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Flat bands in lattice models have provided useful platforms for studying strong correlation and
topological physics. Recently, honeycomb superlattices have been shown to host flat bands that
persist in the presence of local perturbations respecting lattice symmetries. We analytically derive
the flat band energies in the presence of longer range hopping and find that the energies of flat bands
are tunable by these perturbations. In real space, the wave function is constructed from standing
waves on each honeycomb edge, allowing the construction of plaquette and loop eigenstates due
to destructive interference in real space that give rise to the flat bands robust against long range
hoppings.

I. INTRODUCTION

Recently, there has been intense interest in flat band
physics. When electrons fill a completely dispersionless
band, interaction effects become non-perturbative, and
novel strongly-correlated phases and phenomena can be
developed [1–12]. In realistic materials, due to unavoid-
able further-than-nearest-neighbor hoppings, flat bands
often develop dispersion. It would be valuable to search
for flat bands that are robust in the presence of pertur-
bations from longer range hoppings.

Motivated by a recent scanning tunnelling microscopy
experiment on the nearly commensurate charge-density
wave phase of 1T-TaS2 [13], where metallic states are
formed along imperfect David-star clusters of the domain
wall network that form a honeycomb superlattice, flat
bands have been discovered in the corresponding tight-
binding models on the superlattice. The large density
of states from flat bands can contribute to enhanced
superconductivity and give rise to other correlation ef-
fects. Remarkably, the tight-binding models defined on
honeycomb superlattices with each honeycomb edge con-
taining multiple sites turn out to host flat bands robust
against symmetric perturbations from longer range hop-
pings [14].

Sharing the same physics as the familiar examples of
flat bands in Lieb lattice [15], line graphs [16] such as the
kagomé lattice, or graphs constructed from complete sub-
graphs [17], the honeycomb superlattice flat bands arise
from macroscopically degenerate states localized around
plaquettes and loops of the lattice as a consequence of
destructive interference of hopping amplitudes. The hon-
eycomb superlattice differs from the line graphs as well
as the Lieb lattice in the structure of the complete sub-
graphs to which sites on two edges of a plaquette support-
ing localized states are connected. We find that the hon-
eycomb superlattice demonstrates an interesting example
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of a general family of lattices supporting flat bands when
the sites from two neighboring edges are connected to
multiple complete subgraphs as long as these subgraphs
are disconnected, inter-connected by additional bonds,
or with a single site between two additional bonds out-
side of the plaquette with localized states. Our results
could help understand and predict flat bands in realistic
materials in the presence of longer range hoppings.

The remainder of the paper is organized as follows: in
Sec. II, we introduce the hopping model on the honey-
comb superlattice. In Sec. III, we analytically derive the
flat band energies and show their tunability. In Sec. IV,
we analytically derive and construct the standing waves
and localized states living on hexagonal plaquettes. Fi-
nally, we summarize our paper in Sec. V.

II. FLAT BANDS ON A HONEYCOMB
SUPERLATTICE WITH NEAREST NEIGHBOR

HOPPING

We start by reviewing the tight-binding model used
by Cho and his collaborators [14], who discovered that a
family of honeycomb superlattices can support flat bands
in the presence of longer-range hoppings and spin-orbit
couplings.

In the presence of only nearest-neighbor (N.N.) hop-
pings, the spinless tight-binding Hamiltonian is

HN.N. = t0
∑
〈r,r′〉

c†rcr′ + h.c., (1)

where the sum runs over the pairs of N.N. sites 〈r, r′〉, c†r
(cr) is the creation (annihilation) operator of an electron
at site r, and t0 is the amplitude of the hopping between
N.N sites in the honeycomb superlattice where each hon-
eycomb edge is decorated with additional sites. We take
t0 = 1 with positive sign, since the model with only N.N.
hoppings is bipartite. We also take the spacing between
two N.N. sites to be 1 throughout.
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FIG. 1. (a) The unit cell of a honeycomb superlattice. The
sites in red, numbered from 1 to 5, are in the A sublattice,
whereas the sites in blue, numbered from 6 to 11, belong to
the B sublattice. The primitive lattice vectors a1 and a2 are
also labelled. (b) The set of C3-symmetric perturbations we
introduce. The circular hoppings in orange and green have
amplitudes t1 and t2, whereas the triangular perturbations in
purple have amplitude t3.

We consider the honeycomb superlattice with five sites
per honeycomb edge, which is described by the eleven-
site unit cell shown in Fig. 1(a). Similar results can be
obtained for superlattices with different numbers of ad-
ditional sites. Following the numbering scheme in Fig.
1(a), the A sublattice consists of two vertices and three
bond-center sites numbered 1 through 5, while the rest
of the sites, numbered 6 to 11, belong to the B sublat-
tice. The system exhibits three-fold rotation symmetry
with respect to any vertex of the superlattice and mirror
symmetries with mirror planes going through opposite
vertices and opposite edge centers of a honeycomb pla-
quette.

In the momentum space representation, the Hamilto-
nian can be written

HN.N. =
∑
k

11∑
i,j=1

c†k,i [HN.N.(k)]ij ck,j (2)

with k = (kx, ky) and c†k,i = 1/
√
N0

∑
R e

ik·Rc†R,i, where

c†R,i is the real space creation operator at site i of unit cell
R and R is summed over all N0 unit cells. Due to the
bipartite hopping, the kernel HN.N.(k) takes the block
off-diagonal form

HN.N.(k) =

[
0 HBA(k)

HAB(k) 0

]
. (3)

Here, 0 denotes a zero rectangular matrix of appropriate

dimensions, and HAB = H†BA describes the N.N. hop-
pings from A to B sublattices with

HBA(k) =


t0 0 0 0 0 t0e

−ik·a1

t0 t0 t0 0 0 0
0 t0 0 0 t0e

−ik·a2 0
0 0 t0 t0 0 0
0 0 0 t0 t0 t0

 , (4)

where a1 = (−2
√

3, 6) and a2 = (2
√

3, 6) are the primi-
tive direct lattice vectors of a superlattice unit cell.

(a) (b)

(c) (d)

FIG. 2. Band structures plotted along the high-symmetry
cut Γ-K-M -Γ for different sets of perturbations in units of t0.
The high-symmetry points in momentum space are Γ = 0,

K =
(

π

6
√

3
, π

6

)
, and M =

(
0, π

6

)
. The three flat bands remain

robust for different parameters: (a) t1 = 0, t2 = 0, t3 = 0,
i.e., only N.N. hoppings; (b) t1 = 0.3, t2 = 0, t3 = 0; (c)
t1 = 0, t2 = 0.3, t3 = 0; (d) t1 = 0, t2 = 0, t3 = 0.3. Here (b)
reproduces Fig. 1(c) in Ref. 14.

As shown in Fig. 2(a), three out of the eleven bands
of HN.N.(k) described by Eq. (3) are completely flat at

energies Eflat,mid = 0 and Eflat,top/bot = ±
√

2; we will
derive these energies analytically in Section. III. Note
that the band structure is symmetric with respect to zero
energy, indicating particle-hole symmetry, which follows
from the transformation C: cr → cr for r ∈ A sublattice;
cr → −cr for r ∈ B sublattice.

The bands in Fig. 2(a) also exhibit crossings at K
and Γ points, most of which are Dirac type except the
quadratic crossings at the Γ point for the highest and the
lowest flat bands. Furthermore, because of the particle-
hole symmetry, a three-fold degeneracy occurs at the Γ
point for the middle flat band.

Reference 14 found in numeric calculations that the
flat band wave functions vanish on any honeycomb ver-
tex. Here we provide an analytical argument. In the
basis of eleven sublattices, a general Bloch state ψ(k) =
(ψ1(k), ψ2(k), · · · , ψ11(k))T satisfies its eigenequation

HN.N.(k)ψ(k) = Eψ(k). (5)

Or, in terms of the eleven components of ψ(k), we have
ψ6 + ψ11e

−ik·a1 = Eψ1, ψ6 + ψ7 + ψ8 = Eψ2, ψ7 +
ψ10e

−ik·a2 = Eψ3, ψ8 + ψ9 = Eψ4, ψ9 + ψ10 + ψ11 =
Eψ5, ψ1 + ψ2 = Eψ6, ψ2 + ψ3 = Eψ7, ψ2 + ψ4 = Eψ8,
ψ4+ψ5 = Eψ9, eik·a2ψ3+ψ5 = Eψ10, and eik·a1ψ1+ψ5 =
Eψ11. Here, for brevity, we suppressed the momentum
dependence of ψi.

Note that the above set of equations manifestly satis-
fies the system’s symmetries: it stays invariant under C3
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rotations about a honeycomb vertex and inversions about
the mirror planes. Solving for ψ5(k) in terms of ψ2(k)
yields (E4−5E2+3)ψ5(k) = (e−ik·a1 +e−ik·a2 +1)ψ2(k).
Under the inversion about the horizontal plane going
through site 4, ψ5(k) → ψ2(k), a1 → −a2, a2 → −a1,
and the above relation becomes (E4 − 5E2 + 3)ψ2(k) =
(eik·a1 + eik·a2 + 1)ψ5(k). For the two relations to hold
simultaneously, we require that

(E4 − 5E2 + 3)2ψ5(k) = |eik·a1 + eik·a2 + 1|2ψ5(k). (6)

On the left hand side of Eq. (6), when ψ(k) is a flat
band wave function, its energy E is independent of k over
the entire BZ. However, on the right hand side, the coeffi-
cient in front of ψ5(k) is k-dependent. Therefore, for Eq.
6 to be satisfied for all k, we have to have ψ5(k) = 0 over
the BZ. Furthermore, since ψ2(k) ∝ ψ5(k), ψ2(k) = 0
as well. In addition, if ψ5 6= 0, solving the eighth-order
polynomial equation (E4−5E2+3)2 = |eik·a1+eik·a2+1|2
from Eq. (6) at k = 0, we would obtain the eight dis-

persive band energies, E = 0, 0,±
√

2,±
√

3,±
√

5. This
is consistent with our numeric band calculation at the Γ
point in Fig. 2(a). Similar results can be obtained for
the honeycomb superlattice with a different number of
additional sites along the honeycomb edge.

III. FLAT BANDS WITH C3v-SYMMETRIC
HOPPING PERTURBATIONS

To further study the relation between flat bands and
lattice symmetry, we introduce additional, longer range
hoppings in the honeycomb superlattice model that pre-
serve the lattice C3v symmetry. Remarkably, the three
flat bands found in the previous section all survive in the
presence of these symmetric perturbations [14]. Below,
we explain our analysis of this result, analytically derive
the three flat band energies, and further discuss the tun-
ability of these flat bands.

As shown in Fig. 1(b), we introduce additional long-
range hoppings with amplitudes t1, t2 and t3 that are all
C3-symmetric about the honeycomb vertices. When all
these three types of hoppings are present, the Hamilto-
nian matrix kernel takes the form

H(k) =

[
HAA(t2,k) HBA(t0, t3,k)
HAB(t0, t3,k) HBB(t1,k)

]
. (7)

Here, t1 and t2 contribute to the diagonal blocks HBB
and HAA, respectively, in Eq. (7). Since t3 involves hop-
ping between A and B sublattice sites, it modifies the
off-diagonal blocks HAB and HBA. The explicit expres-
sions of blocks Hij with i, j = A,B in Eq. (7) are given
by

HAA = −t2


0 0 1 + ω∗1ω2 1 + ω∗1 0
0 0 0 0 0

1 + ω1ω
∗
2 0 0 1 + ω∗2 0

1 + ω1 0 1 + ω2 0 0
0 0 0 0 0

 , (8)

HBB = −t1


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

 , (9)

and

HAB =


t0 t0 t3 t3 0
t3 t0 t0 t3 0
t3 t0 t3 t0 0
t3ω1 0 t3ω2 t0 t0
t3ω1 0 t0ω2 t3 t0
t0ω1 0 t3ω2 t3 t0

 = H†BA. (10)

Here, ω1(k) = eik·a1 and ω2(k) = eik·a2 , and since t1 and
t2 are nonbipartite hoppings, HAA and HBB are written
with t1, t2 > 0, which cannot be changed by a gauge
transformation.

We can first derive the relation between ψ2(k) and
ψ5(k) as [E4 + (2t1 + t2)E3− (5 + 2t3)E2 + (−2t1 + 3t2−
2t1t2)E + 3]ψ2(k) = (4t3 + 1)(1 + ω1(k) + ω2(k))ψ5(k).
Using flat bands’ momentum independence and the sys-
tem’s inversion symmetry, as in Sec. II, we can de-
rive that the flat band Bloch wave function also van-
ishes at the honeycomb vertices in the presence of these
longer range hoppings. Therefore, we next use the ansatz
ψ(k) = [ψ1(k), 0, ψ3(k), ψ4(k), 0, ψ6(k) · · · , ψ11(k)]T to
solve the flat band energies from the eigenequations of
H(k) in Eq. (7). These equations can be reduced to

(E − t1)(E − 2t2)ψi(k) = 2(1− t3)2ψi(k), (11)

ψ1(k) + ψ3(k) + ψ4(k) = 0. (12)

with i = 1, 3, 4 in Eq. 11 and the remaining components
being linear combinations of ψ1(k), ψ3(k), and ψ4(k), as
shown in Appendix A. Thus, Eq. (12) requires that at
most one of ψ1(k), ψ3(k), and ψ4(k) is allowed to vanish
at any k. Therefore, at least two of the three equations
in Eq. (11) must hold non-trivially and we must have

(E − t1)(E − 2t2) = 2(t3 − 1)2. (13)

In terms of ∆ ≡ (t1/2 − t2)2 + 2(t3 − 1)2 ≥ 0, the two

roots of Eq. (13) are (t1/2 + t2)±
√

∆ which correspond
to Eflat,top/bot. The middle flat band occurs at E = t1.

Eq. (13) is consistent with the flat band energies
we obtained when only the N.N. hoppings are present,
where ∆ = 2, Eflat,top/bot = ±

√
2 and Eflat,mid = 0,

in agreement with Fig. 2(a). When only t1 is nonzero
with t1 = 0.3, Eq. (13) gives flat band energies

Eflat,top/bot = 0.15 ±
√

2 + (0.15)2 which take approx-
imate values 1.57 and −1.27, and Eflat,mid = t1 = 0.3
as shown in Fig. 2 (b). When only t2 is nonzero with

t2 = 0.3, Eflat,top/bot = 0.3±
√

2 + (0.3)2 which take ap-
proximate values 1.75 and −1.15, and Eflat,mid = 0 as
shown in Fig. 2 (c). Finally, when only t3 is nonzero

with t3 = 0.3, Eflat,top/bot = ±
√

2× (0.7)2 which take
approximate values 0.99 and −0.99, and Eflat,mid = 0 as
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shown in Fig. 2 (d). This is consistent with the fact that
t3 preserves particle-hole symmetry of the system.

With the explicit formulas, the flat band energies are
highly tunable as the values of the further-neighbor hop-
ping amplitudes vary. For example, if we wish to obtain
three flat bands at given values of E1, E2, and E3 with
E1 < E2 < E3, we can first obtain the middle flat band
by tuning t1 = E2. Then, we solve for t2 and t3 that will
make E1 and E3 the roots to Eq. (13). Using Vieta’s
formula, we need

t2 =
E1 + E3 − t1

2

(1− t3)2 =
(−E1 + t1)(E3 − t1)

2

(14)

Note that since E2 = t1, −E1 + t1 > 0, and E3 − t1 > 0,
the RHS is always positive, and one can always find an
appropriate value of t3 to realize any desired values of
flat band energies at E1 and E3.

IV. EIGENFUNCTIONS OF FLAT BANDS IN
REAL SPACE

In this section, we analyze the structure of wave func-
tions in real space. We first show that the wave functions
on each honeycomb edge are standing waves at differ-
ent energies, which explains the existence of multiple flat
bands. Furthermore, we construct localized states on the
honeycomb plaquettes and argue that they remain local-
ized in the presence of longer range hoppings, thereby
accounting for the interesting robustness of flat bands.

We start with the system with only N.N. hoppings
described by HN.N. in Eq. (1). From our analysis in
Sec. II, the wave functions of the flat bands vanish at
the honeycomb vertices. In real space, this occurs due
to destructive interference when the wave function has
alternating signs on neighboring honeycomb edges. We
consider first the structure of the wave function on a hon-
eycomb edge with five sites assuming the wave function
vanishes at the honeycomb vertices in the flat bands. Se-
quentially labeling the wave function components along
the edge φ0, φ1, φ2, φ3, φ4, the components on the ends
vanish, φ0 = φ4 = 0, and the remaining components
satisfy

Eφ1 = φ2,

Eφ2 = φ1 + φ3,

Eφ3 = φ2. (15)

The solutions of Eq. (15) describe standing waves with

φ
(m)
n = C sin

(
mπ
4 n
)
, where m ∈ {1, 2, 3} labels the band,

n ∈ {0, 1, 2, 3, 4} labels the site, and C is an overall nor-
malization constant. The corresponding energies are

Em = 2 cos
(mπ

4

)
. (16)

Eq. (16) agrees with the three flat band energies at E =

±
√

2, 0 obtained in Sec. III and in Fig. 2(a).

(a)

(b)

(c)

FIG. 3. Localized eigenstates around a plaquette for the flat
band at (a)Eflat,bot = −

√
2, (b)Eflat,mid = 0, (c) Eflat,top =√

2. The wave functions on sites in red, blue, and black have
positive-, negative-, and zero-valued weights, respectively (up
to an overall sign). As shown around the top honeycomb ver-
tices, for each type of perturbation, the hopping from any two
neighboring edges always cancel out due to destructive inter-
ference in real space, rendering the plaquette states Wannier-
like localized. The insets show the structures of the wave
functions living on the vertical edge containing sites 2,8,4,9,5,
which are well fit with standing waves.

From the wave function’s standing wave structure, we
can understand why the system in general can host mul-
tiple flat bands. Following the same reasoning in Sec. II,
we see the wave functions vanish at the junctions due to
symmetry. When there are N sites on each honeycomb
edge, each edge can therefore host N−2 possible standing

wave solutions. In particular, φ
(m)
n ∼ sin( mπ

N−1n), where

n ∈ {0, 1, · · · , N − 1} labels the site, and m labels the
band. We see that the allowed values of m run from 1
to N − 2, each corresponding to one flat band. This ac-
counts for the observation that the number of flat bands
is proportional to the number of sites along the edge [14].

Flat band wave functions in real space can be found by
piecing together same-energy standing waves along each
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FIG. 4. States localized on hexagonal plaquettes and loops in
the honeycomb superlattice. Wave function on bonds labelled
in red and blue have opposite signs. Each plaquette has the
same configuration as one of the three shown in Fig. 3, de-
pending on the flat band energy. Larger loop states formed by
superposing multiple plaquette states are contractible. When
periodic boundary conditions are imposed, non-contractible
loop states can be constructed winding around the entire lat-
tice at the same energy as other flat-band eigenstates.

honeycomb edge. In particular, plaquette states [14] can
be formed from standing waves taking alternating signs
around the honeycomb edges of a plaquette,

|ψ(m)

9 〉 =

6∑
δ=1

4∑
n=0

(−1)δφ(m)
n c†rδ,n |0〉 (17)

where δ labels the edges of the hexagonal plaquette coun-
terclockwise from the right and nδ labels the nth site on
edge δ, with rδ,n the corresponding real space vector. The
localized plaquette states for each of the three flat bands
when N = 5 are shown in Fig. 3. Similar plaquette states
are eigenstates of the flat bands in the presence of longer
range hoppings respecting lattice symmetries. Due to
destructive interference from standing waves of opposite
signs on any two neighboring edges, such states are al-
ways localized within plaquettes without “leaking” off to
any sites outside a plaquette, as shown schematically in
Fig. 4 as Wannier-like localized states. By superposing
neighboring honeycomb plaquettes, one can form larger
contractible loop states over the lattice. In the presence
of periodic boundary conditions, one can construct non-
contractible loop states that wind around the entire lat-
tice and are flat band eigenstates. All these states are
localized on either plaquettes or loops in the lattice and
therefore are macroscopically degenerate, thereby giving
rise to the flat bands. Since the localized states are not
dispersed by additional longer range hoppings, the flat
bands remain robust and tunable in the presence of sym-
metric perturbations.

V. CONCLUSIONS

In this paper, we studied the flat bands arising from
honeycomb superlattices without and with longer range
hoppings respecting the lattice symmetry. We showed
that the presence of flat bands is robust with and the flat
band energies are tunable in terms of different hopping
strengths. We also analyzed the wave function struc-
ture and explicitly constructed eigenstates of these flat
bands that remain localized due to destructive interfer-
ence. As long as the longer range hoppings preserve the
destructive interference based on the sign structure of the
eigenfunctions, these states remain localized around pla-
quettes and loops in the lattices, accounting for the flat
bands with macroscopic degeneracy and tunable energies.
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Appendix A: Flat band eigenequations with longer
range hoppings t1, t2 and t3

We consider the equations for the flat band
states of H(k) in Eq. (7). Noting that flat
band states have vanishing components ψ2(k) and
ψ5(k), the flat band states can be written ψ(k) =
[ψ1(k), 0, ψ3(k), ψ4(k), 0, ψ6(k) · · · , ψ11(k)]T . For conve-
nience, the momentum dependence of ψi ≡ ψi(k) will be
suppressed in what follows.

The eigenvalue equations for ψ2 and ψ5 yield the rela-
tions

ψ6 + ψ7 + ψ8 = 0,

ψ9 + ψ10 + ψ11 = 0.
(A1)

Using these relations, the eigenvalue equations for the
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remaining components become

Eψ1 = −t2[(1 + e−ik·(a1−a2))ψ3 + (1 + e−ik·a1)ψ4]

+(1− t3)(ψ6 + e−ik·a1ψ11), (A2)

Eψ3 = −t2[(1 + eik·(a1−a2))ψ1 + (1 + e−ik·a2)ψ4]

+(1− t3)(ψ7 + e−ik·a2ψ10), (A3)

Eψ4 = −t2[(1 + eik·a1)ψ1 + (1 + eik·a2)ψ3]

+(1− t3)(ψ8 + ψ9), (A4)

(E − t1) ψ6 = (1− t3)ψ1, (A5)

(E − t1) ψ7 = (1− t3)ψ3, (A6)

(E − t1) ψ8 = (1− t3)ψ4, (A7)

(E − t1) ψ9 = t3e
ik·a1ψ1 + t3e

ik·a2ψ3 + ψ4, (A8)

(E − t1)ψ10= t3e
ik·a1ψ1 + eik·a2ψ3 + t3ψ4, (A9)

(E − t1)ψ11= eik·a1ψ1 + t3e
ik·a2ψ3 + t3ψ4. (A10)

We note immediately that E = t1 is a solution for a
non-zero eigenstate. Next, we derive the other two flat
band energies. By adding Eqs. (A5), (A6) and (A7) and

using Eq. (A1), we have ψ1 +ψ3 +ψ4 = 0. Following the
same procedure, from Eqs. (A8), (A9) and (A10) with
E 6= t1, we have

ψ4 + eik·a2ψ3 + eik·a1ψ1 = 0. (A11)

Finally, applying Eqs. (A8) and (A9) to the right hand
side of Eq. (A2) and using Eq. (A11) to simplify, we get

Eψ1 = −2− t2ψ1 +
(1− t3)(2− 2t3)

E − t1
ψ1. (A12)

Following the same procedure, we obtain two similar re-
lations for ψ3 and ψ4,

Eψ3 = −2− t2ψ3 +
(1− t3)(2− 2t3)

E − t1
ψ3,

Eψ4 = −2− t2ψ4 +
(1− t3)(2− 2t3)

E − t1
ψ4.

(A13)

[1] M. Goda, S. Nishino, and H. Matsuda, Inverse ander-
son transition caused by flatbands, Phys. Rev. Lett. 96,
126401 (2006).

[2] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Flat
bands and wigner crystallization in the honeycomb opti-
cal lattice, Phys. Rev. Lett. 99, 070401 (2007).

[3] D. L. Bergman, C. Wu, and L. Balents, Band touching
from real-space topology in frustrated hopping models,
Phys. Rev. B 78, 125104 (2008).

[4] R. Bistritzer and A. H. MacDonald, Moiré bands in
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