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We study the low-temperature critical behavior of the one-dimensional Hubbard model near half filling caused by

enhanced antiferromagnetic fluctuations. We use a mean-field-type approximation with a two-particle self-consistency

renormalizing the bare interaction. It allows us to control a transition from high to low temperatures as well as from

weak to strong-coupling. We show that there is a crossover temperature T0 = t exp{−1/Uρ(0)} for arbitrary interaction

U > 0 and the bare density of states at the Fermi energy ρ(0) > 0. The solution at lower temperatures goes over to

strong coupling and approaches a quantum critical point with the diverging staggered susceptibility and a gap in the

excitation spectrum at zero temperature.

I. INTRODUCTION

The exactly solvable quantum many-body models set lim-

iting situations for testing non-perturbative approximate so-

lutions in the strong-coupling regime. There are three

fundamental models with an exact low-temperature solu-

tion, the Kondo model,1 the single-impurity Anderson model

(SIAM),2 and the one-dimensional Hubbard model.3 The so-

lutions of these models are baed on the quantum-mechanical

Bethe Ansatz.4 This algebraic method gives the rigorous ana-

lytic expressions for the ground-state properties. The behavior

of the excited states at non-zero temperatures can then be de-

termined from the Bethe Ansatz only approximately.5 In par-

ticular, the dynamics of the elementary excitations can be ob-

tained only with additional approximations.

The most direct and versatile method for studying the dy-

namics of the many-body quantum systems are the Green

functions and Feynman diagrams. Renormalizations must be

introduced in the diagrammatic representations of physical

processes so that to allow for the transition from the weak-

coupling to the strong-coupling regime. The standard pertur-

bation expansions use a small parameter but their renormal-

izations pick up only selected classes of contributions that can

no longer be controlled by the expansion parameter. They may

be, however, justified in specific limits of the studied models.

The best way to prove reliability of specific self-consistent

approximations is to compare them with the exact solution,

when available.

The SIAM in the strong-coupling Kondo regime is often

used to check the reliability of approximations on the local

quantum dynamics which led to the introduction of the dy-

namical mean-field theory (DMFT).6 The quantum local mod-

els contain the full quantum dynamics but miss the effects of

spatial fluctuations. The latter are important for the formation

of the long-range order in low-dimensional models where one

has to obey the Mermin-Wagner theorem prohibiting contin-

uous transitions to ordered states at non-zero temperatures.7

Since this theorem does not restrict the long-range order at

zero temperature, reliable approximations in low dimensions

a)Electronic mail: janis@fzu.cz

must be able to distinguish between non-zero and zero temper-

atures. Most of the approximate approaches to strong-electron

correlations fail to do so and either allow or prohibit transi-

tions to ordered phases uniformly for all temperatures.

The problem with the description of the low-energy excita-

tions in the one-dimensional Hubbard model is that one cannot

start with the weak-coupling Fermi liquid. The spectrum of

the excitations in the half-filled band displays a charge gap and

the low-lying excitations do not have the fermionic character.

Instead, a Luttinger liquid, where spin and charge excitations

are separated, uses bosonic excitations, spinons and holons.8

The critical behavior of the spin and charge correlation func-

tions at zero temperature were determined.9,10 Using the

thermodynamic Bethe Ansatz the homogeneous thermody-

namic properties of the one-dimensional Hubbard model were

also numerically determined.11–14 Although antiferromag-

netic short-range order near half filling was discussed,15,16

the low-temperature asymptotics of the staggered suscepti-

bility measuring the range of antiferromagnetic correlations

has not been determined yet. In particular, the way the Fermi

liquid breaks down in the low-temperature limit in the half-

filled band without being antiferromagnetically ordered has

not been addressed within the many-body perturbation theory.

We formulate the approximation with fermionic elemen-

tary excitations for non-zero temperatures where the weak-

coupling theory and/or high-temperature expansion can be

applied.14,15 To reach zero temperature one has, however,

to use self-consistent non-perturbative approximations where

the solution at half filling goes over to an insulator at ar-

bitrary positive interaction. We developed a general mean-

field-like theory with two-particle self-consistency that sup-

presses spurious transitions of the weak-coupling mean-field

theory.17–19 It proved its reliability in reproducing qualita-

tively correctly the zero-temperature Kondo limit19,20 as well

as a crossover from high to low-temperature regimes of the

SIAM.21 Most recently we disclosed the existence of the

Curie-Weiss law in the magnetic susceptibility of the SIAM

on an interval of intermediate temperatures for sufficiently

strong electron correlations.22 The general approach is also

applicable to extended lattice systems.19 The one-dimensional

Hubbard model offers now a possibility to check reliability

of this approximation for extended systems. The approxima-

tion primarily aims at two-particle correlation functions and is

generally justified in the critical region of a response function.

http://arxiv.org/abs/2012.07382v1
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Here we use it to determine the low-temperature limit of the

staggered susceptibility in the charge-symmetric state of the

one-dimensional Hubbard model. The antiferromagnetic fluc-

tuations or spin-flip processes are decisive for the dynamics

of the elementary excitations and opening of the charge gap in

the spectral function.

II. CRITICAL ANTIFERROMAGNETIC FLUCTUATIONS

The Hamiltonian of the Hubbard model on a linear chain

with N lattice sites with periodic boundary conditions is

HI = N ∑
σ

∫ π/l0

−π/l0

l0dk

2π
ε(k)c†

kσ ckσ +U ∑
i

c
†
↑i

c↑ic
†
↓i

c↓i , (1)

with the dispersion relation

ε(k) =−2t cos(l0k) (2)

and l0 being the interatomic distance.

The ground state of this model was solved exactly.23 The

most important result for the half-filled band was the absence

of the Mott transition at nonzero interactions U. The ground

state is an insulator for any U > 0. It means that the weak-

coupling expansion is not applicable and the low-temperature

state becomes increasingly strongly coupled with decreasing

temperature. The gap in the excitation spectrum is not, how-

ever, caused by a long-range antiferromagnetic order. There is

hence a mechanism driving the system to the insulating state

without becoming antiferromagnetically ordered.

It is evident that the antiferromagnetic fluctuations with

dynamical spin-flip processes will have the most important

impact on the low-temperature behavior for half filling with

suppressed charge fluctuations. The general response of the

model on weak external magnetic excitations is the dynami-

cal susceptibility. If we assume that the bare interaction U is

renormalized, screened to an effective local and static interac-

tion Λ, the dynamical susceptibility generally is

χ(q,z) =− 2φ(q,z)

1+Λφ(q,z)
, (3)

where z is a complex frequency and φ is the electron-hole

bubble that can be represented in the Matsubara formalism

as a convolution of two propagators

φ(q, iνm) =
1

N
∑
k

1

β ∑
ωn

G(q+k, iωn+m)G(k, iωn) , (4)

where ωn = (2n+ 1)πT are fermionic and νm = 2mπT are

bosonic Matsubara frequencies at temperature T and β =
1/T . We set the Boltzmann constant kB = 1.

The full one-electron propagator is

G (k,z) =
1

z+ µ̄ − ε(k)−ΣSp(k,z)
(5)

with the effective chemical potential measuring the distance

from half filling µ̄ = µ +Un/2 and the spectral self-energy

ΣSp(k,z). The approximation is then determined by the de-

pendence of the effective interaction Λ and the self-energy

ΣSp(k,z) on the bare interaction U . We generally split the

approximation into the two-particle part determining the ho-

mogeneous vertex Λ and the one-particle part determining the

spectral self-energy ΣSp(k,z). We introduce a thermodynamic

propagator G(k, iωn) with only the static, Hartree self-energy

that we use in the two-particle part determining the relation

between the bare interaction and vertex Λ. This restriction

is chosen to derive analytic expressions for the two-particle

functions.

The static susceptibility at for z = 0 has a maximum

at a momentum q = Q determining the type of the low-

temperature ordering. It is the edge vector Q = π/l0 for

the one-dimensional half-filled Hubbard model and Q =
(π/l0,π/l0, . . .) in higher dimensions. We identified the mo-

menta with the wave vectors and used h̄ = 1. The electron-

hole bubble with the Hartree Green functions can be analyti-

cally represented after summing over the Matsubara frequen-

cies

φ(q,ω+) =
1

N
∑
k

f (ε(k)− µ̄)− f (ε(k+Q+q)− µ̄)

ω++ ε(k)− ε(k+Q+q)
, (6)

where f (x) = 1/(1 + eβ x) is the Fermi function. We ab-

breviated the limit of complex frequencies to the real axis

ω± = ω ± i0+.

Antiferromagnetic fluctuations are dominant at low temper-

atures around the half-filled band n = 1 with µ̄ = 0. They are

controlled by small transfer momenta of the two-particle bub-

ble around the edge vector Q. It is then sufficient to expand

the electron-hole bubble in small momenta around Q to de-

scribe the critical antiferromagnetic fluctuations,

φ(Q+q,ω+)
.
= φ(Q,ω+)+Dl2

0q2 . (7)

We expand the dispersion relation and use only the first two

terms

ε(k+Q+q)
.
= ε(k+Q)+ l0q ·∇ε(k+Q) (8)

to determine the spatial expansion parameter D > 0. We fur-

ther use the symmetries ε(k+Q) = −ε(k) and the same one

for the derivative ∇ε(k + Q) = −∇ε(k) for the edge vec-

tor Q = (π/l0,π/l0, . . .) to transform the momentum integrals

into energy integrals with the local density of states, that in

the one-dimensional model reads

ρ(ε) =
1

2π

θ
(

4t2 − ε2
)

√
4t2 − ε2

. (9)

Here θ (x) is the Heaviside step function. The homogeneous

part of the electron-hole bubble then is

φ(Q,ω+) = P

∫ ∞

−∞
dερ(ε)

f (ε − µ̄)− f (−ε − µ̄)

2ε +ω+

− iπ

2
ρ
(

−ω

2

)

)
[

f
(

−ω

2
− µ̄

)

− f
(ω

2
− µ̄

)]

. (10)
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and

D =

∫ 2t

0
dερ(ε)

4t2 − ε2

4ε

[

f (ε − µ̄)− f (−ε − µ̄)

2ε2

− f
′
(−ε − µ̄)

ε
− f

′′
(−ε − µ̄)

]

, (11)

with the prime denoting the derivative.

III. EFFECTIVE INTERACTION

The gist of our approach is to determine a screening of the

bare interaction due to multiple scatterings of electron pairs.

The renormalized interaction is derived from the two-channel

parquet equations24,25 reduced so that to stay in the critical

region of the response function during the transition from

weak to strong coupling.19 The critical behavior manifests it-

self as a singularity in the Bethe-Salpeter equation with multi-

ple electron-hole scatterings in the models with the repulsive

interaction.26 The bare interaction in this equation must be re-

placed by a renormalized one to avoid spurious transition to a

magnetically ordered state in strong coupling. It is achieved

by multiple scatterings of electron pairs. The corresponding

Bethe-Salpeter equation for the effective interaction Λ in this

scheme is19

[

1− Λ2

N
∑
q

1

β ∑
νm

φ(−q,−iνm)

×G(k+q, iωn+m)G(k′−q, iωn′−m)

1+Λφ(−q,−iνm)

]

Λ =U . (12)

This equation cannot hold for the static vertex Λ point-wise

for all fermionic momenta and frequencies, unless we turn the

vertex dynamical. A dynamical vertex would make the result-

ing approximation extremely complicated and would lead to

the loss of the analytic control of the critical behavior that

is the primary objective of our approximation. If we can-

not satisfy Eq. (12) fully we resort to an approximate solu-

tion in a mean sense. There are several ways to do that.

The critical behavior is not qualitatively changed by fluctu-

ations in the fermionic variables, since they are irrelevant in

the critical region of the pole in the response function. Differ-

ent ways of treating the fermionic fluctuations in Eq. (12) do

not change the universal critical behavior but affect the non-

universal quantities. Here we multiply both sides of Eq. (12)

by the product of the one-particle thermodynamic propaga-

tors G(k, iωn)G(k′, iωn′) and sum/integrate over the fermionic

variables k,ωn k′,ωn′ . Equation (12) with n being the charge

density per site reduces after analytic continuation to real fre-

quencies to

Λ =
Un2

n2 + 4Λ2XQ

, (13)

where

XQ =−Sdld
0 P

∫ ∞

−∞

dω

π
b(ω)

×
∫ L

0

qd−1dq

(2π)d
ℑ

[

φ(Q,ω+)
3

1+Λ
(

φ(Q,ω+)+Dl2
0q2

)

]

> 0 (14)

is the term renormalizing the bare interaction due to multi-

ple scattering of singlet electron pairs. We denoted b(x) =

1/(1eβ x − 1) the Bose function, Sd is the surface of the d-

dimensional unit sphere and L is an appropriate cutoff for

large momenta needed for dimensions d > 3. Positivity of

integral XQ leads to a screening of the bare interaction.

Equation (12) self-consistently determines the effective in-

teraction Λ that controls the critical behavior near the pole of

the magnetic response function, a singularity in the integrand

in Eq. (14). The singularity emerges for a= 1+Λφ(Q,0)= 0.

This critical point can be reached only if XQ < ∞. It means

that the singularity must be integrable. The self-consistent

equation for the effective interaction then suppresses spurious

poles of the random-phase approximation with the bare inter-

action U and correctly allows only for integrable singularities

in the response functions.

Equations (10)-(14) determine our general approxima-

tion of the mean-field character with a two-particle self-

consistency that can be applied in any spatial dimension in the

critical region of the diverging susceptibility. The asymptotic

integral over the transfer momentum q in Eq. (14) can be per-

formed and its explicit value in the critical region of diverging

antiferromagnetic fluctuations in one dimension is

X =− 1

2π
√

ΛD

∫ 2t

0
dω

φ(0)3 coth(β ω/2)sin(α(ω)/2)
[

(1+Λℜφ(ω+))
2 +Λ2ℑφ(ω+)2

]1/4
, (15)

where α(ω) = arctan(−Λℑφ(ω+)/(1+Λℜφ(ω))) and we

left out the dependence on the fixed edge vector Q = π/l0
to simplify the notation. Equation (13) for the effective in-

teraction Λ together with equation (15) for integral X can

be solved numerically in the whole phase space of the input

parameters in the same way as it was done in the SIAM.19

IV. LOW-TEMPERATURE ASYMPTOTICS OF THE

ONE-DIMENSIONAL HUBBARD MODEL

A. General case

The most interesting situation in the Hubbard model is the

low-temperature limit of the half-filled band with enhanced

antiferromagnetic fluctuations. It is manifested by proximity

of a singularity in the static staggered susceptibility

χAF =−2φ(0)

a
(16)
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with the bubble φ(ω) from Eq. (10) and a dimensionless

Kondo scale a = 1+Λφ(0) measuring the distance from the

critical point. We can use equation (13) as an equation for the

Kondo scale a ∈ (0,1) with Λ = (a− 1)/φ(0).

The dominant contribution to integral X in the critical re-

gion with a ≪ 1 comes from small frequencies and we can

replace the bubble by its low-frequency asymptotics φ(ω+)
.
=

φ(0)− iπAω . We obtain from Eq. (10)

A =
β

2
f (µ̄) f (−µ̄)ρ(0) . (17)

Moreover, we can set ω = 0 in all regular functions of the in-

tegrand in Eq. (15). We must, however, introduce a frequency

cutoff. We choose the hopping parameter t to suppress the ir-

relevant contribution from high frequencies. We thereby do

not affect the leading-order critical asymptotics. We replace

the integrand in Eq. (15) by its low-frequency asymptotics,

that is

X =− φ(0)3

2π
√

ΛD

∫ 2t

0
dω

coth(β ω/2)sin(α(ω)/2)

(a2 +π2Λ2A2ω2)
1/4

, (18)

with α(ω) = arctan(πΛAω/a).

We can analytically assess the integral in the leading order

of the vanishing scale a → 0. After a few straightforward ma-

nipulations we end up with

X
.
=− φ(0)3

2π
√

ΛD

{

2T√
a

∫ ∞

0
dx

sin(arctan(x)/2)

x [1+ x2]
1/4

+
1

3πΛA

[

(

a2 + 4π2Λ2A2t2
)3/4

−
(

a2 + 4π2Λ2A2T 2
)3/4

]}

. (19)

The numerical value of the integral in the first term is π/2.

This asymptotic form of the X integral holds only in the limit

a → 0. We compared in Fig. 1 the full, Eq. (18), and the

asymptotic, Eq. (19), expression of a dimensionless integral√
aX /φ(0)2 as a function of the Kondo parameter a ∈ (0,1)

on the logarithmic scale at a temperature T = 0.1t and with

interaction U = 5t. We can see quite a good agreement in the

limit a → 0.

Integral X contains two contributions. The first one, pro-

portional to T/
√

a, is the dominant critical contribution at

nonzero temperatures and prevents the existence of the critical

point with a = 0 signaling the transition to the antiferromag-

netically ordered phase. The latter term in the brackets is due

to quantum fluctuations dominant at zero temperature where

the first term vanishes. It tells us that a transition to a Néel

state, a = 0, is formally possible at zero temperature. But it is

nonetheless unphysical, since zero absolute temperature can

be reached only asymptotically from finite non-zero temper-

atures where the long-range order is suppressed by the first

term in Eq. (19).

Exact

Approx

10-5 10-4 0.001 0.010 0.100 1
0.000

0.005

0.010

0.015

0.020

0.025

0.030

a

a
y

FIG. 1. Comparison of a dimensionless integral
√

ay=
√

aX /φ(0)2

calculated with the asymptotic form, Eq. (19), black line, and the full

expression, Eq. (18), red line, as a function of the Kondo parameter

a on the logarithmic scale for U = 5t and T = 0.01t.

B. Half-filled band

We choose the half-filled band with µ̄ = 0 to determine the

explicit temperature dependence of the Kondo scale a. It will

directly lead via Eq. (16) to the temperature dependence of the

staggered susceptibility. We have in this symmetric situation

Λ =−1− a

φ(0)
, (20a)

A =
ρ(0)

8T
, (20b)

φ(0) = P

∫ ∞

−∞
dερ(ε)

f (ε)

ε
.
=−ρ(0) ln

( t

T

)

. (20c)

If we introduce dimensionless parameters u = −Uφ(0) and

y(a) = 4X (a)/φ(0)2 the Kondo scale a is then determined

from a cubic equation

(1− a)3y(a)+ (1− a)= u . (21)

The solution of this equation in the critical region for a ≪ 1 is

y(a) = u−1 with y ∝ T/
√

a. The critical region can, however,

be reached only in the strong-coupling regime, that is if

U |φ(0)| .=Uρ(0) ln
( t

T

)

≫ 1 . (22)

There is hence a crossover temperature for arbitrary interac-

tion U > 0 at which the solution of the half-filled Hubbard

model goes over to a strong-coupling regime. This tempera-

ture is

T0 = t exp

(

− 1

Uρ(0)

)

. (23)

The crossover temperature is reminiscent of the Kondo tem-

perature from the sd Kondo model.1
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Exact

Approx

0. 0.05 T0/t
0.000

0.002

0.004

0.006

0.008

0.010

T/t

1
/
A
F

FIG. 2. Comparison of the temperature dependence of the stag-

gered susceptibility, Eq. (25), calculated for U = 5t with the full and

asymptotic expressions for the Kondo scale a, Eq. (24). We indicated

the crossover temperature T0 = 0.081t from Eq. (23).

Finally, the temperature dependence of the Kondo scale in

the strong-coupling regime for T < T0 is

a =
4ρ(0)

D

T 2ρ(0)2 ln3 (t/T )

(Uρ(0) ln(t/T)− 1)2
. (24)

The low-temperature asymptotics of the staggered suscepti-

bility for T ≪ T0 then is

χAF .
=

D

2

U2

T 2
. (25)

The zero-temperature limit of the half-filled band is a quantum

critical point with the divergent staggered susceptibility. We

plotted the temperature dependence of its inverse for an inter-

mediate couplingU = 5t in Fig. 2 It shows that both its asymp-

totic limit from Eq. (25) and the full susceptibility, Eq. (16),

coincide in the critical region sufficiently below the crossover

temperature T0 from Eq. (23) and approach zero.

V. SPECTRAL PROPERTIES

The one-dimensional Hubbard model at half filling in the

limit of zero temperature is in the strong-coupling regime. It

means that we cannot apply the standard weak-coupling per-

turbation theory and the spectral properties at zero tempera-

ture must be determined non-perturbatively. The fundamental

quantity determining the spectral properties of the correlated

electron systems is the spectral self-energy ΣSp(k,ω+) renor-

malizing the dispersion relation and the one-electron propa-

gator from Eq. (5). We used the Hartree propagator to deter-

mine the thermodynamic two-particle properties of the model,

which was necessary to comply with the Ward identity and

to keep the approximation with the static effective interaction

thermodynamically consistent.19 The spectral self-energy, a

dynamical correction to the Hartree term, is generally deter-

mined from the Schwinger-Dyson equation. The only restric-

tion on the spectral self-energy is thermodynamic consistency

with the two-particle functions. It means that it should share

the critical behavior determined from the two-particle ver-

tex to maintain thermodynamic consistency. The Schwinger-

Dyson equation must act in the spin-symmetric subspace and

use the spin-symmetric two-particle vertex determined in the

preceding sections to achieve the demanded thermodynamic

self-consistency.

The Schwinger-Dyson equation with the effective interac-

tion Λ as the two-particle irreducible vertex reads

ΣSp(k,ω+) =−UΛ

∫ ∞

−∞

l0dq

2π
P

∫ ∞

−∞

dx

π

×
{

b(x)G (k+ q,ω++ x)ℑ

[

φ(q,x+)

1+Λφ(q,x+)

]

− f (x+ω)
φ(q,x−)

1+Λφ(q,x−)
ℑG (q+ k,x+ω+)

}

. (26)

The bubble φ(q,ω+) is determined from the thermodynamic

propagator G(k,ω+) not to affect the critical behavior of the

model with a → 0. The one-electron Green function G (k,ω+)
in this equation is, however the full Green function renormal-

ized via the resulting self-energy as defined in Eq. (5). It

means that we use the full one-particle renormalization for the

one-particle Green function of the Schwinger-Dyson equation

determining the spin-symmetric self-energy.

Equation (26) is solved iteratively starting from the bare

(Hartree) one-electron propagator G(k,ω+). Similarly as in

the case of the staggered susceptibility we can perform the in-

tegral over momentum q using the expansion around the edge

momentum Q = π/l0 capturing the critical antiferromagnetic

fluctuations for a → 0 in the low-temperature limit of the half-

filled band. The first iteration for the spectral self-energy then

is

ℑΣ
Sp
0 (ε,ω+) =

Uφ(0)

2π
√

D
[b(ε −ω)+ f (ε)]

× sin(α(ε −ω)/2)
[

(φ(0)− (1− a)ℜφ(ε −ω))2 +(1− a)2ℑφ(ε −ω)2
]1/4

,

(27)

where the bubble is taken from Eq. (10) with µ̄ = 0, the Kondo

scale a from Eq. (24), and the angle

α(x) = arctan

(

−πρ(0)2x

φ(0)a

)

. (28)

We also used the solution for the effective interaction Λ =
(a− 1)/φ(0). The self-energy depends in this mean-field ap-

proximation on momentum only via the dispersion relation

ε(k) at the critical point. Such a simplified dependence is gen-

erally expected for low frequencies around the Fermi energy.

Already this non-self-consistent solution for the self-energy

qualitatively reveals the expected features of the spectral func-

tion at zero temperature. Since the static bubble at half fill-

ing is logarithmically divergent at zero temperature, φ(0) ∝
ρ(0) ln(t/T ), the imaginary part of the self-energy can ei-

ther be zero or infinity. It appears that ℑΣ
Sp
0 (ε,ω+) = ∞ for

|ε| ≤ |ω | ≤ 2t. Consequently, ℑG (ε,ω) = 0 and the spectral
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function has a gap on this interval. The imaginary part of the

self-energy at the edge point ε = ω has the low-temperature

critical asymptotics

ℑΣ
Sp
0 (ω ,ω+)

.
=− U4D

16T2
√

ln(t/T )
, (29)

while the asymptotics for |ε|< |ω | is slower

ℑΣ
Sp
0 (ε,ω+)

.
=− U2

√

ln(t/T )

2
√

2πT
. (30)

The actual critical asymptotics will be modified in the full

self-consistent solution of Eq. (26). The non-self-consistent

solution is, nevertheless, sufficient to illustrate the mechanism

behind the opening of the gap in the spectral function in this

approximation.

VI. CONCLUSIONS

The ground state and thermodynamics of the one-

dimensional Hubbard model can be determined within rigor-

ous approaches. It is, however, very laborious to get an overall

picture of the behavior of this model from them. Moreover,

the Bethe Ansatz, on which the rigorous results are based, is

not extensible to higher dimensions. That is why approximate

schemes applicable not only to higher dimensional models but

also to more realistic descriptions of interacting electrons are

being developed and tested.

We used a universal mean-field-like approximation with a

renormalized static effective interaction to study the critical

antiferromagnetic fluctuations in the half-filled band. The

equilibrium state of our approximation remains paramagnetic

down to zero temperature as expected. The low-temperature

limit is, however, nontrivial with a crossover temperature be-

low which the system gets into the strong-coupling regime

for arbitrary non-zero interaction U > 0. The solution at zero

temperature then is at a quantum critical point with infinite

antiferromagnetic fluctuations and a diverging staggered sus-

ceptibility the critical asymptotics of which was derived. We

also showed how a gap in the spectral function opens at zero

temperature without being antiferromagnetically ordered.

The exact spectrum of the Hubbard Hamiltonian in one

dimension reveals that the limit to the non-interacting case

U = 0 is not analytic. One hence cannot rely on the pic-

ture of weakly interacting quasiparticles of the Fermi liquid at

low temperatures. Low temperatures can be described within

many-body approaches only via nonperturbative approxima-

tions renormalizing sufficiently the bare interaction enabling

a smooth extension to strong coupling. Our main conclusion

is that the zero-temperature state is strongly correlated and

can be approached within the standard many-body techniques

with fermionic excitations only asymptotically from high tem-

peratures. Approximate solutions derived within the many-

body perturbation theory at strictly zero temperature cannot

be trusted in low-dimensional systems (d < 3).

ACKNOWLEDGMENT

The research was supported by Grant No. 19-13525S of

the Czech Science Foundation and INTER-COST LTC19045

of the Czech Ministry of Education, Youth and Sports.

DATA AVAILABILITY

We have not used any specific data needed to reproduce the

conclusions of this study beyond that available in the article.

1N. Andrei, K. Furuya, and J. H. Lowenstein, Reviews of Modern Physics

55, 331 (1983).
2A. Tsvelick and P. Wiegmann, Advances in Physics 32, 453 (1983).
3F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin,

The One-Dimensional Hubbard Model (Cambridge University Press, Cam-

bridge, United Kingdom, 2005).
4H. Bethe, Zeitschrift für Physik 71, 205 (1931).
5M. Takahashi, Progress of Theoretical Physics 47, 69 (1972).
6A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Reviews of Mod-

ern Physics 68, 13 (1996).
7N. D. Mermin and H. Wagner, Physical Review Letters 17, 1133 (1966).
8F. D. M. Haldane, Journal of Physics C-Solid State Physics 14, 2585 (1981).
9H. Frahm and V. E. Korepin, Physical Review B 42, 10553 (1990).

10H. J. Schulz, Physical Review Letters 64, 2831 (1990).
11N. Kawakami and A. Okiji, Strong Correlation and Superconductivity 89,

105 (1989).
12T. Deguchi, F. H. L. Essler, F. Gohmann, A. Klumper, V. E. Korepin, and

K. Kusakabe, Physics Reports-Review Section of Physics Letters 331, 197

(2000).
13M. Takahashi, Thermodynamics of One-dimensional Solvable Models

(Cambridge University Press, Cambridge, United Kingdom, 1999).
14M. Takahashi and M. Shiroishi, Physical Review B 65 (2002).
15H. Shiba, Progress of Theoretical Physics 48, 2171 (1972).
16H. Shiba, Physical Review B 6, 930 (1972).
17V. Janiš and P. Augustinský, Physical Review B 75, 165108 (2007).
18V. Janiš, A. Kauch, and V. Pokorný, Physical Review B 95, 045108 (2017).
19V. Janiš, P. Zalom, V. Pokorný, and A. Klíč, Physical Review B 100, 195114
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