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Ground-state phase diagram of the one-dimensional ¢-J,-J, model at quarter filling
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We study the ground state of the one-dimensional “t-Js-J; model,” which is a variant of the ¢t-J
model with an additional channel degree of freedom. The model is not only a generalization of the
t-J model but also an effective model of the two-channel Kondo lattice model in the strong-coupling
region. The low-energy excitations and correlation functions are systematically calculated by the
density matrix renormalization group method, and the ground-state phase diagram at quarter filling
consisting of a Tomonaga-Luttinger liquid, spin-gap state, channel-gap state, insulator, and phase
separation is determined. We find that weak channel fluctuations stabilize the spin-gap state, while
strong channel fluctuations lead to the transition to the insulator.

I. INTRODUCTION

Quantum fluctuations are important features of mi-
croscopic systems, which give rise to plenty of interesting
phenomena. In condensed matter physics, spin fluctua-
tions play an important role in realizing various quantum
states, such as spin liquids and superconductivity. One of
the minimal theoretical models containing both spin and
charge degrees of freedom is the ¢t-J model. The model
was originally proposed to describe high-T; superconduc-
tivity [1], and its one-dimensional model has been stud-
ied to understand the fundamental properties of strongly
correlated systems. Although this model contains only
the kinetic energy term and the exchange energy term,
various quantum states including a spin-gap state are re-
alized |2], and it is interesting to investigate whether new
quantum states appear when we include additional inter-
actions existing in more realistic systems. One simple
extension is the inclusion of repulsive interaction V be-
tween the neighboring electrons. It has been reported
that the repulsive interaction V' stabilizes the spin-gap
phase at quarter filling [3], but other new states have not
yet been obtained. Another approach to extend the t-J
model is to add new degrees of freedom of electrons.

Praseodymium contained in cage-shaped composites,
such as PrTisAlyg, has a non-Kramers doublet as the
crystal-field ground state [4, 15]. The theoretical model
of such materials is the two-channel Kondo lattice model
(TCKLM)|6, [7], which has multiple degrees of freedom
associated with the non-Kramers doublets. As one of the
simplest models of interacting electron systems consisting
of multiple degrees of freedom, we propose the “t-Jg-J,
model,” which is not only an extension of the ¢-J model
but also an effective model of the TCKLM in the strong-
coupling region.

In this paper, we study the ground-state properties of
the model by the density matrix renormalization group
(DMRG) method and investigate the effect of the channel
degree of freedom on the ground state. The obtained

* kurebayashi@cmpt.phys.tohoku.ac.jp

results show that the spin-gap state is stabilized by weak
channel fluctuations, while strong channel fluctuations
lead to the transition to the insulator.

II. MODEL

The model we study here is the following t¢-J,-J;
model:

Hijy = —tz (ajgbiabz+1)aai+l7o' + H.c.)

+Jszsi +Siv1+ JTZTi “Tit1 +Vznmi+1,
K2 K2 K2 (1)

where a;rg and bl—La are the creation operators of particles
and “holes” at the ith site with spin ¢ and channel «,
respectively, and the empty and double occupancies of
a;r and bl—La are inhibited:

Z ajaaia' + Z b;‘rabia =n; + Z bjabm‘ = 17 (2)

where n; = ZU a;faaig is the number operator of the
particles. The spin and channel-pseudospin operators
are defined as S; = %Zm, azaam/aig/ and 7, =
% Y e bzaaaa/bm/, respectively.

This model is not only a generalization of the extended
t-J model but also derived from the TCKLM

Hrexim = —EZ (C;‘ragci-i-l,aa + H.c.)
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as follows: assuming that the number of conduction elec-
trons per local spins n. satisfies 1 < n. < 2, the effective
Hamiltonian in the strong-coupling region is given by the
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FIG. 1. Schematic representations of the composite particles
al, and b}, in the TCKLM.

second-order perturbation of 1/.J from the limit J/# = oo.
In this case, a’ and b' are the composite particles defined

(| Tt Tt gt Tt gt
as 4, = g (2Ciloci2afi6_Cilaci26fia_Cil&ci2afia)

oo 1 Toopt Tt
and b;, = 73 (Cianu - Ciwfm)
schematically represented in Fig. [l The transfer in-
tegral ¢ in Eq. () is given as t = 3t/4 and the effective
interactions are

642 U,

1504¢2

ST 135 T T 9 g, 0.64. (5)
The interactions J; and J; are the two largest terms
obtained by the perturbation expansion, and the other
ones, including next-nearest hopping, are ignored. The
neglected long-range interactions are expected to sup-
press the phase separation caused by the above two in-
teractions. Instead of treating all such terms explicitly,
we consider the repulsion term V' to suppress the phase
separation. Note that when n. = 1, which corresponds
to the absence of the a particles (n = 0), the model is
reduced to the Heisenberg model of the channel degree
of freedom [7].

In this study, we analyze the ground state of the Hamil-
tonian of Eq. (@) with an equal number of particles and
holes at n = 1/2 (quarter filling, kp = 7/4). This filling
corresponds to n. = 3/2 in the TCKLM. Throughout
this paper, we fix the nearest-neighbor interaction V' as
V/t = 0.8 and take the transfer integral ¢ as the unit of
energy.

, respectively, as

III. METHOD

We use the DMRG method ﬂg, @] to analyze the ground
states of the Hamiltonian of Eq. (). In this method, the
accuracy of the ground-state wave function is systemat-
ically controlled by the number of remaining states m.
We increase m up to 400 to see the convergence of the
results, where the truncation error is less than 10~°. The
system size is in the range of 128-192.

To suppresses the finite-size effect caused by the open
boundary conditions used in the DMRG calculation, we
apply the sine square deformation (SSD) [10] to the
Hamiltonian. Since the SSD reproduces the bulk re-
sponse to an external field ], we use this property to
obtain the excitation gap of the infinite system.
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FIG. 2. Excitation gaps for the charge A,, spin As, and
channel A, degrees of freedom. The upper axes represent the
effective interactions defined in Eqs. (B). The error bars are
introduced by the discrete parameter settings used in the SSD
method [11].
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FIG. 3. Ground-state phase diagram of the t-Js-J, model.
The plus marks represent the transition points. The phase
boundary is roughly drawn. The squares on the transition
line were determined in a previous work E] for the extended
t-J model. The circles in the phase diagram represent the
points where the correlation functions shown in Figs. [ [G]
and [ are calculated. M, metallic phase (no excitation gap);
SG, spin-gap phase (only the spin gap opens); ChG, channel-
gap phase (only the channel gap opens); I, insulating phase
(gap opens for all excitations); and PS, phase separation.
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FIG. 4. Correlation functions in the metallic phase at Js = 1.2
and Jr = 0.71 (J = 9.0).

IV. RESULT

We first study the elementary excitations of the model
to clarify how the interactions modify the low-energy
properties of the system. We calculate the excitation
gap for the charge (A,), spin (A;), and channel (A,)
degrees of freedom in the parameter space of J,-J,. Fig-
ure [2] shows the excitation gaps obtained along the line
defined by Eq. (). With decreasing the parameter J of
the TCKLM (with increasing Js and J, of the t-J,-J-
model), the spin excitation gap first opens, and then, the
charge and channel gaps open.

These successive transitions show the presence of the
spin-gap phase. To further confirm the spin-gap phase,
we systematically calculate the excitation gaps for var-
ious Js; and J, and determine the ground-state phase
diagram of the t-Js-J, model. Figure Bl shows the ob-
tained phase diagram consisting of five phases: metal-
lic phase (no excitation gap), spin-gap phase (only the
spin gap opens), channel-gap phase (only the channel gap
opens), insulating phase (gap opens for all excitations),
and phase separation. From the diagram, it is confirmed
that the spin-gap phase is realized in the TCKLM be-
tween the metallic and insulating phases.

As shown in Fig. Bl the transition lines are symmet-
ric with respect to the line of J; = J,. This arises
from the invariance of the Hamiltonian of Eq. () and
the particle filling n = 1/2 under the transformation

(a;r,r,ah,bzl,bg) — (b;rl,bk,a%,ah) with the exchange
of Js and J,, where the symmetry of the repulsive term
V is ensured by the condition of Eq. (@) |[12]. Since this
transformation exchanges the role of spin and channel
degrees of freedom, the symmetric phase diagram is ob-
tained. In the parameter sets we have studied, the direct
transition between the metallic phase and the insulating
phase occurs only on the line of J;, = J;. This implies

the existence of a quantum tetracritical point.
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FIG. 5. Fourier components of the charge correlation func-
tion. Central L = 152 sites of a 192-site system are used
to suppress the boundary effects. The dominant wavelength
changes from 4kp to 2kr with the decrease in J (with the
increase in Js and J-).

A. Metallic phase

Here we focus on the metallic phase in the region of
weak interaction, where all the excitations are gapless
and each spin, charge, and channel degree of freedom
behaves as a Tomonaga-Luttinger liquid (TLL) [13, [14].
As shown in Fig. @ the correlation functions defined by

9(r) = (X Xjr) = (X5) (Xjir) (6)
n; (for charge),
Xj =45 (for spin), (7)

77 (for channel)

J
decay in a power-law fashion r~®. For spin and channel
degrees of freedom, the exponent is @ ~ 1.6 at J = 9,
which is almost consistent with the prediction of TLL
theory @ = 1 + K, where the Luttinger parameter K,
is determined as K, ~ 0.5 from the slope of the Fourier
components of the charge correlation function N(g) near
g =0 (2,115, [16]. The J; dependence of N(q) defined by

L
N(@) =7 3 ) (fnams) — () () (8)

ij=1

also shows that the period of the charge correlation func-
tion clearly changes from 4kp (two site) to 2kp (four site)
with the increase in Js and J, as presented in Fig.

When J; exceeds a critical value, the system undergoes
the transition to the spin-gap phase. At J, = 0, the
critical value of Js is close to the bandwidth 4¢. Figure
shows that this critical value becomes smaller with the
increases in J,, which indicates the interaction acting
on the channel degree of freedom stabilizes the spin-gap
phase. We note that the critical value is insensitive to V'
when V is sufficiently smaller than 4¢.
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FIG. 6. Correlation functions in the spin-gap phase at J, =
0.5. (a) Spin correlation function. (b) Charge and channel
correlation functions.

B. Spin-gap phase

As discussed above, the increase in Js and J, enhances
the spin gap, which makes the slope of the exponential
decay of the spin correlation function steeper, as shown in
Fig. [B(a). For the charge and channel correlation func-
tions, the power-law behavior is confirmed, as seen in
Fig. Blb). The power-law exponent of the charge corre-
lation function slightly decreases with the increase in the

spin gap.

C. Insulating phase

We finally investigate the insulating state. In the in-
sulating phase, all the excitations have a finite energy
gap, and the correlation functions decay exponentially,
as shown in Fig. [l where we find almost the same slope,
although the charge gap is much smaller than the spin
gap. We think this is a result of the alternating product
state wave function of the spin and channel singlets, as
shown later.

To find the symmetry-breaking order of the insulating
phase, we calculate several local expectation values. Fig-
ure [§ shows the site dependence of the local densities and
nearest-neighbor correlations, defined as

fs(i) = <Sizfl/2Siz+1/2> - <Sizfl/2> <Siz+1/2> ) (9)
f-(0) = <Tffl/2Tf+1/2> - <Tffl/2> <Tz‘z+1/2>a (10)

where ¢ is the center position of the two operators. We
find the charge density (n;) has 2kp (four site) oscilla-
tion, whereas the spin and channel densities (S?) and
(17) remain zero everywhere. In addition, the nearest-
neighbor correlations strongly correlate with the charge
density oscillation. These results suggest that the insu-
lating phase is a product state of spin and channel sin-
glets, as schematically shown in Fig. The spin-gap
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FIG. 7. Correlation functions in the insulating phase at Js =
4.0 and J, = 2.5.
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FIG. 8. Site-dependent expectation values in the insulating
phase at J = 2.4, 2.8, and 3.2. (a), (b), and (c) represent local
densities. (d) and (e) show the nearest-neighbor correlations.
The dotted line shows those in the metallic phase at J = 9.0
for comparison. The top right diagram shows a schematic
picture of the ground state. The rounded rectangles represent
singlet pairs.

state is then considered as a state in which only the spin
degree of freedom forms singlet pairs.

As shown in Fig. Bl the transition to the insulating
state and the opening of the channel gap simultaneously
occur in the region of Jg > J,. With the increase in
Js from zero, the critical value of J, which opens the
channel gap decreases from almost the bandwidth of 4¢
to t but never goes down to zero, which indicates the
cooperation of the spin and channel degrees of freedom
is essential for the emergence of the insulating phase.

Here we comment on the effect of the nearest-neighbor
repulsion V. This term is added to effectively in-



clude the higher-order interactions existing in the origi-
nal TCKLM, which suppress the transition to the phase
separation. As the nearest-neighbor repulsion leads to
the metal-insulator transition in the extended Hubbard
model at quarter filling [17, (18], this may affect the phase
diagram. However, the insulating state caused by the
nearest-neighbor repulsion V' is characterized by the 4kp
(2 sites) charge densities, which is clearly different from
the insulating state found in the present study, where
only 2kp (4 sites) oscillation appears. We therefore think
the repulsion term is not essential in the present analysis.

V. CONCLUSION

We have studied the ground states of the t¢-Js-J;
model, which is a minimal model consisting of multi-
ple degrees of freedom. The low-energy excitations of
the spin, charge and channel degrees of freedom have

been calculated by the DMRG method with the SSD,
and it was shown that the phase transition occurs from
the metallic state to the spin-gap or channel-gap state
when the exchange interactions exceed almost the band-
width, roughly /J2 4+ J2 ~ 4t. For the symmetric case
of J; = J;, however, the direct transition to the insu-
lating state takes place. These results imply that weak
channel fluctuations stabilize the spin-gap state of the
t-J model, while strong channel fluctuations lead to the
transition to the insulating state which is characterized
by the alternating product state of the spin and channel
singlets.
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