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Abstract

The X-cube model, a prototypical gapped fracton model, was shown in Ref. [1] to have a
foliation structure. That is, inside the 3+1D model, there are hidden layers of 2+1D gapped
topological states. A screw dislocation in a 3 + 1D lattice can often reveal nontrivial features
associated with a layered structure. In this paper, we study the X-cube model on lattices with
screw dislocations. In particular, we find that a screw dislocation results in a finite change in
the logarithm of the ground state degeneracy of the model. Part of the change can be traced
back to the effect of screw dislocations in a simple stack of 2 + 1D topological states, hence
corroborating the foliation structure in the model. The other part of the change comes from
the induced motion of fractons or sub-dimensional excitations along the dislocation, a feature
absent in the stack of 2 + 1D layers.
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1 Introduction

Fracton models [2–8] are characterized by the peculiar feature that some of their gapped point
excitations are completely localized or are restricted to move only in a lower dimensional sub-
manifold. The X-cube model, first proposed in Ref. [5], is one of the most widely studied
gapped fracton models in 3 + 1D. It captures many important features of gapped type I
fracton models, including a ground state degeneracy that grows exponentially with linear
system size, the existence of fracton and other sub-dimensional fractional excitations, and
subleading linear entanglement scaling [9–11]. In particular, it was shown in Ref. [1] that the
X-cube model has a foliation structure [9, 12–16]. That is, starting from the ground state of
the X-cube model on a 3D cubic lattice with periodic boundary conditions, a 2D toric code
state can be decoupled from the 3D bulk using a finite depth local unitary circuit near the
two dimensional layer, such that the remaining 3D bulk is still the X-cube model but of one
lattice spacing smaller. There are hence a large number of hidden layers of toric code inside
the X-cube model, giving rise to several of the properties mentioned above: a linearly growing
number of ground space logical qubits , the existence of planons (i.e. fractional excitations
that move in planes), and sub-leading linear entanglement scaling. The layers in a foliation
structure are called ‘leaves’.

In systems with a layered structure, nontrivial features can often be revealed by inserting
a screw dislocation through the layers. For example, a weak 3+1D topological insulator is
equivalent to a stack (or several stacks) of 2+1D topological insulators [17]. It was shown
in Ref. [18], that a screw dislocation in a weak topological insulator carries topologically
protected 1D gapless fermionic excitations. As shown in Fig. 1, a screw dislocation through
a stack of 2D layers connects all the layers together and the screw dislocation becomes one
edge of the expanded annulus. If the 2D layers host gapless edge states (as in the case of
topological insulators [19] and chiral topological states [20]) [21–24], the screw dislocation
should carry the gapless mode along its length. If the gapped 2D layers can have gapped
edges due to anyon condensation (as in the case of 2D toric code [25] and other non-chiral
topological states [26, 27]), then the screw dislocation can be gapped as well, potentially
leading to topological degeneracy if the condensation matches that at the outer boundary.

Given the foliation structure in the X-cube model made up of 2D topological layers, we can
ask whether similar nontrivial features exist along screw dislocations. As the 2D layers in this
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1 INTRODUCTION

(a) (b)

Figure 1: (a) A screw dislocation through a stack of 2D layers connects the layers together.
(b) The structure in (a) can be expanded into an annulus on a single plane, with the screw
dislocation becoming the inner boundaries.

case host nonchiral topological order, are there extra topological degeneracies associated with
the screw dislocation? Indeed, this is what we find in this work. We see through direct lattice
calculation that when a screw dislocation is inserted into the X-cube model on a regular cubic
lattice, it can result in extra topological degeneracy. The results are summarized in Fig. 2.
We find that when the boundary condition at the dislocation matches with that on the outer
boundary, a screw dislocation can introduce extra ground state degeneracy (GSD) compared
to a hole in the system. The change in ground state degeneracy comes from two sources
(or logical operators): 1. the winding of planon quasi-particles (i.e. fractional excitations
that move in planes) around the screw dislocation as it connects the foliation layers in the
system (the +1 part); 2. the tunneling of fracton or lineon quasi-particles (i.e. fractional
excitations that only move along lines) along the screw dislocation (the (+1) part). (Fractons,
which are usually immobile, can gain some mobility near certain kinds of dislocations.) The
latter effect has an even/odd dependence on the length of the defect line and reflects the
nontrivial fractonic nature of the X-cube model beyond the foliation structure. When the
boundary conditions do not match, the tunneling becomes trivial and there is no change in
GSD associated with the screw dislocation.

To calculate the GSD, we can make use of the foliation structure in the model. In
particular, we can keep decoupling 2D topological layers from the 3D bulk with unitary
transformations until a minimal structure is reached, such that no more layers can be removed.
The log (with base 2) of the total GSD is a sum of the log degeneracy in each layer and that
of the minimal structure. For example, consider the X-cube model on 3D cubic lattice with
periodic boundary conditions. Each decoupled layer is a 2D toric code with periodic boundary
conditions, which contributes a log2 GSD of 2. The decoupling procedure can be continued
until we are left with one leaf each in the xy, yz and zx planes, respectively. Such a minimal
structure can be thought of as three 2D toric code states, in xy, yz, zx planes respectively,
coupled along their intersection lines [28,29] such that the Wilson loops on intersecting planes
merge into one. Because of the coupling, the log2 GSD of the minimal structure is 3× 2− 3.
Therefore, altogether, the log2 GSD of the cubic lattice model is equal to 2Lx+2Ly +2Lz−3.
This procedure is graphically illustrated in Fig. 3 and detailed in the next section. We will
apply this procedure to a variety of other lattice structures, including ones with open boundary
conditions, with holes and with screw dislocations.

The paper is structured as follows: First, we review the X-cube model on a cubic lattice and
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2 BOUNDARY CONDITIONS

discuss its general properties. We then proceed to describe the minimal structure approach
to calculate the ground state degeneracy of the X-cube model with and without boundaries,
discussing how the Wilson loops bind together in each case (Sec. 2). Then, we look at a
‘smooth’ screw dislocation, and derive its ground space properties explicitly using the minimal
structure approach (Sec. 3). We discover that the dislocation provides increased mobility to
the subdimensional excitations, and this results in an increased ground state degeneracy. To
obtain a more complete picture of dislocation defects in the X-cube model, in Sec. 4, we take
a look at other crystal defects such as holes and edge dislocations, and analyze them using
the underlying foliation structure of the model. We argue that a general screw dislocation can
be thought of as a hole plus a screw dislocation, which gives us a straightforward process to
obtain the GSD of the X-cube model on a lattice with a general screw dislocation. Finally, we
discuss what happens when the screw dislocation has larger Burgers vectors. We summarize
our findings in Table 1.

2 Boundary conditions

In this section, we will review the basic properties of the X-cube model and discuss how to
calculate the ground state degeneracy in the cases of periodic and open boundary condition
(no dislocations) using the procedure described above.

Figure 2: Change of log2 GSD due to screw dislocation. When boundary condition at the
dislocation matches with that on the outer boundary, an edge dislocation/hole introduces
extra GSD that increases with the size of the defect (+n). Moreover, a screw dislocation
can introduce extra GSD due to the tunneling of planon quasi-particles around the screw
dislocation as it connects the foliation layers in the system (the +1 part) and the tunneling of
fracton or lineon quasi-particle along the screw dislocation: the (+1) part. The latter depends
on the size of the defect line. When the boundary conditions do not match, there is no change
in GSD: +0.
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2.1 Review: the X-cube model 2 BOUNDARY CONDITIONS

Figure 3: Procedure for calculating the GSD of the X-cube model on the 3-torus. (a-c)
Decoupling 2D toric code layers (via a local unitary transformation) from the 3D bulk in xy,
yz and zx planes. After removing all the foliation layers, the remaining minimal structure
is composed of a 2D toric code layer in each direction, which are then coupled along the red
intersection lines.
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Figure 4: Cube (Ac) and vertex (Bµ
v ) operators of the X-cube model Hamiltonian on a cubic

lattice.

2.1 Review: the X-cube model

The X-cube model [5] is a gapped fracton model with spin-12 degrees of freedom (qubits) living
on the links of a simple cubic lattice. It has a Hamiltonian of the form

H = −
∑
c

Ac −
∑
v,µ

Bµ
v (1)

where Ac is the product of σx (henceforth X) over all links on the cube c and Bµ
v is the product

of σz (henceforth Z) over the links around the vertex v such that the links are perpendicular
to the direction µ = x, y, z (Fig. 4). Since X and Z anticommute, and Bµ

v and Ac always
have an even number of links in common, all terms in the Hamiltonian commute with one
another. Therefore, this Hamiltonian forms a stabilizer code [30] and the ground space will
be the simultaneous positive eigenspace of all these individual operators. The ground state
degeneracy of the X-cube Hamiltonian is given by

log2 GSD = 2Lx + 2Ly + 2Lz − 3 (2)

for the system on a 3-torus of size Lx × Ly × Lz.
This model has the interesting property that it has gapped excitations with restricted

mobility. An isolated cube excitation (violation of the Ac term) is a ‘fracton’ (a fractional
excitation that cannot move) while an isolated vertex excitation is a ‘lineon’ (a fractional
excitation confined to move in a one-dimensional submanifold). The cube excitations can be
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2.1 Review: the X-cube model 2 BOUNDARY CONDITIONS

created and separated by applying Z operators over a membrane on the dual lattice, and
the vertex excitations can be created by applying X operators on a line as shown in Fig. 5a.
Dipoles of these fractons and lineons are mobile within a plane when isolated, which earns
them the name planons. We will use the term fracton for the cube excitation, lineon for the
vertex excitation, and planon for both fracton and lineon dipoles.

Another aspect of the X-cube model that is relevant to our discussion is the coupled layer
construction of the model. It has been shown that the X-cube model can be obtained starting
from three perpendicular stacks of toric code layers with a strong ZZ coupling between
overlapping links (Fig. 6a), dubbed the coupled layer construction [28, 29]. This is given by
the Hamiltonian

H =
∑

µ=x,y,z;i

HTC(µ,i) − J
∑
l

ZlZ
′
l (3)

where HTC(µ,i) refers to the Hamiltonian of the ith toric code stacked perpendicular to µ. In
the limit J � 1, this reduces to the commuting Hamiltonian (at sixth order in perturbation
theory, refer Fig. 6b)

H = −J
∑
l

ZlZ
′
l −
∑
v,µ

Bµ
v −O

(
J−5

)∑
c

Ac (4)

Here, Bµ
v is the vertex term of the toric code perpendicular to µ at the vertex v in the simple

cubic lattice, and Ac is the product of X on all qubits on the edges surrounding the cube c,
as shown in Fig. 6b. We recover the X-cube model by looking at the ZlZ

′
l = 1 subspace of

the full Hilbert space.
Each toric code has two logical qubits in its ground space, acted on by logical operators

which correspond to operators that take vertex and plaquette excitations around the nontrivial
cycles of the torus, which we will call Wilson and ’t Hooft loops respectively, in analogy with
Z2 gauge theory. This coupling binds together the Wilson loops of the intersecting toric code
layers, because the individual Wilson loops do not commute with the ZlZ

′
l term. Combining

this feature with the foliation structure of the model gives us a way to derive the GSD of the
model on various lattices, which we will show in detail in the following sections.

(a) (b)

Figure 5: (a) Visualization of particle creation operators in the X-cube model. The red links
correspond to a membrane geometry on the dual lattice. The product of Z operators over
these edges excites the (darkened) cube operators at the corners. The product of X operators
over the links comprising the straight open blue string creates excitations at its endpoints
(black dots); (b) Motion of dipoles of vertex and cube excitations in a plane is achieved by
applying X on the blue links and Z on the red links respectively.
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2.2 Periodic boundary conditions 2 BOUNDARY CONDITIONS

(a) (b)

Figure 6: (a) Coupling stacks of toric code layers via a ZZ interaction between overlapping
links; (b) The form of Ac which comes at sixth order in perturbation theory.

x

zy

α β

Figure 7: The finite depth local unitary to remove an xy toric code leaf (the α plane highlighted
in blue) from an X-cube model. The arrows denote CNOT gates going from the control qubit
to the target qubit. We should apply this process everywhere on the α plane.

2.2 Periodic boundary conditions

In this section, we illustrate the minimal structure method to calculate the ground state
degeneracy of the X-cube model on the 3-torus. This method will be applied to lattice
structures with boundaries and dislocation defects in later sections. The GSD of the X-cube
model on a lattice with a given foliation structure is calculated by exfoliating leaves until we
reach the minimal structure of the foliation. The minimal structure is significantly simpler
than the original model and usually has a nice interpretation as a small number of toric
code leaves coupled together. Since unitary circuits preserve the eigenvalues, we can combine
the GSD of the exfoliated leaves and the minimal structure to find the GSD of the X-cube
model. It is important to note that to reach this minimal structure we generally need to apply
local unitary circuits with depth that scales as linear system size. So the minimal structure
and decoupled toric codes are not in the same phase and do not have the same long range
entanglement as the model we started with.

Let us consider the X-cube model on a 3-torus. As shown in Ref. [1], a local unitary circuit
as defined in Fig. 7 can be used to remove toric code leaves from a large X-cube model until
we reach a system size of 2× 2× 2. After this, we have shown the process explicitly to reach
the 1× 1× 1 minimal structure of the X-cube model on a 3-torus in Fig. 8. We observe that
the 1 × 1 × 1 X-cube model has no nontrivial stabilizer terms and hence has log2 GSD = 3.

7



2.3 Open boundary conditions 2 BOUNDARY CONDITIONS

Using the fact that each exfoliated toric code has a GSD of 4, we can conclude that

log2 GSD = 2Lx + 2Ly + 2Lz − 3 (5)

for an X-cube model on a Lx × Ly × Lz cubic lattice with periodic boundaries.
The GSD of the minimal structure can be interpreted using the coupled layer picture. We

see that, at each intermediate step of the exfoliation procedure, the model retains a coupled
layer structure, but with fewer leaves. At the minimal structure with system size 1×1×1, we
can interpret the model as composed of three perpendicular toric code leaves coupled along
their intersection lines. These toric codes have two independent Wilson loops each, but now
they do not commute with the ZZ coupling term along the three axes in the Hamiltonian. To
make them commute, the two Wilson loops along each intersection line bind together, which
reduces the number of independent Wilson loops to three, hence the −3 in the log2 GSD.1

2.3 Open boundary conditions

Now let us consider the X-cube model on a cubic lattice with open boundary conditions.

1It is also possible to understand the minimal structure in terms of the defect network construction of the
X-cube model. [31, 32]

Figure 8: The unitary transformation to reach the minimal structure of the X-cube model on
T 3. The arrows denote CNOT gates going from the control qubit to the target qubit, and one
can verify that all the CNOT gates in each picture commute. Note that all the X-cube models
and exfoliated toric codes at each step have periodic boundaries, so some of the CNOT arrows
which seemingly do not point to any link actually point to the link on the other side of the
torus.
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2.3 Open boundary conditions 2 BOUNDARY CONDITIONS

2.3.1 Smooth and rough boundary conditions

In this work, we consider the two simplest kinds of open boundary for the X-cube model,
which can be characterised by the type of quasi-particles condensed at the boundary [33].
Analogous to the 2D toric code [25], these boundaries are called smooth and rough, where a
smooth boundary condenses fracton dipoles and a rough boundary condenses the lineon and
hence lineon dipoles. The fracton dipole corresponds to the charge excitation in the toric code
foliation leaves while the lineon dipole corresponds to the flux excitation in the leaves. They
are both planons and the smooth and rough boundary conditions have a straight forward
correspondence with the smooth and rough boundary conditions in the toric code leaves.2

Near a smooth boundary in the xz or yz plane, the vertex terms Bxz
v and Byz

v only have
three links in them (as shown in Fig. 9). Analogously, near a rough boundary, the cube terms
only have eight links (instead of 12). The number of links in the term decreases even further
when we reach an edge (corner) connecting two (three) perpendicular boundaries. It can be
checked that a fracton dipole can disappear if it is brought close to a smooth boundary while
a lineon or lineon dipole can disappear if it is brought close to a rough boundary.

2.3.2 Foliation structure

We will focus on systems with periodic boundaries along one direction (which we will choose
to be z), and open boundaries along x and y. From now on, unless specified otherwise, an
X-cube model with smooth boundaries refers to a system with smooth boundaries along x
and y and periodic boundaries along z, and similarly for rough boundaries. We will show that
this has a similar foliation structure as discussed earlier, but the toric code leaves now have
open boundaries. Because of this, the ground state degeneracy (GSD) of an X-cube model
with boundaries will be very different from an X-cube model on a 3-torus. Since our system
has similar open boundaries (smooth or rough) along x and y, the GSD of the exfoliated 2D

2Other boundary conditions of the X-cube model exist where different composite excitations are condensed
at the boundary. Ref. [33] studies four kinds of gapped X-cube boundaries.

(a) Smooth boundaries. Product of Z over
the different sets of colored links give the
corresponding vertex terms on the boundary.

(b) Rough boundary along two axes and smooth
along the third. The product of X over the sets
of colored links give the respective cube terms on
the boundary.

Figure 9: Geometry of smooth and rough boundaries in the X-cube model.
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2.3 Open boundary conditions 2 BOUNDARY CONDITIONS

x

zy

α β

Figure 10: The finite depth local unitary to remove an xy toric code leaf (α) from an X-cube
model near a rough boundary along the xz plane.
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Figure 11: Adjoint action of the circuit on stabilizers of the two systems converts the plaquette
term at the rough boundary of the toric code to the cube term in the X-cube model and vice
versa. As in Fig. 10, bold (blue) lines correspond to edges of the new leaf.

toric codes will be given by

log2 GSD =


1 yz plane

1 zx plane

0 xy plane

(6)

The first two cases correspond to a 2D toric code with periodic boundary condition along one
direction and open boundaries along the other, with the same boundary type (smooth/rough)
on both ends. This system has a two-fold ground state degeneracy. The last leaf is a toric
code on an open disc with the same boundary all-around which is non-degenerate. Because
of the foliation structure, we see that for an X-cube model on this geometry

log2 GSD = Lx + Ly + O(1) (7)

We can exfoliate toric code leaves from these systems using a finite depth local unitary
similar to Fig. 7. The process is almost identical and differs from the standard process only

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z
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ZZ

Z

Z

ZZ

Z

Z

Z

Z

ZZ

Z

ZZ ZZ ZZ

Z

Figure 12: Adjoint action of the circuit on the stabilizers of the two systems in the case of a
smooth boundary. Bold (blue) lines correspond to edges of the new leaf. The plaquette/cube
terms transform exactly like the case without boundaries.

10



2.3 Open boundary conditions 2 BOUNDARY CONDITIONS

Figure 13: Using local unitaries to reach the minimal structure of the X-cube model with
smooth boundaries along x, y and periodic boundaries along z. The last local unitary (just
the single CNOT gate) commutes with the 2× 1× 1 X-cube Hamiltonian and doesn’t change
the ground space, but we are including it to show the straightforward pattern with which one
can exfoliate (even small) leaves.

near a rough boundary, which is shown in Fig. 10. The transformation of the stabilizer
terms near the rough (smooth) boundary under the action of this unitary is shown in Fig. 11
(Fig. 12).

2.3.3 Minimal structure: smooth boundaries

Just like for the 3-torus, one can imagine performing this exfoliation process until we reach
the minimal remaining structure. In Sec. 2.3.2, we discussed how to remove a leaf of toric code
from an X-cube model with boundaries. We can apply that process to reduce an Lx×Ly×Lz
X-cube model to a 2 × 2 × 2 X-cube model, along with Lx − 2 yz-plane (each with GSD 2),
Ly−2 xz-plane (each with GSD 2), and Lz−2 xy-plane (with no GSD) toric code leaves. For
smooth outer boundaries, the finite depth unitary transformation in Fig. 13 further decouples
this into three additional tiny toric code leaves (with total GSD 4) and a 1 × 1 × 1 X-cube
model. Thus, the minimal structure is a 1 × 1 × 1 X-cube model, which has just one qubit
and no nontrivial stabilizer elements (i.e. its Hamiltonian is H = 0). Therefore, the GSD of
the minimal system is 2 and it follows that for the original Lx × Ly × Lz X-cube model on
these boundary conditions:

log2 GSD = Lx + Ly − 1 (8)

We can interpret the GSD by looking at the coupled layer construction of the minimal
structure. The minimal structure can be interpreted as three transversely intersecting toric
codes (with appropriate boundaries) strongly coupled together via a ZZ type interaction for
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3 SMOOTH SCREW DISLOCATION

overlapping links. In the case of smooth boundaries, we see that the xy leaf has no logical
operator while the other two leaves consist of a single (pair of) logical operator, represented
by the Wilson loop that winds the e particle around the periodic boundaries. But, because
of this strong coupling, these Wilson loops individually are not logical operators anymore,
only the product of the Wilson lines from the two toric codes overlapped on each other is.
Therefore there is only one logical qubit in the ground space. This is what gives rise to the
‘−1’ in Eq. (8).

2.3.4 Minimal structure: rough boundaries

We can do a similar transformation to the X-cube model with rough boundaries to reach its
minimal structure, which is the 1 × 1 × 1 X-cube model with rough boundaries (Fig. 14).
Note that we have periodic boundaries along z. This system has 5 qubits in the Hilbert
space with a ground state degeneracy of 22. This ground state degeneracy can be arrived
at using the logical operators of the coupled toric code layers. In this case, it is easier to
look at the ’t Hooft loops of the underlying toric codes. We see that the xz (blue) and the
yx (green) planes have a ’t Hooft loop going around the periodic boundaries which forms a
logical operator. This still commutes with the effective Hamiltonian Eq. (4) and they generate
all the independent vertex logical operators for the X-cube model on the minimal structure.
Since this Lx = Ly = Lz = 1 minimal structure has log2 GSD = 2, we can use the foliation
structure to claim that

log2 GSD = Lx + Ly (9)

One has to be careful while counting logical operators starting from the underlying toric
codes. In particular, if we try to count the GSD of the X-cube model with periodic boundaries
using the ’t Hooft loops of the toric codes, one may naively conclude that all six (two for each
plane) loops commute with the effective Hamiltonian and hence are logical operators. But
one should note that, because of the ZZ coupling term, all these ’t Hooft loops are not
independent. In fact, it can be verified that they pair up into equivalent logical operators,
which reduces the log2 GSD by 3.

Figure 14: The minimal structure of an X-cube model with rough boundaries.
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3 SMOOTH SCREW DISLOCATION

Figure 15: A cross-section of a cubic lattice with a smooth screw dislocation. The dotted red
line denotes the defect line, and it cuts through the plaquettes on each plane.

3 Smooth Screw Dislocation

In this section, we study the ground state properties of an X-cube model defined on a lattice
with a smooth screw dislocation, shown in Fig. 15. We choose the dislocation line to be along
the z axis and the lattice has periodic boundary condition along z and open boundaries along
x and y. The Hilbert space consists of a qubit on each link, and the Hamiltonian is the same
as the usual X-cube model except that there are no cube terms along the dislocation line.
The vertex terms are well-defined because every vertex on this lattice is locally homeomorphic
to a vertex in a simple cubic lattice without the defect. We call this a smooth dislocation
because it condenses fracton dipoles (which are xz- and yz-planons), like a smooth boundary.
No lineons are condensed at the defect.

3.1 Foliation structure

This system has a foliation structure consisting of one xy-leaf, which spirals like a circular
stairway, and Lx yz-leaves and Ly zx-leaves, which form perpendicular stacks along their
respective directions. We will use the entanglement RG procedure from the previous section
to remove the yz- and zx-leaves to reach the minimal structure of this model. One can see
that it is straightforward to remove these leaves away from the screw dislocation—it is the
same process as discussed in the previous section. We show in Fig. 16 that the same can
be said for leaves adjacent to the dislocation line. Therefore, we can use this RG process
to obtain an X-cube model of size (2, 2, Lz) with a screw dislocation, which is the minimal
structure.

3.2 Increased mobility of quasiparticles

An important consequence of adding a screw dislocation is that a subdimensional excitation
in a fracton model can have increased mobility due to the dislocation. First, recall that
fracton and lineon dipoles are planons, and that the screw dislocation connects all the xy
planes of the original foliation (Fig. 1). This means that we can wind an xy planon around
the defect to effectively displace it by one step in the z-direction. We call this process the
winding of a planon around the dislocation. There is an important consequence for this.
We note that xy planons have fractons/lineons separated by one step in the z-direction.
If we look at the operator that winds this around the dislocation once, we see that this
operator effectively creates two fractons/lineons separated by two steps in the z-direction.

13



3.3 Smooth outer boundaries 3 SMOOTH SCREW DISLOCATION

Figure 16: The entanglement RG process to remove a toric code leaf adjacent to a screw
dislocation. The arrows denote CNOT gates as in Fig. 10. (Colored for clarity.)

This means that this winding allows fractons and x/y lineons to hop in the z-direction by an
even number of steps. We call this process tunneling of fractons/lineons along the dislocation
line because although some of the intermediate states only involve a single fracton or lineon
excitation, these processes involve other intermediate states with higher energy – similar to
the tunneling of a quantum particle through an energy barrier. Because of this new mobility,
these excitations can now go around the periodic boundaries, which can give us new logical
operators for the system.

3.3 Smooth outer boundaries

The minimal structure looks like Fig. 17a. The system has no cube terms. The effective
Hamiltonian for the ground state include vertex terms of the form Z1Z2, Z1Z3Z4 and Z2Z3Z4,
summed over all vertices (refer Fig. 17a). The ground state degeneracy and the corresponding
logical operators can again be figured out from the coupled layer construction. The minimal
structure can be thought of as the result of coupling two xz, two yz and one xy toric code
layers. The xz and yz layers have smooth open boundary in one direction and are periodic
in the other (z direction). The xy layer on the other hand spirals around the defect and has
smooth boundary condition both at the defect and on the outer boundary. The Wilson loops

(a) Smooth outer boundaries (b) Rough outer boundaries

Figure 17: The minimal structure of a smooth screw dislocation.
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3.3 Smooth outer boundaries 3 SMOOTH SCREW DISLOCATION

(a) Winding logical operator (b) Tunneling logical operator (even Lz)

Figure 18: The extra logical operators for the X-cube model with a smooth screw dislocation
and smooth outer boundaries. The logical operators are products of X over the blue links.
The arrow in (b) shows the tunneling path of a x lineon that creates the logical operator;
intermediate states involve more than one lineon.

of the intersecting xz and yz layers combine into the logical operator of the fracton model
and they correspond to each of the four vertical blue lines in Fig. 18a. The Wilson loop in the
xy layer binds with segments of Wilson lines in the xz and yz layers as it spirals around the
defect. The Wilson line segments do not act in the ground space of the xz, yz layers but when
connected by vertical edges as shown in Fig. 18b, they do. This is of course expected because
the Wilson lines when bound together become lineon operators and cannot change direction.
If we want it to wind around the defect, there has to be tunneling of z direction lineon, which
is realized by the vertical edges in the logical operator of Fig. 18b. Such tunneling is only
consistent when Lz is even. The ground state degeneracy of the minimal structure is hence
given by

log2 GSD =

{
4 for odd Lz
5 for even Lz

(10)

This along with the foliation structure tells us that

log2 GSD =

{
Lx + Ly for odd Lz
Lx + Ly + 1 for even Lz

(11)

Comparing this to the standard X-cube model (without a dislocation), we see that there
are 1 or 2 new logical operators, depending on Lz. These logical operators are shown in Fig. 18,
and they can be interpreted as moving the lineon dipole around the periodic boundaries by
winding, and moving lineons around the periodic boundaries by tunneling (only for even Lz)
respectively. The winding operator (Fig. 18a) can be seen by referring to Fig. 5b and noting
that the operator that winds a lineon dipole around the defect would contain X on all z-links,
and X applied twice (because two lineons have to pass) on every x- and y-link, which squares
to give the identity operator on those links. The tunnelling operator (Fig. 18b) is just the
operator that winds a lineon dipole by one step, repeated at every even Lz. This gives X
applied on every x- and y-link, and every alternate z-link. An interesting subtlety is that
this exists only for even Lz, as we cannot define “every alternate z-link” for odd Lz. This is
expected, as tunneling hops lineons by two steps, so we need Lz to be even for this process
to create a new logical operator. This explains the extra degeneracy we observe for even Lz.

The cube logical operators that anticommute with these new logical operators are xy-plane
rectangular membrane operators with a corner at the screw dislocation and the other corners
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3.4 Rough outer boundaries 4 OTHER TYPES OF DEFECTS

on the outer boundary. One can verify that, modulo the stabilizer group and the usual cube
logical operators (that takes x- and y- cube dipoles to opposite smooth boundaries), there are
one and two such independent operators for odd and even Lz, respectively.

3.4 Rough outer boundaries

In the case of rough outer boundaries, the minimal structure looks like Fig. 17b. By counting
the logical operators, we get

log2 GSD = 4 (12)

for the minimal structure. Like in the previous section, one can construct these logical
operators starting from the logical operators of the underlying toric codes. Using the foliation
structure, we conclude that

log2 GSD = Lx + Ly (13)

for any Lx, Ly, Lz. We observe that this has the same GSD as the corresponding X-cube
model without the dislocation, and one can verify that the operators that wind planons and
tunnel fractons/lineons around the periodic boundaries are all trivial (modulo the stabilizer
group). Therefore, there are no extra logical qubits in the ground space.

4 Other types of defects

In this section, we consider more general types of dislocation defects and how the ground space
of the X-cube model is affected. Our motivation is to obtain a more complete understand of
other simple line defects in the X-cube model. We use the prefixes ‘rough’ and ‘smooth’ for
defects that condense composites of lineon and fracton excitations, respectively.

4.1 Edge dislocation

An edge dislocation in the model (see Fig. 20) can be roughly thought of as an X-cube model
with a half-plane of toric code added to the foliation structure. When the half plane is added,
one boundary of the toric code lies in the bulk of the X-cube model. Depending on the nature

(a) Smooth edge dislocation (b) Rough edge dislocation

Figure 19: The Hamiltonian terms for the X-cube model with an edge dislocation. Ac, B
z
v ,

and Bx
v terms near the defect are highlighted in blue, red and brown respectively. The rough

edge dislocation only has one vertex term on vertices on the defect line.
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(a) Smooth edge dislocation (b) Rough edge dislocation

Figure 20: The lattice with edge dislocations as a half-plane added to a simple cubic lattice.
The extra half-plane is highlighted.

of the excitations condensed at the defect line, we classify edge dislocations into smooth and
rough.

The procedure to add a smooth edge dislocation to an X-cube model is straightforward:
near the defect line one can apply the same local unitary that we used to add a toric code leaf
to a system with smooth boundaries in Sec. 2.3.2. This means that to find the log2 GSD of
the X-cube model on this lattice, we just have to add the log2 GSD of the toric code half-plane
to that of the X-cube model on the standard lattice that we started with.

Adding a rough edge dislocation is slightly more complicated. Naively, one would expect
that analogous to the smooth case, a rough edge can be constructed by inserting a half-plane
of toric code with a rough boundary; but this is not the case. At the rough edge of a toric
code, we know that the vertex excitation, also known as the flux excitation, of the toric
code condenses. Under the local circuit used to sew the half-plane into the foliation, the
flux excitation transforms into a lineon dipole (which is a planon, so the mobility matches
that of a flux in 2D). Therefore, if the X-cube model with a rough dislocation was connected
to an X-cube model plus half-plane of toric code via a finite-depth local circuit, the defect
must condense lineon dipoles. But the system we have defined condenses a pair of x and y
lineons at the defect line, which is not a lineon dipole. So to construct this, we start from the
smooth edge dislocation and use a (non-local) unitary transformation to remove the qubits
on the extra z-link as product/free states. It turns out that, effectively, the GSD added to
the system because of this process is equal to the GSD of a toric code half-plane with rough
boundaries near the defect (and outer boundaries which match the outer boundary of the
X-cube model). So, although the rough edge dislocation can not be described using a toric
code leaf that is sewn in using a local unitary, the resulting GSD is the same. Therefore

log2 GSD =

{
log2 GSD◦ + 1 if the defect and boundary types match
log2 GSD◦ if they do not match

(14)

where the half-plane of toric code is not counted in the system size and GSD◦ denotes the
GSD of the X-cube model we started with. One can add more half-leaves to get an edge
dislocation with a larger Burgers vector, and this can be done by adding toric code half-leaves
(with smooth/rough boundary near the dislocation line) using a finite-depth local unitary,
and the extra unitary transformation in the case of rough edge dislocations is not required.
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4.2 Holes 4 OTHER TYPES OF DEFECTS

(a) 2× 1 smooth hole (b) 2× 2 smooth hole

(c) 1× 1 rough hole (d) 2× 1 rough hole

Figure 21: The X-cube model with holes. The shapes of the nontrivial cube (blue) and vertex
(red and brown) terms are highlighted. We note that the Hamiltonian terms at edge of the
holes resemble the terms at the smooth and rough outer boundaries. For each type of hole,
there is also a cube or vertex term that surrounds the entire hole. Note that in (d), there is
just a single disconnected vertex term that is the product of six operators on the six red links.

4.2 Holes

We define a hole as the line-like defect where a line of links (qubits) are missing from the
lattice. These defects can be constructed by adding pairs of edge dislocations. The size of
a smooth/rough hole is specified by the number of plaquettes or vertices it covers. We have
shown the structures of some basic holes in Fig. 21. The 1× 1 smooth hole is trivial; it is just
the standard simple cubic lattice.

There can be two kinds of holes respecting translation symmetry along z, constructed
from adding pairs of smooth and rough edge dislocations. These are smooth and rough holes
respectively, because the former can condense fracton dipoles, while the latter can condense
composites of lineon excitations. We can imagine having larger holes by adding more edge
dislocations.

The construction of edge dislocations by adding half-planes presents us with an easy way
to calculate the GSD of a system with holes (Fig. 22). The log2 GSD of a system with a hole
is equal to the sum of the log2 GSDs of its parts, which are a standard X-cube model and the
toric code half-planes. It can be verified that for an m× n smooth (rough) hole, we need to
add 2m + 2n − 4 half-planes of toric code with appropriate boundaries to a 1 × 1 hole. The
GSD of some holes have been tabulated in Table 1. Note that in the table, the planes formed
by the toric code half-leaves are not counted in the system size. So, in the table, (Lx, Ly) is
the system size of the pure X-cube model with boundaries that we added half-planes to. Just
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like the case of the edge dislocation, the additional half-leaves added to make larger rough
holes need to be sewn in using a finite-depth local unitary.

4.3 Rough screw dislocation

A rough screw dislocation is given by a lattice whose dislocation line passes through vertices,
which can be constructed by starting with an X-cube model with a 1×1 rough hole and creating
a screw dislocation defect about the hole with Burgers vector along z. The Hamiltonian is
given by smoothly transforming the Hamiltonian terms for the X-cube model on a lattice with
a 1× 1 rough hole, while removing the vertex term surrounding the dislocation line. The way
the cube term adjacent to the defect line gets smoothly deformed is shown in Fig. 23. This
model condenses x and y lineons at the dislocation line, hence named rough. The foliation
structure is similar to the smooth case except that the xy-leaf has rough boundaries near the
dislocation and the xz and yz leaves passing through the dislocation line are now cut in half.
But we can use the same treatment as the previous section to obtain the minimal structure
for this model, given in Fig. 24.

Like before, we count the logical operators in the minimal structure. The minimal structure
with rough outer boundaries has a single type of cube term – X1X2X3X4 (Fig. 24a) – and
the Hamiltonian is the sum of all such cube terms. There are no vertex terms in this minimal
structure. We observe that if Lz is even, there are 5 independent pairs of logical operators,
whereas there are only 4 for odd Lz. Therefore, the GSD of the minimal structure is

log2 GSD =

{
4 for odd Lz
5 for even Lz

(15)

Therefore, the GSD with a general system size is given by

log2 GSD =

{
Lx + Ly + 2 for odd Lz
Lx + Ly + 3 for even Lz

(16)

Comparing this to the GSD of a system with rough boundaries and a 1× 1 hole (without
a screw dislocation), which has

log2 GSD = Lx + Ly + 1 (17)

(a) 2× 1 smooth hole (b) 1× 1 rough hole

Figure 22: Constructing holes by inserting opposing edge-dislocations (toric code half-leaves).
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Figure 23: Unlike the smooth screw dislocation, the cube terms in a rough screw dislocation
are not all locally homeomorphic to a simple cubic cell. This figure shows the structure of
the cube term adjacent to the dislocation (denoted by the red dotted line). All the vertex
terms are locally homeomorphic to a vertex in a simple cubic lattice, so we use the natural
definition of Bµ

v in that case. There are no vertex terms on the dislocation line.

we have either 1 or 2 extra logical qubits in the ground space. Here, this corresponds to the
logical operators that tunnels the fracton (only for even Lz) and winds the fracton dipole
around the dislocation line and across the periodic boundaries, which arise because of the
increased mobility due to the dislocation, which has been discussed in Sec. 3.2.

We can give a similar argument for the case of the smooth outer boundary. In the case,
the minimal structure (Fig. 24b) has the cube terms adjacent to the dislocation line (now
with 11 links) as well as vertex terms on the smooth outer boundary. The GSD is 24 for
the minimal structure. We do not have winding/tunneling logical operators because of the
mismatched boundaries. For the entire system, the GSD is

log2 GSD = Lx + Ly − 2 (18)

4.4 Larger screw dislocations

In Sec. 4.2, we looked at holes. The smooth screw dislocation (discussed in Sec. 3) is a simple
cubic lattice (equivalent to a system with a 1×1 smooth hole) with a screw dislocation around
the hole. The rough screw dislocation is a cubic lattice with a 1 × 1 rough hole containing
a screw dislocation. To generalize this idea to larger screw dislocations: we start from the

(a) Rough outer boundaries (b) Smooth outer boundaries. Links colored for
clarity.

Figure 24: The minimal structure of a rough screw dislocation. The dislocation line is colored
red.
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standard X-cube model, create a hole of the appropriate size and type, and add a screw
dislocation with Burgers vector along the defect line. When we add the screw dislocation, the
Hamiltonian term that surrounds the hole (see Fig. 21) becomes ill-defined and is therefore
removed from the Hamiltonian. The rest of the terms get smoothly deformed under the
addition of the dislocation, and their sum gives us the Hamiltonian for the X-cube model
with a screw dislocation.

The 2×1 smooth screw dislocation has the lattice shown in Fig. 25. The minimal structure
approach could be used to calculate the GSD, but it becomes cumbersome to count the logical
operators for the minimal structures of large dislocations. The 2×1 smooth screw dislocation
can be obtained from the 1×1 smooth screw dislocation by adding a pair of edge dislocations,
similar to how we obtained the 2× 1 smooth hole from the X-cube model (which can trivially
be thought of as having a 1 × 1 smooth hole). Similarly, we find that the X-cube model
with a 2 × 1 smooth screw dislocation can be obtained from the X-cube model with a 1 × 1
smooth screw dislocation and two toric code half-leaves via a local unitary. These toric code
half-leaves have smooth boundaries near the dislocation and matching boundaries near the
outer end, similar to Fig. 22a. This tells us that, for the X-cube model with a 2× 1 smooth
screw dislocation,

log2 GSD =

{
log2 GSD (X-cube1× 1 dislocation) + 2 if the defect and boundary types match
log2 GSD (X-cube1× 1 dislocation) if they do not match

(19)
We can repeat this process to obtain a screw dislocation of any size. The results for other

large screw dislocations have been tabulated in Table 1, and the process is schematically
shown in Fig. 26. Note that in the table, the planes formed by the toric code half-leaves are
not counted in the system size (Lx, Ly). These results are also consistent with Fig. 2.

4.5 Higher-order screw dislocations

We define the order of a screw dislocation to be the magnitude of the Burgers vector in terms
of the lattice spacing. All the screw dislocations discussed till now are order-1 dislocations.
We can imagine having a screw dislocation of order n, which just means if we go around the
dislocation once, we end up n steps above (along z) where we started from. In the foliation

Figure 25: A lattice with a 2 × 1 smooth screw dislocation. We see that the dislocation line
consists of a row of two adjacent plaquettes, and it is exactly the 2 × 1 smooth hole with a
screw dislocation.
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Figure 26: The scheme to create a large screw defect forms a commutative diagram. The
horizontal lines add the dislocation about the hole and the vertical lines add half-leaves. The
value on the arrows denote the change in log2 GSD during the process for matching defect
and outer boundaries, with the additional (+1) for even Lz.

picture, this can be thought of naturally as a stack of n z-leaves winding along z like a simple
dislocation, which gives us a jump of n for every winding.

If Lz is a multiple of n, then we have n independent leaves. We can imagine doing a
finite-depth local unitary to take a leaf out, that maps

n −→ n− 1 Lz −→ Lz −
Lz
n

The process to exfoliate leaves is similar to what we did in Sec. 2.3.2, where we analysed the
X-cube model with open boundaries. Upon doing the RG process to exfoliate one layer, we
get a spiralling toric code leaf which is topologically equivalent to a toric code on an annulus
(Fig. 1). We know this has the following degeneracy:

log2 GSD =

{
1 if the defect and boundary types match
0 if they do not match

(20)

By exfoliating layers until we are left with an order n = 1 screw dislocation, we can split the
GSD of the entire system into a part from the toric code layers (Eq. (20)) and a part from
the remaining system with an order n = 1 screw dislocation.

If Lz is not a multiple of n, then the mth xy-layer is connected to layer number
m + Lz (mod n) as we go across the periodic boundary in the z direction. Thus, the
different layers start to connect with each other and we only have GCD(n,Lz) independent
(disconnected) leaves. We can perform the same exfoliation process to obtain a spiralling
toric code, but this time the toric code will have a screw dislocation of order n

GCD(n,Lz)
with

the same GSD as in Eq. (20). After exfoliating GCD(n,Lz) − 1 leaves, we are left with an
X-cube model of height L′z = Lz

GCD(n,Lz)
and order n′ = n

GCD(n,Lz)
.

This is a system we have not encountered before, but the GSD of the minimal structure
is the same as that of the minimal structure of the simple screw dislocation, and changes
when L′z is odd/even. This can be verified by going to the minimal structure and counting
the logical operators. The logical operators look the same in this case and the simple (n = 1)
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Smooth boundaries Rough boundaries

No defect (simple smooth hole) Lx + Ly − 1 Lx + Ly
Simple smooth screw dislocation Lx + Ly (+1) Lx + Ly

Smooth edge defect Lx + Ly Lx + Ly

m× n smooth hole
Lx + Ly − 5

+2m+ 2n
Lx + Ly

m× n smooth screw dislocation
Lx + Ly − 4

+2m+ 2n (+1)
Lx + Ly

Order-n smooth screw dislocation
Lx + Ly + GCD(Lz, n)

− 1 (+1)L′
z

Lx + Ly

Rough edge defect Lx + Ly − 1 Lx + Ly + 1

Simple rough hole Lx + Ly − 1 Lx + Ly + 2
Simple rough screw dislocation Lx + Ly − 1 Lx + Ly + 3 (+1)

m× n rough hole Lx + Ly − 1
Lx + Ly − 2

+2m+ 2n

m× n rough screw dislocation Lx + Ly − 1
Lx + Ly − 1

+2m+ 2n (+1)

Order-n rough screw dislocation Lx + Ly − 1
Lx + Ly + 2

+GCD(Lz, n) (+1)L′
z

Table 1: log2 GSD of different geometries. If there is a ‘(+1)’ suffixed to the result, it means
that the given result is for odd Lz, while for even Lz there is one more logical qubit because
of the spiralling logical operator. If there is a subscript L′z to the suffix, it means that we
should add the +1 to the log2 GSD if L′z = Lz

GCD(Lz ,n)
is even.

dislocation. Therefore, we find:

log2 GSD =


log2 GSD(X-cube with simple dislocation, L′z) + GCD(n,Lz)− 1

if the defect and boundary types match

log2 GSD(X-cube with simple dislocation, L′z)
if they do not match

(21)

where GSD(X-cube with simple dislocation, L′z) denotes the GSD of the X-cube model with
height L′z and a simple screw dislocation of the same type (smooth or rough) as the the
order-n screw dislocation.

We note that, for higher-order screw dislocations, the possibilities for gapped defects go
beyond rough and smooth. We expect there to exist additional ‘twisted’ dislocations in which
composites of electric and magnetic excitations condense along the defect line.

5 Summary

In this paper, we study the effect of screw dislocations in the X-cube model and show how
they reveal nontrivial features in the underlying fracton order. In particular, we find that
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inserting a screw dislocation can result in a change in ground state degeneracy by a constant
factor. Table 1 summarizes the different cases.

The degeneracy change can result from two effects: (1) the winding of planon quasi-
particles around the screw dislocation; and (2) the tunneling of fractonic quasi-particles along
the screw dislocation (where they gain mobility). These effects change the degeneracy only
when the boundary condition at the defect matches with the outside boundary, and the latter
effect has an even/odd dependence on the length of the defect line. We expect similar physics
to apply more generally to other foliated fracton models.

Although we considered many kinds of line defects, it would be very interesting to obtain
a more general and systematic understanding of these defects in fracton models.

It is also interesting to note that if we were to consider a screw defect with a large
radius R � 1, then the logical operator in Fig. 18b would become a surface operator with
O(RLz) support. Therefore, it should have a more robust quantum memory than the logical
operators of the X-cube model without screw defects. However, it is conjugate to a string
logical operator, which makes this pair of string and membrane logical operators similar (in
dimensionality) to those of 3D toric code.

Our calculation makes use of both the foliation structure of the X-cube model and its
coupled layer structure. In particular, we decouple 2D toric code foliation layers from the
X-cube model until a minimal structure is reached, which can be interpreted as the result
of coupling a small number of foliation layers together along the intersection line. The GSD
of the foliation layers and the minimal structure can each be easily determined. The total
GSD is then obtained as their product. More broadly, we know that some type I fracton
models have a coupled layer structure [28, 29, 34, 35], and some have a foliation structure.
To what extent these two are related to each other is an interesting open problem. Beyond
type I models, twisted boundary condition and translation defects can also lead to nontrivial
effects [36]. How to interpret these effects is an interesting open question.

Lattice defects, such as edge and screw dislocations, can be described on a Riemannian
manifold in terms of (quantized) curvature and torsion. In Ref. [37], it was also shown that
fractons in many gapless U(1) fracton models [38–41] can gain mobility in the presence of
certain kinds of spatial curvature, somewhat similar to the X-cube fractons near a smooth
screw dislocation. Certain kinds of curvature within fractons models has also been studied in
Ref. [42, 43], where it has also been found that curved lattices can result in X-cube fractons
gaining mobility [43] and disclination defects can have connections to hologrpahy [42]. Gapped
fracton models (such as the X-cube model) can be defined on a foliated manifold without
specifying a metric (for which there is no Riemannian structure) [32,44,45]. In the continuum,
a foliation structure can be described in terms of a 1-form foliation field eµ [44]. It is plausible
that edge dislocations are present wherever eµ has nonzero curl (i.e. ∇ × e 6= 0 or de 6= 0).
However, the study of these effects in the continuum remains as a future direction.
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