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We point out the generic competition between the Hund’s coupling and the spin-orbit coupling in correlated
materials, and this competition leads to an electronic dilemma between the Hund’s metal and the relativistic
insulators. Hund’s metals refer to the fate of the would-be insulators where the Hund’s coupling suppresses the
correlation and drives the systems into correlated metals. Relativistic Mott insulators refer to the fate of the
would-be metals where the relativistic spin-orbit coupling enhances the correlation and drives the systems into
Mott insulators. These contradictory trends are naturally present in many correlated materials. We study the
competition between Hund’s coupling and spin-orbit coupling in correlated materials and explore the interplay
and the balance from these two contradictory trends. The system can become a spin-orbit-coupled Hund’s metal
or a Hund’s assisted relativistic Mott insulator. Our observation could find a broad application and relevance to
many correlated materials with multiple orbitals.

Correlated quantum materials provide a rich platform to
explore different competing interactions. The simplest one
would be the competition between the electron kinetic energy
and the Coulomb interactions between the electrons. This is
captured by the well-known Hubbard model [1]. For the in-
teger electron filling per site, a strong on-site electron inter-
action would directly convert the system from a metal into
a Mott insulator with the formation of local moments [2–
4]. This “big” parent picture is decorated in many different
ways when extra interactions are included or emerge as the
subleading effects. This includes, for example, the residual
interactions and the magnetic ground states of the Mott in-
sulators, the nature of the metallic states, the band structure
topology [5, 6], the nature of Mott transition [7–9], the or-
bital selectivity of Mott transition [10–12], etc. Two interest-
ing decorations, Hund’s metal [13, 14] and relativistic Mott
insulator [15, 16] that are discussed in this work, are from
the Hund’s coupling and from the spin-orbit coupling, respec-
tively. They are two interesting ideas that emerge in the theory
of correlated electron materials over the past decade.

The Hund’s metal is concerned with how the correlated
metallic regime is enhanced by the presence of the Hund’s
coupling on multiply degenerate d-orbitals for many transi-
tion metal compounds [13, 14]. Most often, it was argued that,
the Hund’s coupling effectively reduces the electron correla-
tion by harnessing the interaction energy gain in the spin sec-
tor. Thus, the metallic regime is significantly expanded com-
pared to the case without the Hund’s coupling. The relativis-
tic Mott insulator is a concept about the role of strong spin-
orbit coupling in correlated materials with multiple 4d/5d or-
bitals or bands [15]. It can sometimes be relevant for systems
with 3d electrons when the spin-orbit coupling becomes ac-
tive. The strong spin-orbit coupling twists the electron mo-
tions as it hops on the lattice and reduces the bandwidth of
the electrons. Another description of this effect is that, the
spin-orbit coupling breaks the whole bands into multiple spin-
orbital-entangled subbands with much narrower bandwidths.
As a result, the electron correlation is enhanced. The system
becomes a spin-orbit-coupled Mott insulator. If there is no

spin-orbit coupling, the system would be a correlated metal.
It is the spin-orbit coupling that assists the electron correla-
tion and drives the Mott insulating behaviors. As the spin-
orbit coupling is a relativistic effect, the spin-orbit-coupled
Mott insulator is often referred as the relativistic Mott insula-
tor. Having explained the underlying ideas of Hund’s metal
and relativistic Mott insulator, one would immediately realize
that, both of these two concepts are dealing with the correlated
materials with multiple orbitals, but they have rather opposite
tendencies. Thus, the correlated materials would fall into a
dilemma between Hund’s metal and relativistic Mott insula-
tor. The purpose of this work is to point out this dilemma
through a specific example. The specific example in this work
is simply adopted to explain the universal physics behind, and
should not be interpreted as a localized specifics without any
generalization. One should really extract the general message
delivered by our specific example. We further design a calcu-
lation formalism to study the spin-orbit coupling, the Hund’s
coupling and Mott physics in correlated materials, and hope
to capture these competing effects at least in a crude manner.

We start with an extended Hubbard model with multiple

FIG. 1. (a) The hopping between the t2g orbitals from neighboring
sites on the square lattice. (b) The energy splitting of three-fold de-
generate t2g orbitals and the two-fold degenerate eg orbitals.
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orbitals on a square lattice (see Fig. 1). We consider the octa-
hedral crystal field environment for the transition metal ions.
The two-fold degenerate eg orbitals are higher in the energy
than the three-fold degenerate t2g orbitals. We assume that,
the crystal field separation ∆ between the eg and the t2g or-

bitals is very high so that we can safely neglect the presence of
the upper eg orbitals. We restrict ourselves to the t2g orbitals.
This is sufficient for revealing the physics that was previously
advocated. The extended Hubbard model on the t2g manifold
is written as

H =
∑
〈i j〉

∑
m,n

tmn
i j c†imαc jnα +

∑
i

∑
m,n

∑
µ

λ

2
Lµmnσ

µ
αβc
†

imαcinβ +
∑

i

U
∑

m

c†imαc†imβcimβcimα

+
∑

i

[U′

2

∑
m,n

c†imαc†inβcinβcimα +
J
2

∑
m,n

c†imαc†inβcimβcinα +
J′

2

∑
m,n

c†imαc†imβcinβcinα

]
+ · · · , (1)

where m, n = 1, 2, 3 are the orbital indices corresponding to
the yz, xz, xy orbitals for the t2g orbitals, α, β =↑, ↓ are the spin
indices, µ = x, y, z refers to the component for the spin and
orbital angular momenta, and the spin indices are automati-
cally summed. The operator c†imα (cimα) creates (annihilates)
an electron on the m orbital with the spin quantum α. On
the first line of Eq. (1), the first term describes the electron
hopping between different orbitals and the neighboring sites
on the lattice, the second term describes the atomic spin-orbit
coupling, and the third term is the intra-orbital Coulomb in-
teraction. On the second line of Eq. (1), the first term is the
inter-orbital interaction, the second term is the Hund’s cou-
pling, the third term describes the electron pair hopping, and
“· · · ” refers to the extra interactions and effects that are not
considered here. Owing to the lattice symmetries and the or-
bital orientations, only the nearest-neighbor intra-orbital hop-
ping is non-vanishing and is set to t (see Fig. 1). The inter-
actions in Eq. (1) are the standard Kanamori interactions. We
will take the atomic limit with J = J′ and U′ = U − 2J in our
calculation, and the interactions can then be described as U-
interaction and J-interactions. This Hamiltonian is particu-
larly relevant for e.g. V4+ ions with 3d1 electron configura-
tions in Sr2VO4 [17–20], Mo4+ ions with 4d2 electron config-
urations in Sr2MoO4 [21], Re4+ ions with 5d3 electron con-
figurations in Sr2ReO4, Ru4+ ions with 4d4 electron configu-
rations in Sr2RuO4 [22] and Ca2RuO4 [23–25], even Ir4+ ion
with 5d5 electron configurations in Sr2IrO4 after twisting the
hoppings [26], and other transition metal compounds. In this
work, we analyze the d2 and d3 configurations for the illustra-
tion.

Both the Hund’s metal and the relativistic Mott insulator
are more or less concerned with the Mott transition. To tackle
with the Mott transition of Eq. (1), we implement a slave-rotor
formulation of the electron operator [27], express the electron
operator as Cimα = e−iθi fimα, then decouple the extended Hub-
bard model into the spin sector and the charge sector. This ap-
proximation automatically assumes the spin-charge separation
by placing the electron charge on the bosonic rotor and placing
the spin and the orbital on the fermionic spinon. Often, this
approach was used to describe the quantum spin liquid that is
proximate to Mott transition [28]. Magnetic orders can be in-

corporated into this formalism by including the J-interactions
onto the spinon sector and properly decoupling the interaction
according to the orderings [29]. The latter approach attributes
the Mott localization to the U-interaction, and the magnetic
orders to the J-interactions, even though both interactions to-
gether give rise to the magnetism in many cases. Here we are
not interested in addressing the nature of the ground state for
the Mott regime, but to understand the variation of the Mott
transition. Thus, we simply assume the Mott side is a spin
liquid and explore the fate of Mott transition in the presence
of extra couplings.

For our purpose, we first take away the J-interactions, and
decouple the extended Hubbard model into the spinon sector
H f and the the charge sectorHθ with

H f =
∑
〈i j〉

∑
m,n

tmn
i j f †imα f jnα +

∑
i

∑
m,n

∑
µ

λ

2
Lµmnσ

µ
αβ f †imα finβ

−
∑

i

∑
m

hi f †imα fimα, (2)

Hθ =
∑
〈i j〉

(
χi je

iθi−iθ j + h.c.
)

+
∑

i

(U
2
L2

i + hiLi
)
, (3)

where tmn
i j = 〈eiθi−iθ j〉tmn

i j , χi j =
∑

m,n tmn
i j 〈 f

†

imα f jnα〉, hi is a La-
grangian multiplier for each site to enforce the Hilbert space
constraint such that [

∑
m
∑
α f †imα fimα] − n̄ = Li, and Li is an

angular momentum variable conjugate to the U(1) phase θi.
Here n̄ is the electron occupation number per site, and n̄ = 2
(3) for the d2 (d3) electron configuration. As the translation
symmetry is preserved throughout, one expects that hi has no
site-dependence and hi ≡ h. Because 〈

∑
i Li〉 = 0, so we ex-

pect h = 0 in the self-consistent mean-field calculation. More-
over, due to the translation symmetry and the lattice rotation,
χi j ≡ χ. The charge sector model, Hθ, behaves more like a
boson Hubbard model at integer fillings, and we solve it with
a coherent state path integral formulation. After integrating
out the angular momentum L, we obtain

Zθ '

∫
DΦ†DΦ

exp
[
−
[ ∫ β

0
dτ

∑
i

|∂τΦi|
2

2U
+

∑
〈i j〉

χ(Φ†i Φ j + h.c.)
]]
,(4)
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FIG. 2. (a) and (b) are the Mott transition phase diagrams for the d2 and d3 electron configuration in the absence of J-interactions, respectively.
(c) and (d) are the Mott transition phase diagrams after taking into account of the renormalization of the correlation by the J-interactions. In
(c) and (d), the dashed curves are the phase boundaries from (a) and (b). In (c) and (d), we set J = 0.1U.

where we have replaced e−iθi with Φi, and |Φi| = 1. The uni-
modular condition on Φi can be imposed by introducing a La-
grangian multiplier, Λi. The excitation spectrum of charge bo-
son Φ can be solved via a saddle point approximation and the
uniformity requirement with Λi = Λ. We find that the Φ spec-
trum is given by Ωk =

√
2U[Λ − 2|χ|(cos kx + cos ky)] where

the lattice constant is set to unity. When the gap of the spec-
trum vanishes, the charge boson Φ is condensed and the sys-
tem goes from the Mott insulator to the metallic state. We find
that the Mott localization occurs at

[
U/|χ|

]
c = 4.84. To obtain

the actual critical U/t for the Mott transition, one further re-
quires the knowledge from the spinon sector to produce the
parameter χ, and this χ parameter depends on 〈eiθi−iθ j〉 at the
Mott transition. The latter quantity can then be directly com-
puted from Eq. (4), and we find that 〈eiθi−iθ j〉 =

∑
k Ωk/(8χN)

for the nearest-neighbor bonds at the Mott transition where N
is the number of lattice sites. The parameter χ can be evalu-
ated from solving the spinon HamiltonianH f with

χ =
∑
m,n

tmn
i j 〈 f

†

imα f jnα〉 = −
t
N

∑
k

∑
m=2,3

〈 f †kmα fkmα〉 cos kx

= −
t
N

∑
k

∑
m=2,3;n

∣∣∣M(k)mα,nβ

∣∣∣2Θ[εF − εnβ(k)] cos kx. (5)

Here using the translation symmetry, we only need to consider
the x̂ direction bond. The spinon Hamiltonian is diagonalized
by the canonical transformation fkmα = M(k)mα,nβdknβ, where
dknβ is the spinon eigenmode and the energy is given by εnβ(k)
with the spinon Fermi energy εF. For each λ/t, there is a cor-
responding χ parameter from the spinon sector, and thus a
corresponding (U/t)c for the Mott transition. Thereby, we are
able to construct the phase diagram in the U/t-λ/t plane.

In Fig. 2(a) and Fig. 2(b), we depict the phase diagram
for the d2 and d3 electron configurations, respectively. It is
shown that, the critical Hubbard U-interaction for the Mott
transition is gradually suppressed as the spin-orbit coupling is
increased. It turns out out, both d2 and d3 fillings have qual-
itatively similar phase diagrams as expected. The spin-orbit
coupling suppresses the electron bandwidth, and a weaker
U-interaction would already drive the Mott transition [15].

On the other hand, the Hubbard U-interaction suppresses the
bandwidth, which then enhances the effect of the spin-orbit
coupling. These two interpretations provide a physical un-
derstanding of the phase diagram. In the right region of the
Mott insulating phases, the system should be more appropri-
ately quoted as a relativistic Mott insulator to reflect the strong
spin-orbit coupling. Likewise, In the right region of the metal-
lic phase, the system is better to be quoted as a spin-orbit-
coupled metal [30].

We now include the effect of the J-interactions. As we
have previously explained, the proper treatment of the J-
interactions requires the knowledge of the ground state on the
Mott side. We do not intended to address the actual ground
state on the Mott side, and thus, we tend to consider the J-
interactions in a qualitative manner. In the strong Mott regime
with decoupled atoms, things can be understood in both quali-
tatively and quantitatively. It is shown that [13, 14], the renor-
malized effective correlation Ur can be obtained by calculat-
ing the energy cost for changing the valence charge of two
neighboring ions from their original electron occupation, i.e.
transferring one electron from one site to the other. When the
electron occupation is not at half-filling (i.e. not occupying
each orbital with one electron), the system can gain energies
from the Hund’s coupling and the inter-orbital interaction, and
the renormalized correlation is Ur = U − 3J. When the elec-
tron occupation is at half-filling, transferring electrons would
automatically introduce the double electron occupation on a
single orbital and thus increase the correlation energy. The
renormalized correlation in this case is Ur = U + 2J for our
d3 configuration. In Fig. 2(c) and Fig. 2(d), we depict the
new phase diagrams after taking into account the renormal-
ized correlation. In Fig. 2(c) for the d2 configuration, the ef-
fective correlation is reduced by the Hund’s coupling, and thus
a large region that was insulating in Fig. 2(a) becomes metal-
lic. This region is nothing but Hund’s metal. On the right
part inside this region, as the strong spin-orbit coupling is in-
volved, it should be quoted as a spin-orbit-coupled Hund’s
metal. It turns out that, the 5d compound BaOsO3 was re-
cently proposed as a spin-orbit-coupled Hund’s metal [31]. In
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Fig. 2(d), for the d3 configuration, the effectively correlation is
enhanced, and a large metallic region in Fig. 2(b) is converted
into Mott insulators. This is a Hund’s assisted Mott insula-
tor, and the right region of it should then be called a “Hund’s
assisted relativistic Mott insulator”.

The interplay between the Hund’s coupling and the spin-
orbit coupling persists even in the strong Mott regime. For the
d2 configuration on the t2g shell, if one considers the Hund’s
coupling first, then one arrives with a S = 1 local moment
with a three-fold orbital degeneracy for the orbital configu-
ration that functions as an effective angular momentum L = 1.
Once the spin-orbit coupling is considered, a J = 2 local mo-
ment is obtained with the J = 1 and J = 0 states as the excited
levels [32]. Another perspective is to first consider the spin-
orbit coupling on the single electron level and then incorpo-
rate the Hund’s coupling on top of the spin-orbit energy levels
. Recent theories in Refs. 33 and 34 noticed that the five-fold
degeneracy of the J = 2 moment is not protected by the cubic
point group symmetry and further splitting should be consid-
ered. For the d3 configuration, the Hund’s coupling leads to a
total S = 3/2 local moment, and the orbital sector is a singlet.
The spin-orbit coupling is inactive. If the spin-orbit coupling
is considered first, however, the three electrons would occupy
the four-fold degenerate J = 3/2 quadruplets, and four-fold
degenerate local states with the spin-orbit entanglement are
obtained [32, 35].

Discussion.—In our illustrative study of the Hund’s cou-
pling and spin-orbit coupling in the correlated materials, we
only considered the d2 and d3 configurations, and the uncor-
related or weakly correlated regimes in our examples are all
metallic. In reality, it could happen that the uncorrelated or
weakly correlated regime is a band insulator. In that case, the
topological aspect of the band structure should be considered.
As the spin-orbit coupling is involved, whether the band insu-
lator is a topological insulator or not is an interesting and rele-
vant question. Just like the metallic behavior can be driven by
the Hund’s coupling, the candidate topological band insulator
if exists is an example of Hund’s topological insulator. Like-
wise, one could use Hund’s coupling to enlarge the region of
other topological matter at the single-particle level.

The parent state of the Fe-based superconductors is often a
correlated metal. As this metal was interpreted as a Hund’s
metal, the resulting superconductor was then proposed as a
Hund’s superconductor [36, 37]. The spin-orbit coupling was
recently invoked for the Fe-based superconductors [38], and
various topological features such as Dirac band touching and
majorana physics were proposed [39, 40]. It can be a good
chance to include both Hund’s coupling and the spin-orbit
coupling together in the future work.

To conclude, the spin-orbit coupling and the Hund’s cou-
pling have opposite effects on the electron correlation for the
electron occupation off from the half filling of all orbitals. At
the half filling, the spin-orbit coupling and the Hund’s cou-
pling are found to enhance the electron correlation. In real
materials, often the spin-orbit coupling in the systems with
heavy ions should be seriously considered, and the Hund’s

coupling is unavoidable almost for any material with electron
correlations.
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