentagons and
diamonds, in the order) the profiles qualitatively follow
the weak- and strong-coupling characters of each layer,
showing alternated minima and maxima. However, upon
increasing the temperature the order parameter profile
evolves following completely different behaviours in the
∆N = 4 and ∆N = −4 configurations.

For ∆N = 4 (panel (a), 1 layer of weak-coupling and
5 of strong-coupling) the large values of the order pa-
rameter found in the strong coupling section are rapidly
suppressed with temperature. Close to the critical tem-
perature superconductivity remains thus mostly confined
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to the weak coupling interface, whose order parameter
decreases much more slowly.

On the other hand the temperature evolution in the
∆N = −4 (panel (b), 1 layer of strong-coupling and 5
of weak-coupling) case is more homogeneous in the dif-
ferent layers. In this case the strong and weak coupling
layers progressively reduce the order parameter, though
the BEC interfaces undergo a faster decay. The striking
difference is that in this case, near the critical tempera-
ture the system is characterized by a quasi-homogeneous
superconducting order parameter.

In order to gain further insight about the mechanism
leading to the enhancement of critical temperature and
to the different scenarios we have discussed, we consider
the behaviour as a function of the number of layers in
the bulk section, parameterized by ∆N . For simplicity
we focus on the order parameters at the interface and at
the central layer of the hosting bulk, hereafter indicated
as the bulk layer. In Fig. 3(c)-(f) we report the tem-
perature evolution of the interfaces (panels (c) and (d))
and bulk layers (panels (e) and (f)) for different values
of ∆N > 0 (panels (c) and (e)) and ∆N < 0 (panels (d)
and (f)). For the ∆N = 0 case the two order param-
eters are found to vanish concomitantly at a transition
temperature ∼ 1.75Tc,0. Remarkably, this corresponds
to the largest enhancement of the critical temperature
observed in the setup considered in this paper.51

As |∆N | increases bulk and interface become more and
more different. For ∆N > 0 (weak-coupling interface in
a strong-coupling bulk, top panels) the order parame-
ter of the interface layer weakly depends on ∆N and
rapidly converges to an asymptotic value. The bulk layer
changes more substantially and it collapses onto the cor-
responding homogeneous bulk superconductor curve for
large ∆N . Yet, we observe an enhancement close to the
critical temperature that it is only gradually reduced for
larger values of |∆N |.

The ∆N < 0 setup (strong-coupling interface in a
weak-coupling bulk, bottom panels) varies more slowly
as a function of the modulus of ∆N , while the critical
temperatures at which the two order parameters vanish
are closer to each other and to the homogeneous results,
in agreement with the analysis of the previous section.
Interestingly, owing to the extremely localized nature of
the pairs in the strong-coupling regime, in this case also
the interface layer resembles the behaviour of the homo-
geneous solution for low temperature.

C. Critical temperatures

In this section we explore the relation between the
behaviour of the interface layer and that of the bulk
by comparing the interface critical temperature T interface

c

with that of the whole heterostructure, i.e. T hetero
c . The

critical temperature T interface
c is naturally defined as the

temperature at which the interface order parameter van-
ishes52. A definition of T hetero

c requires to take into ac-

count the inhomogeneous nature of the order parameter
over the heterostructure. In order to avoid the influence
of large local values, we define T hetero

c as the geometric
average of the order parameter over the whole sample,
which obviously coincides with the average on the build-
ing block of Λ = Nw + Ns layers which is periodically
repeated

φ =

[
Λ∏
z=1

φ(z)

] 1
Λ

(4)

In Fig. 4 we report the evolution of T interface
c and

T hetero
c as a function of ∆N . T interface

c achieves its maxi-
mum value at ∆N = 0 and decays as a function of |∆N |
reaching a rather rapid convergence for both configura-
tions ∆N ≷ 0. In particular for ∆N > 0 the critical
temperature saturates already for ∆N & 4. The other
regime ∆N < 0 is instead characterized by a slower decay
and almost ten layers are needed to reach a saturation.
We stress again that the interface critical temperatures
are always higher than those of the two bulk supercon-
ductors, and that the asymptotic values reached in the
∆N > 0 configuration are larger.
T hetero
c has a similar qualitative behaviour with a max-

imum for ∆N = 0 and a decay in both directions. Yet,
while the two critical temperatures are very close for
small values of ∆N , increasing the thickness of the bulk
T hetero
c decays below the saturated values of the interface.

This effect is particularly pronounced on the ∆N > 0
side, where, as we discussed above, the bulk layers grad-
ually recover the properties associated with their local
coupling strength.

Comparing the interface and the heterostructure crit-
ical temperatures we can identify three different regimes
(marked in the figure as I, II and III) as a function of the
spacing ∆N between two successive interfaces.

The regime I, centered around ∆N = 0 is character-
ized by a rather uniform superconducting state with en-
hanced critical temperature T interface

c ≈ T hetero
c > T homo

c .
In the other two regimes the critical temperature of the
interface is higher than that of the whole heterostruc-
ture T interface

c > T hetero
c , but in the intermediate regime

II they are both larger than T homo
c , while in regime III

the heterostructure converges to the homogeneous super-
conductor T hetero

c ≈ T homo
c .

The three regimes highlight a crossover from a super-
conductivity enhancement which for large heterostruc-
ture periodicity (III) remains confined to the interfaces,
while the bulk reproduces the result of the corresponding
homogeneous material, to a system in which the enhance-
ment of Tc extends to the whole heterostructure (I) when
|∆N | is reduced. The evolution happens through an in-
termediate regime II, in which an enhancement of Tc for
the whole structure is observed but the superconducting
state is highly inhomogeneous with important differences
between the interface and bulk critical temperatures. It
is apparent that the regime II is essentially absent for
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Figure 4. Critical temperature of superconductivity con-
fined to the interface layer T interface

c (green circles) and het-
erostructure critical temperature T hetero

c (purple diamonds)
as a function of the parameter ∆N . Error bars measure the
uncertainty in the determination of the critical temperature52.
Solid lines represent the critical temperatures extracted from
the fit using the model in Eq. 7. The shaded area represents
the area comprised between the critical temperatures of the
two homogeneous superconductor. The enhancement is mea-
sured with respect to the average of the two homogeneous
critical temperatures Tc,0. Vertical dashed lines indicate the
separation of the different regions I,II and III of the phase
diagram.

∆N < 0 in agreement with the results we have shown in
the previous sections.

D. Two-length scale model

In this section we complement the DMFT analysis with
a phenomenological Landau model which includes the
specific features of our geometry and is based on two
length scales that characterize the heterostructure super-
conducting state. We start by modelling a single inter-
face layer embedded into the bulk of the other supercon-
ductor. We consider a Landau expansion of the free en-
ergy, assuming a continuous order parameter which varies
along the z direction φ(z) and a dependence of z of the
coefficient of the quadratic term. For an interface placed
at z = z0 we can write

Fz0 [φ] =

∫
dzf(z − z0)

=

∫
dzα(z − z0)φ2(z) + βφ4(z) + ξ2

z(∇φ)2.

(5)

All the other parameters do not depend on z.

The key feature of the model is the definition of the
free-energy in terms of two length scales `p and ξz :

• `p describes the spatial extent over which the prox-
imity effect responsible of the critical temperature
enhancement is active. This effect is included in
the free-energy by assuming a spatial dependence
of the quadratic term α(z − z0) through the rela-

tion α(z − z0) ∼ T − T̃c(z − z0), where T̃c(z − z0)
is a fictitious space-dependent critical temperature
which is maximum at the interface and decay to
the homogeneous value in the bulk

T̃c(z − z0) = T0(1− e−|z−z0|/`p) + Tie
−|z−z0|/`p . (6)

In the last equation T0 represents the critical tem-
perature of the bulk while Ti > T0 is a parameter
controlling the critical temperature enhancement at
the interface.

• The coherence length ξz which, as evident from Eq.
(5) has the standard relation with the energetic cost
to have a spatial variation of the order parameter.
The system therefore tends to remain spatially uni-
form over a length ξz.

The critical temperature profile Tc(z) is determined
by the competition between the two length scales. We
notice that, in general, this will be different from the fic-

titious T̃c(z) defined in Eq. 6. In particular, we expect

Tc(z) → T̃c(z) in the limit ξz/`p → 0, whereas a finite
value ξz/`p > 0 will result in a renormalization of the
value of the interface critical temperature with respect
to the fictitious one Tc(z = z0) < Ti. Eventually, for
ξz/`p → ∞ the model describes an homogeneous super-
conductor with Tc(z)→ T0.

Starting from the single interface free energy, we define
the free-energy of the heterostructure with periodicity Λ
as

Fhetero[φ] =

∫
dzΦ(z), Φ(z) =

n=∞∑
n=−∞

f(z − nΛ), (7)

with Φ(z + Λ) = Φ(z).
The stationarity condition for the functional, i.e.

δFhetero

δφ = 0, determines the temperature evolution of

the order parameter φ(z) as a function of the four pa-
rameters (Ti, β, `p, ξz). We therefore extract the Landau
parameters by fitting the critical temperatures T interface

c

and T hetero
c to the data in Fig. 4. For each configuration

type of heterostructure (∆N > 0 and ∆N < 0) a sin-
gle set of parameters is used to simultaneously fit both
T interface
c and T hetero

c .
The best fit, shown as solid lines in Fig. 4 is obtained

for ∆N > 0 using Ti/T0 ≈ 2.0, `p ≈ 1.10, β ≈ 1.5, and
ξz ≈ 0.35, while for ∆N < 0 we obtain Ti/T0 ≈ 1.65,
`p ≈ 1.3, β ≈ 1.5, and ξz ≈ 0.9. The crossover from
the different regions of the phase diagram is overall well
captured by the fitting procedure.
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Comparing the two sets of optimized parameters we
observe that T∆N>0

i > T∆N<0
i , as expected from the

behavior of the T interface
c . In line to what discussed above,

due to the finite values of ξz the fictitious temperatures Ti
correctly overestimate the saturated values of T interface

c .
The extracted values of the characteristic lengths

strengthen our physical picture for the heterostructure
superconductivity and its different regimes. In particu-
lar, the crossover from the different regions for ∆N ≷ 0
is well described in terms of the ratio `p/ξz. In the
case ∆N > 0 (strong-coupling bulk), ξz is the short-
est length scale. In this case T interface

c saturates on a
scale Λ & `p and, concomitantly, Tc in the bulk starts to
decay towards the homogeneous value (region II). This
can be readily understood as the coherence length of
the bulk is short and smaller than the proximity scale
`p, so it gets quickly uncorrelated from the interface.
On the contrary, ξz becomes the largest length scale for
∆N < 0 case (weak-coupling bulk), favouring the forma-
tion of a homogeneous superconducting state. As a re-
sult, T interface

c follows the behaviour of T hetero
c for a wide

range of periodicity, reaching a saturated value T interface
c ,

for Λ � `proximity, smaller with respect to the ∆N > 0
case.

IV. CONCLUSIONS

In this work we have studied by means of inhomoge-
neous DMFT the superconducting properties of a hybrid
heterostructure obtained by arranging superconducting
layers with weak and strong coupling through the peri-
odic intercalation of a single interface layer of one type
into the bulk of the other.

We have show that the superconducting critical tem-
perature of the layered system is enhanced with respect
to the critical temperatures of homogeneous supercon-
ductors with the pairing strength of the two constituent
materials.

The behaviour of the critical temperature as a func-
tion of the periodicity of the heterostructure reveals the
existence of two different regimes, one in which the het-
erostructure superconductivity is dominated by the in-
terface layer intercalated in a ”bulk” of the other su-
perconductors and the other which is a much more ho-
mogeneous superconductor extending with similar local
properties on the whole system.

We rationalize our results in terms of a phenomeno-
logical Landau model based on two length scales which
control respectively the length scale over which the prox-

imity effect is established and the coherence length of the
new superconducting state which controls the homogene-
ity.

We can picture the heterostructure superconductivity
as a state in which the system manages to improve the
properties of the two constituents. The weak-coupling
superconductor is boosted by a proximity effect in which
the larger pairing amplitude of the strong-coupling sys-
tem leaks, while the strong-coupling superconductor in-
creases its critical temperature because the carriers be-
come more mobile and coherent. In a sense, we optimize
the superconducting property in a similar way as it hap-
pens for the intermediate coupling superconductor which
maximizes the critical temperature in the homogeneous
system. By means of the heterostructuring the maximum
critical temperature can be obtained controlling the num-
ber of layers of the two materials, without a fine tuning
of the coupling strength.

This effect is due to the formation, close to the in-
terface, of superconducting pairs with mixed weak and
strong coupling characters, realizing an effective inter-
mediate coupling regime which optimize the condition
for superconductivity.

Our results can be used to rationalize and predict the
behaviour of heterostructures obtained combining ma-
terials characterized by different pairing properties and
comparable critical temperatures, as for example under-
doped and overdoped cuprates chosen on the two sides
of the superconducting dome, if we assume that to some
extent the doping evolution of these materials can be de-
scribed in terms of an effective strong-to-weak-coupling
evolution. We can expect similar results also for other
phases with long-range order, e.g. antiferromagnetism53

or charge density waves, which show a similar evolution
as a function of the coupling strength.
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